¢.» stonebranch
’ you imagine IT. ve automate IT.

Opswise Controller 6.1.x

Variables and Functions

© 2015 by Stonebranch, Inc. All Rights Reserved.

1. Variables and FUNCHONS e e e e 3

1.1 Variables and FUNCHONS OVEIVIEWottt e e e e e e e e e e e e e e e e e e 4

1.2 User-Defined Variables 5

1.3 BuUilt-In Variables 12
1.4 Launching With Variables 30
1.5 Trigger With Variables 31
1.6 Creating a Set Variable Action within a Task or Workflow 32
1.7 Listing and Setting Variables from the Command Line 36

LB FUNCHONS . .. 37

Opswise Controller 6.1.x Variables and Functions

3

Variables and Functions

=)

—I Variables

/

Overview

User-Defined Variables

"

- Using Variables

Setting Variables under Special Circumstances
Launching With Variables

Triggering with Variables

Creating a Set Variable Action within a Task or Workflow

Listing and Setting Variables from the Command Line

=)

< Functions

Overview
Date Functions

Mathematical Functions

SQL/Stored Procedure Functions

String Functions

System Functions

Cror [
P

ops-61x-v&f

The information on these pages also is located in the Opswise Controller 6.1.x Variables and Functions.pdf.

Iﬁ Built-In Variables
T

Overview

Agent Variables
Application Monitor Tri¢
Cluster Node Variables
File Monitor Task Instar
File Transfer Task Insta
FTP File Monitor Task Ir
OMS Server Variables
SAP Task Instance Vari
SQL and Stored Proced
System Monitor Task In
Task Instances Variable
Task Monitor Task Inste
Trigger Variables (all tri

z/OS Task Instance Vari

https://www.stonebranch.com/confluence/display/OWC610/Triggering+with+Variables
https://www.stonebranch.com/confluence/download/attachments/17928691/Opswise+Controller+6.1.x+Variables+and+Functions.pdf?version=13&modificationDate=1471544453000

Opswise Controller 6.1.x Variables and Functions

4

Variables and Functions Overview

® Variables and Functions
® Types of Variables
® Setting Variables under Special Circumstances

Variables and Functions

Variables and functions can be used in free-text fields within tasks and workflows. When a variable or function is specified in a free-text field, the
Controller inserts its value into the field when the task or workflow is run.

Triggers can pass variables and functions into the tasks and workflows that they launch.

Additionally, email notifications for Controller resources (agents, OMS servers, and cluster nodes) can use Built-In Variables that are specific to
that type of resource.

Types of Variables

Opswise Controller supports the following types of variables, all of which can be used in free text fields within tasks:

User-Defined Variables = These variables are created by the user for use within triggers, tasks, and workflows.

Built-In Variables These variables, maintained by the Controller, allow you to access information about task instances and other related
data, such as task name, task status, and trigger name.

Functions These variables calculate some value, such as current date and time, or perform some function, such as _replaceAll.

Setting Variables under Special Circumstances

The Controller also supports several features that allow you to set variables under special circumstances:

® Manually launch tasks and temporarily set user-defined variables.
® Manually launch all of the tasks associated with a trigger while supplying variable values used by the task(s) (see Triggering with

Variables).
® Use the Set Variable action to set variables within a task or workflow.
® Use the ops-variable-set CLI command to set variables.

| ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Manually+Running+and+Controlling+Tasks#ManuallyRunningandControllingTasks-launchwithvariables
https://www.stonebranch.com/confluence/display/OWC610/Triggering+with+Variables
https://www.stonebranch.com/confluence/display/OWC610/Triggering+with+Variables
https://www.stonebranch.com/confluence/display/OWC610/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-opsvariableset

Opswise Controller 6.1.x Variables and Functions

User-Defined Variables

® Overview
® Variable Naming Conventions
® Resolving User-Defined Variables
® For Tasks Launched by a Trigger
® For Tasks Launched by a Workflow
® For Tasks Launched Manually
® Format for Using Variables
® Creating a Variable
® Creating a Global Variable
® Global Variable Details
® Global Variable Details Field Descriptions
® Creating a Variable Specific to a Trigger, Task, or Workflow

Overview

User-defined Opswise Controller variables are available for use in triggers, tasks, and Workflows.
You can define variables to be either:

® Available to a single trigger, task, or workflow
® Available to all triggers, tasks, and workflows; that is, Global.

You define variables specific to single a trigger, task, or workflow on the Variables tab in the Details of that trigger, task, or workflow. These
variables are stored in the ops_local_variable table.

You define Global variables by either:

® Selecting Other > Variables from the Automation Center navigation pane.
® Using the Set Variable action for a task or workflow.

Global variables are stored in the ops_variable table.

Variable Naming Conventions

® Variable names must begin with a letter.

® Allowable characters are alphanumerics (upper or lower case), and underscore ().
® White spaces are not permitted

® Variable names are not case-sensitive.

Warning
Do not define Controller variables with the prefix ops_. That prefix is reserved for built-in variables.

Resolving User-Defined Variables

When the Controller creates a task instance from a task, it also resolves all variables specified in its free text fields. Because you can define
variables at four different levels (trigger, task, workflow, and global), the Controller follows a prescribed formula to determine which variable takes
precedence if duplicate variables have been defined. The general order of precedence, each of which may or may not exist in any given situation,
is as follows:

Task trigger (highest precedence)
Task

. Workflow trigger

. Workflow

. Global (lowest precedence)

A WNE

The following scenarios provide more detailed information about how Controller variables are resolved.

For Tasks Launched by a Trigger

5 /| ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Triggers+Overview
https://www.stonebranch.com/confluence/display/OWC610/Creating+Tasks
https://www.stonebranch.com/confluence/display/OWC610/Creating+and+Maintaining+Workflows
https://www.stonebranch.com/confluence/display/OWC610/Navigator#Navigator-AutomationCenter

Opswise Controller 6.1.x Variables and Functions

If the trigger defines the variable in the variables tab, that value is used to resolve the variable.

If the trigger does not define the variable, the value from the variable tab in the task Details is used.

If neither the trigger nor the task define the variable, the variable definition in the global variables table is used.
If the global variables table does not define the variable, the variable remains unresolved.

PONPE

1. Task Trigger

2. Task
(Variables tab)

Resolving 3. Global
variables for Variabl
tasks launched ariable

by a trigger

For Tasks Launched by a Workflow

. If the task defines the variable in the variables tab, that value is used to resolve the variable.

. If the task does not define the variable, and the workflow was launched by a trigger, the value defined in the trigger is used.

. If the workflow's trigger does not define the variable or the workflow was not launched by a trigger, the value defined in the workflow is
used.

WN -

4. If the workflow does not define the variable, and there is a parent workflow, the value defined in the parent workflow's trigger is used.

5. If the parent workflow's trigger does not define the variable or if there is no trigger, the value defined in the parent workflow is used.

6. If the parent workflow does not define the variable, the Controller checks up a level for the trigger on the next parent workflow.

7. If that trigger does not define the variable, it checks for variables associated with the workflow. (This continues until the top level workflow
is reached.)

8. If the top-level workflow does not define the variable, the variable definition in the global variables table is used.

9. If the global variables table does not define the variable, the variable remains unresolved.

1. Task 2.
Workflow 3
trigger Workflow 4. Parent
Workflow
: 5. Parent 6. Top-

trigger

workflow level 7 Top-

workflow <oy

trigger i 8. Global
workflow &

Resolving variables for tasks variable

launched by a workflow

For Tasks Launched Manually

1. If the task defines the variable in the variables tab, that value is used to resolve the variable.
2. If the task does not define the variable, the variable definition in the global variables table is used.
3. If the global variables table does not define the variable, the variable remains unresolved.

6 / ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

1. Task
(Variables tab)

2. Global
| Variable

Resolving variabhles for
tasks launched manually

Format for Using Variables

When you enter a variable into a text field, precede the variable with the dollar sign ($) and enclose the variable in curly braces ({}). You can
enter a series of variables or nested variables. Examples are:

${vari abl e_nane}
${vi} ${v2}
${${i nner _vari abl e} }

Creating a Variable

You can create variables that are:

1. Available on a Global level; that is, available for all triggers, tasks, and Workflows.
2. Available only for a specific trigger, task, or Workflow.

Creating a Global Variable

To create a Global variable that is available for all triggers, tasks, and Workflows:

7 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

8

/

Step 1 From the Automation Center navigation pane, select Other > Variables. The Variables list displays a list of all Global variables. (You
also can define a Global variable by using the Set Variable action for a task or workflow.)

Below the list, Variable Details for a new Global variable displays.

Variables
¥ 5 \Variables Custom Filter | — None — v | 5 Filter.. [T] GoTo.. [ta New &
Mame “ Value Description Updated By Updated
D stonebranch_variable_01 1 stonebranch-user-01 2014-08-13 14:52:37 -0400
D stonebranch_variable_02 1 stonebranch-user-02 2014-08-13 14:52:47 -0400
|:| stonebranch_variable_03 1 stonebranch-user-03 2014-08-13 14:52:50 -0400
D stonebranch_variable_04 1 stonebranch-user-04 2014-08-13 14:52:53 -0400
D stonebranch_variable_05 1 stonebranch-user-05 2014-08-13 14:52:57 -0400
¥ Variable Detaile [E] save [T] mMew
Variable
— Details
Mame : Version : 1
Value :
Description :
Member of
Business ¥
Senices :
] save] Mew

Step 2 Enter / select Details for a new Variable, using the field descriptions below as a guide.

® Required fields display in boldface.
® Default values for fields, if available, display automatically.

To display more of the Details fields on the screen, you can temporarily hide the list.

' Note
If you view Global Variable Details for an existing Global Variable by clicking a Variable in the list, and then want to
create a new Global Variable, you must click the New button that displays above and below the Details.

Step 3 Click the Save button, or right-click in the Details and click Save, to save the record.

Global Variable Details

0ps-61x-V&f

https://www.stonebranch.com/confluence/display/OWC610/Navigator#Navigator-AutomationCenter
https://www.stonebranch.com/confluence/display/OWC610/Record+Lists#RecordLists-HidingaList%28orDetails%29

Opswise Controller 6.1.x Variables and Functions

The following Variable Details is for an existing Global Variable.

See the field descriptions below for a description of all fields that display in the Global Variable Details.

Variable Details: stonebranch_variable_01 =3 X
[F] Update (| Delete ||% Refresh 3 Close

Variable Versions

— Details

Name : stonebranch_variable_01 Version 1

4
Value :

Description :

Member of
Business Semvices :

[E] Update] Delete 45| Refresh 32 Close

Global Variable Details Field Descriptions

The following table describes the fields and buttons in the Variables Details.

Field Name Description

Name
Name of the variable. Up to 40 alphanumerics. The name must begin with an alphabetic character and can consist of: alphas
(a-z, A-Z), numerics 0-9, _ (underscore). White spaces are not permitted; names are not case-sensitive.

iy Important
Do not define variables with the prefix ops_. The ops_ prefix is reserved for built-in variables.

Version System-supplied. The version number of the current record, which is incremented by the Controller every time a user updates
a record. Click the Versions tab to view previous versions. For details, see Record Versioning.

Value
Value of the variable.
Description
Optional. Description of this variable.
Member of
Business User-defined; allows you to select one or more Business Services that this record belongs to.
Services
Save Saves a new variable record in the Controller database.

Update button
Saves updates to the record.

Delete button
Deletes the current record.

Refresh Refreshes any dynamic data displayed in the Details.

Close For pop-up view only; closes the pop-up view of this task.

Creating a Variable Specific to a Trigger, Task, or Workflow

9 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Records#Records-RecordVersioning
https://www.stonebranch.com/confluence/display/OWC610/Business+Services

Opswise Controller 6.1.x Variables and Functions

To create a variable that is specific to a single trigger, task, or Workflow:

Step 1 From the Automation Center navigation pane, select Trigger > <trigger type> or Tasks > <task type>. The records list for that
trigger or task type displays. For example:

Linux/Unix Tasks
¥ 5 Linwe/Unix Tasks Custom Filter|— Mone — v | S5 Fiter.. [T GoTo.. £ Mew &
Task Name * Task Description Command or Script Updated By Updated -
El stonebranch-linuxunixtask-01 Command ops.admin 2014-08-13 13:55:34 -0400
El stonebranch-linuxunixask-02 Command ops.admin 2014-06-13 13:55:52 -0400
El stonebranch-linuxunixask-03 Command ops.admin 2014-08-13 13:56:11 -0400
El stonebranch-linuxunixask-04 Command ops.admin 2014-06-13 13:56:21 -0400
El stonebranch-linuxunicask-05 Command ops.admin 2014-06-13 13:56:36 -0400
V' Linux/Unix Task Details [E] save [T] New
Linux/Unix Task
-
— General
Task Name : Version : 1 |
Task Description :
Member of
Business v
Sernvices :
Hold on Start: [
Virtual Resource = Hold Resources l:l
Priority : on Failure :
Linux/Unix Details
’7 Agent: 9 D Agent Cluster :) D ‘
Step 2 Open on the list and click the Variables tab to display a list of any currently defined variables specific to that record.
Linux/Unix Task Details: stonebranch-linuxunixtask-01 =||=][*
Linux/Unix Task Variables Actions Virtual Resources | Mutually Exclusive Instances Triggers Notes Versions
2 Wariables MNew fral
Name Value Description Updated By Updated
I:I variable_1 1 the first variable. ops.admin 2014-07-08 15:43:47 -0400
D variable_2 2 The second variable ops.admin 2014-07-08 15:44:12 -0400
Step 3 Click the New button to display Variables Details for a new variable.
Variable Details =i
[E) save ¥ Close
“ariable
— Details
MName
Value
Description
[E] save ¥ close

Step 4 Using the field descriptions provided for Global Variable Details as a guide, complete the fields as needed.

Step 5 Click the Save button, or right-click in the Details and click Save, to save the record.

10 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Navigator#Navigator-AutomationCenter
https://www.stonebranch.com/confluence/display/OWC610/Records#Records-OpeningaRecord

Opswise Controller 6.1.x Variables and Functions

Step 6 If appropriate, repeat these steps for any additional variables you want to add.

11 / ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Built-In Variables

® Overview
® Agent Variables
¢ Agent Hostname
® Agent IP Address
® Agent IP Address
* Agent Mode
® Agent Name
® Agent Queue Name
® Application Monitor Trigger Variables
® Trigger Application Name
® Trigger Application Status
® Trigger Application sys _id
® Trigger Application Type
® Cluster Node Variables
Cluster Node Hostname
Cluster Node 1D
Cluster Node IP Address
Cluster Node Mode
Cluster Node Name
Cluster Node Running Time
Cluster Node Start Time
® File Monitor Task Instance/Trigger Variables
® Base File Name
® File Directory
® File Directory (with Final Directory Separator)
® File Directory (without Final Directory Separator)
® File Extension
® Separator
® Trigger File Date
[]
[]
[]
[]
[]

Trigger File Group
Trigger File Name
Trigger File Name (No Path)
Trigger File Owner
Trigger File Scan Result
® Trigger File Size
® File Transfer Task Instance Variables
® Destination Password
® Destination User ID
® Source Password ID
® Source User ID
® FTP File Monitor Task Instance Variables
® Base Trigger File Name
Files Matching Wildcard
Remote Trigger File Name
Remote Trigger File Name (No Path)
Trigger File Directory
Trigger File Directory (with Final Directory Separator)
Trigger File Directory (without Final Directory Separator)
Trigger File Extension
Trigger Wildcard
Trigger Wildcard Path Only
® Trigger Wildcard Path Only (without Final Slash)
® OMS Server Variables
® Last OMS Server Connected
® OMS Server IP Address
® OMS Server Status
® OMS Server sys_id
® SAP Task Instance Variables
® SAP InfoPackage Request ID
® SAP Job ID
® SAP Job Name
® SAP Process Chain ID
® SAP Process Chain Log ID
® SQL and Stored Procedure Task Instance Variables
® Error Message
® Processed Rows
® Return Code for SQL Statement Outcome

12 / ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

13

® System Monitor Task Instance Variables

Actual Size

Actual Size (Rounded)
Actual Size (Scale)
Scale

Size

Size (Rounded)

® Task Instance Variables

Command

Command Parameters
End Time

Execution User ID
Launch Time

Maximum Retry Count
Parent Workflow Instance sys_id
Parent Workflow Name
Retry Count

Retry Interval

Running Time

Running Time (Text Format)
Script ID

Script Name

Starting Time

Task Instance Attempts
Task Instance Exit Code
Task Instance Status
Task Instance sys_id
Task Name

Task Reference Count
Task Type

® Task Monitor Task Instance/Trigger Variables

Trigger Task Name
Trigger Task Status
Trigger Task sys _id
Trigger Task Type
Trigger Workflow

® Trigger Variables

Trigger Name
Trigger Time

® 7/OS Task Instance Variables

JCL Location

Job Number

Override JCL Location
Submitted JCL Location

Overview

Built-in variables are maintained by Opswise Controller and provide information about task instances, agents, Opswise Message Service (OMS),
and cluster nodes. They can be used in free text fields in triggers, tasks, task actions, and email notifications for agents, OMS servers, and cluster

nodes.

Supported built-in variables and their descriptions are provided below. All built-in variables are prefixed with ops_.

Agent Variables

The following agent variables can be used to pass information into an Agent notification.

Some of these variables, as noted, also can be used to pass agent information into an agent-based task (Windows, Linux/Unix, z/OS, and SAP).

Agent Hostname

Description | Resolves to the agent hostname. You also can use this variable in task notifications; see Creating Email Notifications and

Creating SNMP Notifications.

Syntax ${ops_agent_hostname}

Example

| ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Agents#Agents-SendingNotificationsonStatusofanAgent
https://www.stonebranch.com/confluence/display/OWC610/Email+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/SNMP+Notification+Actions

Opswise Controller 6.1.x Variables and Functions

Agent IP Address

Description = Resolves to the agent IP address (see also ${ ops_agent _i p}.
Syntax ${ops_agent_ipaddr}

Example

Agent IP Address

Description | Resolves to the agent IP address. You also can use this variable in task notifications; see Creating Email Notifications and
Creating SNMP Notifications.

Syntax ${ops_agent_ip}

Example

Agent Mode

Description | Resolves to the agent operational mode (Active, Offline).
Syntax ${ops_agent_mode}

Example

Agent Name

Description | Resolves to the agent name. You also can use this variable in task notifications; see Creating Email Notifications and SNMP
Notification Actions.

Syntax ${ops_agent_name}

Example

Agent Queue Name

Description | Resolves to the agent queue name. You also can use this variable in task notifications; see Creating Email Notifications and
Creating SNMP Notifications.

Syntax ${ops_agent_id}

Example

Application Monitor Trigger Variables

When a task is launched by an Application Monitor trigger, the following built-in variables are passed into the task being launched by the trigger:

Trigger Application Name

Description | Resolves to the name of the Application being monitored by the trigger.
Syntax ${ops_trigger_appl_name}

Example

Trigger Application Status

Description | Resolves to the status of the Application being monitored by the trigger.

14 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Email+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/SNMP+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/Email+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/SNMP+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/SNMP+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/Email+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/SNMP+Notification+Actions
https://www.stonebranch.com/confluence/display/OWC610/Application+Monitor+Triggers

Opswise Controller 6.1.x Variables and Functions

Syntax ${ops_trigger_appl_status}

Example

Trigger Application sys_id

Description | Resolves to the sys_id of the application.
Syntax ${ops_trigger_appl_id}

Example

Trigger Application Type

Description = Resolves to the type of Application being monitored by the trigger, as defined by the Application Type field.

Syntax ${ops_trigger_appl_type}

Example

Cluster Node Variables

The following cluster node variables allow you to pass information into a cluster node (Controller server) notification:

Cluster Node Hostname

Description | Resolves to the hostname of this cluster node.
Syntax ${ops_cluster_hostname}

Example

ops_cl ust er_host nane =
MACHI NEC19A

Cluster Node ID

Description | Resolves to the cluster node's internally-generated build ID.
Syntax ${ops_cluster_id}

Example

ops_cluster_id = MACH NEC19A: 8080- opswi se

Cluster Node IP Address

Description | Resolves to the IP address of this cluster node.

Syntax ${ops_cluster_ipaddr}

Example

ops_cl uster_ipaddr =
10. N. N. NN

Cluster Node Mode

15 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/OWC610/Cluster+Nodes#ClusterNodes-SendingNotificationsonStatusofaClusterNode

Opswise Controller 6.1.x Variables and Functions

Description | Resolves to the current mode of this cluster node (Offline, Active, Passive).
For more information, see Viewing Node Status.
Syntax ${ops_cluster_mode}

Example

ops_cl uster_node = Active

Cluster Node Name

Description = ${ops_cluster_name} is an alias for the ${ops_cluster_id} variable.
Syntax ${ops_cluster_name}

Example

ops_cl uster_nane =
MACHI NEC19A: 8080- opswi se

Cluster Node Running Time

Description | Resolves to the numbers of days, hours, and minutes that this cluster node has been running since it was last started.

Syntax ${ops_cluster_uptime}

Example

ops_cluster_uptime = 7 Seconds

Cluster Node Start Time

Description | Resolves to the date and time the cluster node (server) was started.
Syntax ${ops_cluster_start_time}

Example

ops_cluster_start_tinme = 2011-09-26 17:35:01
- 0400

File Monitor Task Instance/Trigger Variables

When one or more tasks are launched by a File Monitor trigger after the conditions in its associated File Monitor task are met, the built-in
variables described below are passed into the tasks being launched by the trigger.

For example, the File Monitor trigger may specify the launch of a Windows task each time the associated File Monitor task detects the creation of
a specific file. The Windows task might use one of these built-in variables as a command argument. Or, if the File Monitor task is not associated
with a trigger but is running within a workflow, on completion you can propagate one or more of these built-in variable values to the parent

workflow level using the Set Variable action. This allows you to pass information from the File Monitor task to a successor task within the same
workflow hierarchy.

Base File Name

Description | Resolves to the base file name.

Syntax ${ops_trigger_file_name_simple}

16 / o0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/High+Availability#HighAvailability-ViewingNodeStatus
https://www.stonebranch.com/confluence/display/OWC610/File+Monitor+Trigger

Opswise Controller 6.1.x Variables and Functions

File Directory

Description | Resolves to the directory where the new file was created, but not the file itself. If the existence or non-existence of the final
directory separator is a requirement, we recommend the use of ${ ops_t ri gger _fi |l e_f ul | pat h} and
${ops_trigger_file_fullpath_no_separat or}, respectively.

Syntax ${ops_trigger_file_path}

Example

Example

File Directory (with Final Directory Separator)

Description = Resolves to the directory where the new file was created, but not the file itself; includes the final directory separator.
Syntax ${ops_trigger_file_fullpath}

Example

File Directory (without Final Directory Separator)

Description | Resolves to the directory where the new file was created, but not the file itself; does not include the final directory separator.
Syntax ${ops_trigger_file_fullpath_no_separator}

Example

File Extension

Description | Resolves to the file extension of a file.

Syntax ${ops_trigger_file_name_extension}
Example
Separator

Description | Resolves to the separator appropriate to the platform where the agent is running. For Windows, resolves to a backslash (\); for
Linux/Unix, resolves to forward slash (/). This variable may be useful if you want to piece together a pathname using a
combination of text and variables.

Syntax ${ops_trigger_file_separator}

Example

${ops_trigger_file_fullpath}sub_fol der_name
${ops_trigger_file_separator}filenane.txt

Trigger File Date

Description | Resolves to the file date of the file that fired the trigger.
Syntax ${ops_trigger_file_date}

Example

Trigger File Group

Description | Resolves to the file group of the file that fired the trigger.

17 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Syntax ${ops_trigger_file_group}

Example

Trigger File Name
Description | Resolves to the name of the file that fired the trigger.

Syntax ${ops_trigger_file_name}

Example

Trigger File Name (No Path)
Description = Resolves to the name of the file that fired the trigger, but without any path information.
Syntax ${ops_trigger_file_name_nopath}

Example

Trigger File Owner
Description | Resolves to the file owner of the file that fired the trigger.
Syntax ${ops_trigger_file_owner}

Example

Trigger File Scan Result
Description | Resolves to the result of the file scan: FOUND or NOT_FOUND.

Syntax ${ops_trigger_file_scan}

Example

Trigger File Size
Description = Resolves to the file size of the file that fired the trigger.
Syntax ${ops_trigger_file_size}

Example

File Transfer Task Instance Variables

File Transfer variables are available for use in UDM scripts.

' Note
These variables differ from all other built-in variables in that they are resolved by Universal Data Mover (UDM) on a UDM agent,

not by the Opswise Controller. File Transfer variables are sent to an agent unresolved and UDM performs all resolution for
them. The resolved value is never available to the Controller.

Unlike the syntax of built-in variables resolved by Opswise Controller - ${ <vari abl e- nane>} - the syntax of File Transfer
variables is the same as all UDM variables - $(<var i abl e- nane>) .

The following example illustrates the correct way to code them:

18 / o0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Scripts
https://www.stonebranch.com/confluence/display/UAUMFT520/Universal+Data+Mover+Variables

Opswise Controller 6.1.x Variables and Functions

open src=srcserver user=$(ops_src_cred_user) pwd=$(ops_src_cred_pwd) dst=dstserver
user =$(ops_dst _cred_user) pwd=$(ops_dst_cred_pwd)

Destination Password

Description | Resolves to the destination password.
Syntax $(ops_dst_cred_pwd)

Example

Destination User ID

Description | Resolves to the destination user ID.
Syntax $(ops_dst_cred_user)

Example

Source Password ID

Description = Resolves to the source password.
Syntax $(ops_src_cred_pwd)

Example

Source User ID

Description | Resolves to the source user ID.
Syntax $(ops_src_cred_user)

Example

FTP File Monitor Task Instance Variables

The following built-in variables are available for FTP File Monitor task instances and provide information about the file or file(s) that matched the
monitor's criteria.

You can use these variables in an FTP File Monitor action or in a successor task instance by propagating one or more of these built-in variable
values to a parent workflow using the Set Variable action.

Base Trigger File Name

Description = Resolves to the base file name.
Syntax ${ops_trigger_file_name_simple}

Example

Files Matching Wildcard

Description | Resolves to a comma-separated list of files that matched the wildcard, if one was specified in the Remote Filename field in the
FTP File Monitor task.

Syntax ${ops_trigger_files}

19 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/FTP+File+Monitor+Task

Opswise Controller 6.1.x Variables and Functions

20

Example
ops_trigger_files = COVPANY-2011-11-22.xls, COWPANY-2011-11-23. x| s, COVPANY- 2011-11-24.xl s

Remote Trigger File Name

Description | Resolves to the remote file name.
Syntax ${ops_trigger_file_name}

Example

Remote Trigger File Name (No Path)

Description | Resolves to the remote file name without any path information.
Syntax ${ops_trigger_file_name_nopath}

Example

Trigger File Directory

Description | Resolves to the directory where the remote file is located, but not the file itself. ${ops_trigger_file_path} is an alias for
${ops_trigger_file_fullpath_no_separator}.

Syntax ${ops_trigger_file_path}

Example

Trigger File Directory (with Final Directory Separator)

Description | Resolves to the directory where the remote file is located, but not the file itself; includes the final directory separator.
Syntax ${ops_trigger_file_fullpath}

Example

Trigger File Directory (without Final Directory Separator)

Description | Resolves to the directory where the remote file is located, but not the file itself; does not include the final directory separator.
Syntax ${ops_trigger_file_fullpath_no_separator}

Example

Trigger File Extension

Description | Resolves to the file extension of the file.
Syntax ${ops_trigger_file_name_extension}

Example

Trigger Wildcard

Description = Resolves to the contents of the Remote Filename field in the FTP File Monitor task.

Syntax ${ops_trigger_wildcard}

| ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/FTP+File+Monitor+Task

Opswise Controller 6.1.x Variables and Functions

Example

ops_trigger_w ldcard =
/ hone/ pr od/ st onebr anch/ COVPANY*. x| s

Trigger Wildcard Path Only

Description = Resolves to the path only, with the final slash but without the file name, from the Remote Filename field in the FTP File Monitor
task.

Syntax ${ops_trigger_wildcard_path}

Example

ops_trigger_w | dcard_path = /hone/ prod/ st onebranch/

Trigger Wildcard Path Only (without Final Slash)

Description | Resolves to the path only, without the final slash and without the file name, from the Remote Filename field in the FTP File
Monitor task.

Syntax ${ops_trigger_wildcard_path_no_separator}

Example

ops_trigger_w | dcard_path_no_separator = /hone/ prod/stonebranch

OMS Server Variables
The following OMS Server variables allow you to pass information into an OMS Server notification.

Last OMS Server Connected

Description | Resolves to the last OMS Server connected to the Controller in an OMS HA cluster.
Syntax ${ops_oms_last_connected}
Example

OMS Server IP Address

Description = Resolves to the OMS Server IP address.

Syntax ${ops_oms_server_address}

Example

OMS Server Status

Description | Resolves to the current status of the OMS Server.
Syntax ${ops_oms_status}
Example

OMS Server sys_id

21 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/FTP+File+Monitor+Task
https://www.stonebranch.com/confluence/display/OWC610/FTP+File+Monitor+Task
https://www.stonebranch.com/confluence/display/OWC610/FTP+File+Monitor+Task
https://www.stonebranch.com/confluence/display/OWC610/OMS+Servers#OMSServers-SendingNotificationsonStatusofanOMSServer

Opswise Controller 6.1.x Variables and Functions

Description | Resolves to the sys_id of the OMS server.
Syntax ${ops_oms_id}

Example

SAP Task Instance Variables

For an SAP task instance, where applicable, the following built-in variables resolve to the SAP jobname and SAP jobid of the job running in the
SAP system. If you need to use the SAP jobname and/or the SAP jobid from one SAP task instance in a successor SAP task instance, you can
use the Set Variable action to propagate these built-in variable values to the parent workflow.

SAP InfoPackage Request ID

Description = Resolves to the SAP InfoPackage Request ID.

Syntax ${ops_sap_requestid}
Example
SAP Job ID

Description | Resolves to the SAP job ID.
Syntax ${ops_sap_jobid}

Example

SAP Job Name

Description | Resolves to the SAP job name.
Syntax ${ops_sap_jobname}
Example

SAP Process Chain ID

Description | Resolves to the SAP Process Chain ID.
Syntax ${ops_sap_chainid}

Example

SAP Process Chain Log ID

Description = Resolves to the SAP Process Chain Log ID.
Syntax ${ops_sap_logid}

Example

SQL and Stored Procedure Task Instance Variables

The following built-in variables are used in SQL tasks and Stored Procedure tasks to collect SQLException data, if any:

Error Message

Description | Resolves to any error message generated by the database.

22 | 0ps-61x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/OWC610/SQL+Task
https://www.stonebranch.com/confluence/display/OWC610/Stored+Procedure+Task

Opswise Controller 6.1.x Variables and Functions

Syntax ${ops_sql_error_msg}
Example
Processed Rows

Description | Resolves to the number of rows processed.
Syntax ${ops_sql_rows}

Example

Return Code for SQL Statement Outcome

Description = Resolves to a return code that indicates the outcome of the most recently executed SQL statement.
Syntax ${ops_sql_state}

Example

System Monitor Task Instance Variables

The following System Monitor variables show the results for Resource Available and Actual Available that can be utilized in System Monitor
tasks.

Actual Size

Description | Actual size determined by the agent.
Syntax ${ops_sm_actual_size}

Example

Actual Size (Rounded)

Description = Same as ops_sm_actual_size, except rounded to the nearest integer.
Syntax ${ops_sm_actual_int_size}
Example

Actual Size (Scale)

Description | Scale of the actual size determined by the agent.
Syntax ${ops_sm_actual_scale}

Example

Scale

Description = Scale specified in the By Scale field for Resource Available of the System Monitor task definition.
Syntax ${ops_sm_scale}

Example

Size

23 | 0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/System+Monitor+Task

Opswise Controller 6.1.x Variables and Functions

24

Description = Size specified in the Resource Available field of the System Monitor task definition.
Syntax ${ops_sm_size}

Example

Size (Rounded)

Description | Same as ops_sm_size, except that ops_sm_int_size is rounded to the nearest integer.
Syntax ${ops_sm_int_size}

Example

Task Instance Variables

The following built-in variables are associated with task instances for all task types:

Command

Description = For tasks that launch a command on a Windows, Linux/Unix, or z/OS machine; resolves to the task command.
Syntax ${ops_cmd}

Example

Command Parameters

Description | For tasks that launch a command on a Windows, Linux/Unix, or z/OS machine; resolves to the task command parameters.
Syntax ${ops_cmd_parms}

Example

End Time

Description | Resolves to the task ending time.
Syntax ${ops_end_time}

Example

Execution User ID

Description = Resolves to the ID of the user who launched the task or to the ID of the user who enabled the trigger that launched the task.
Syntax ${ops_execution_user}

Example

Launch Time

Description | Resolves to the task launch time. For workflows, all descendants will have the same launch time as the top-level workflow.
Syntax ${ops_launch_time}

Example

Maximum Retry Count

| ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Creating+Tasks#CreatingTasks-TaskTypes

Opswise Controller 6.1.x Variables and Functions

Description | Resolves to the maximum retry count.
Syntax ${ops_retry_maximum}

Example

Parent Workflow Instance sys_id

Description | Resolves to the sys_id of the parent workflow task instance.
Syntax ${ops_workflow_id}

Example

Parent Workflow Name

Description = Resolves to the name of the parent workflow.
Syntax ${ops_workflow_name}

Example

Retry Count

Description | Resolves to the current retry count.
Syntax ${ops_retry_count}

Example

Retry Interval

Description | Resolves to the retry interval (seconds).
Syntax ${ops_retry_interval}

Example

Running Time

Description | Resolves to the task running time in milliseconds.
Syntax ${ops_duration}

Example ops_duration = 130000

Running Time (Text Format)

Description = Resolves to the task running time in a more readable representation of the duration time.

Syntax ${ops_duration_text}
Example ops_duration_text = 2 Minutes 10 Seconds)
Script ID

Description | For Windows, Linux/Unix, and SAP tasks where a Script or SAP Definition from Scripts is specified; resolves to the Controller
system ID of the script.

Syntax ${ops_script_id}

25 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/OWC610/Scripts

Opswise Controller 6.1.x Variables and Functions

Example

Script Name

Description | For Windows, Linux/Unix, and SAP tasks where a Script or SAP Definition from Scripts is specified; resolves to the Controller
name of the script.

Syntax ${ops_script_name}

Example

Starting Time

Description = Resolves to the task starting time.
Syntax ${ops_start_time}

Example

Task Instance Attempts

Description | Resolves to the current task instance attempt count. Each Re-run operation increments the attempt. Initial attempt is 1.
Syntax ${ops_attempt}

Example

Task Instance Exit Code

Description | Resolves to the task instance exit code, if any.
Syntax ${ops_exit_code}

Example

Task Instance Status

Description | Resolves to the current task instance status.
Syntax ${ops_status}

Example

Task Instance sys_id

Description = Resolves to the sys_id of the task instance.

Syntax ${ops_task_id}
Example
Task Name

Description | Resolves to the task name.
Syntax ${ops_task_name}

Example

26 | o0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Scripts
https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Opswise Controller 6.1.x Variables and Functions

Task Reference Count

Description | Resolves to the current task reference count.

Each time an instance is created from a specific task, it gets a unique task reference count for that task. For example, if you
launch a task twice, the first instance will have task reference count 1, and the second will have task reference count 2.

Syntax ${ops_task_ref_count}
Example

Task Type

Description | Resolves to the task type.
Syntax ${ops_task_type}
Example

Task Monitor Task Instance/Trigger Variables

When the conditions of a Task Monitor task are met and its associated Task Monitor trigger launches one or more tasks, the following built-in
variables are passed into the task instances being launched by the trigger.

For example, the Task Monitor trigger may specify an Email task that will launch each time the conditions in the associated Task Monitor task are
met. You might want to specify one or more of these variables in the body of the email.

If the Task Monitor task is not associated with a trigger but is running within a workflow, on completion you can propagate one or more of these

built-in variable values to the parent workflow level by using the Set Variable action. This allows you to pass information from the Task Monitor
task to a successor task within the same workflow hierarchy.

Trigger Task Name

Description | Resolves to the name of the task instance that fired the trigger.
Syntax ${ops_trigger_task_name}

Example

Trigger Task Status

Description = Resolves to the status of the task instance that fired the trigger.
Syntax ${ops_trigger_task_status}

Example

Trigger Task sys_id

Description | Resolves to the sys_id of the task instance that fired the trigger.
Syntax ${ops_trigger_task_id}

Example

Trigger Task Type

Description | Resolves to the type of the task instance that fired the trigger.
Syntax ${ops_trigger_task_type}

Example

27 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Task+Monitor+Trigger
https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Opswise Controller 6.1.x Variables and Functions

Trigger Workflow

Resolves to the name of the workflow instance that fired the trigger.

Description
This variable is available only for a Task Monitor task that has a Workflow Condition specified. If a workflow condition is
specified, ${ ops_t ri gger _wor kf | ow_nane} will resolve to the name of the workflow instance that the workflow condition
matched.

Syntax ${ops_trigger_workflow_name}

Example

Trigger Variables

The following built-in variables are associated with all trigger types:
When a task is launched by a trigger, the values of the following built-in variables, if they are specified in the task, are passed into the task
instance.

Trigger Name

Resolves to the name of the trigger that launched the task instance.

Description
Syntax ${ops_trigger_name}
Example
Trigger Time
Description = Resolves to the scheduled time of the trigger or, if the trigger is not scheduled, the actual trigger time.
If the task is triggered by date/time, it resolves to that specified date/time.
Syntax ${ops_trigger_time}
Example

z/OS Task Instance Variables

The following built-in variables are available for z/OS task instances:

JCL Location

Resolves to the file and member name containing the JCL script.

Description

Syntax ${ops_jcl_location}

Example

Job Number

Description = Resolves to the job number assigned to the job by JES.
Syntax ${ops_job_id}

Example

Override JCL Location

Description | Resolves to the file and member name of the JCL location containing a potential override JCL script.

28 | 0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Task+Monitor+Task
https://www.stonebranch.com/confluence/display/OWC610/Task+Monitor+Task#TaskMonitorTask-LaunchingaTaskMonitorTaskWithinaWorkflow
https://www.stonebranch.com/confluence/display/OWC610/Triggers+Overview#TriggersOverview-TriggerTypes

Opswise Controller 6.1.x Variables and Functions

Syntax ${ops_override_jcl_location}

Example

Submitted JCL Location

Description | Resolves to the file and member name of the JCL location that was actually used for job submission.
Syntax ${ops_submitted_jcl_location}

Example

29 | o0ps-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Launching With Variables

For information on how to launch a task with variables, see Provide Temporary Variable Values and Launch a Task Manually on the Manually
Running and Controlling Tasks page.

30 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Manually+Running+and+Controlling+Tasks#ManuallyRunningandControllingTasks-ProvideTemporaryVariableValuesandLaunchaTaskManually
https://www.stonebranch.com/confluence/display/OWC610/Manually+Running+and+Controlling+Tasks
https://www.stonebranch.com/confluence/display/OWC610/Manually+Running+and+Controlling+Tasks

Opswise Controller 6.1.x Variables and Functions

Trigger With Variables

For information on how to use variables when manually launching tasks associated with a trigger, see Triggering with Variables (in the Triggers
and Calendars section of this documentation).

31 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Triggering+with+Variables
https://www.stonebranch.com/confluence/display/OWC610/Triggers+and+Calendars
https://www.stonebranch.com/confluence/display/OWC610/Triggers+and+Calendars

Opswise Controller 6.1.x Variables and Functions

Creating a Set Variable Action within a Task or Workflow

Overview

Variables and Variable Scope
Creating a Set Variable Action

Set Variable Details Field Descriptions

Overview

The Set Variable action allows you to set a variable to a specific value for a task or workflow, and to select a scope (level of usage) for that
variable (see Variables and Variable Scope, below). Unless you set the scope of the variable to GLOBAL, which specifies that the variable can be
accessed at any time by any task, workflow, or trigger, the value exists in memory only for the time that the task or workflow is running, or until
another Set Variable action sets the variable to another value.

. Note
Variables with a Variable Scope set to GLOBAL are added to the list of global variables on the Variables list (Automation
Center > Other > Variables) after the task or workflow is run.

You can use the Set Variable action to create a new variable or modify an existing variable.

When creating a Set Variable action, you can trigger the Set Variable action based on one or more of the following:
Status
Exit codes

L]

L]

® |ate start

® Late or early finish

Variables and Variable Scope

A variable defined for a task under the Variables tab for that task is used only by that task.

A variable defined for a workflow under the Variables tab for that workflow is available for any task in that workflow; a task will use the variable
value defined for the workflow unless the variable is defined for that task.

A variable defined for a task or workflow on a Set Variable action screen let you specify, in the Variable Scope field, the scope of that variable.
You can specify that a variable be available for:

Only the task where it is set.
All tasks within the task's parent (immediate) workflow.

All tasks within the task's top-level parent workflow.

[]
[]
[]
® All tasks and workflow instances.

For example, if you set a variable for a task to be available within the scope of its parent workflow, the value of that variable is propagated up to
the parent workflow level. As each task in the workflow is run, that value is available for that task.

Creating a Set Variable Action

Step 1 Display the Task Details of the task for which you are creating the Set Variable action.

32 |/ ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Step 2 Click the Actions tab. A list of any defined Actions for that task displays.

Linux/Unix Task Details: stonebranch-linuxunixtask-01 =S
Linux/Unix Task Variables Actions Virtual Resources | Mutually Exclusive Instances Triggers Notes Versions
v 2 Abort Actions New =]
Status Description Type Details Exit Codes On Late Start On Late Finish ' On Early Finish Cancel Process if Active Override Exit Code Updated By Updated
D FAILED 20 No No No No ops.admin 2014-08-30 10:02
D CANCELLED 12 No No No No ops.admin 2014-08-30 10:02

3

0 Email Notifications New o]
A 0 Set Variables New o]
0 SNMP Notifications New]
A) System Operations New)
Step 3 Click the New button that displays on the Set Variables row. The Set Variable Details pop-up displays.
Set Variable Details = || =] %

[El save 3£ Close
Set Variable

— Action Criteria

Status »

Exit Codes :

On Late Start :
On Late Finish :

ooo

On Early Finish

Description :

— Action Details
Variable Scope: |SELF ~

Name :

Value :

=] save # Close

Step 4 Using the field descriptions below as a guide, complete the fields as needed.
Step 5 Click the Save button, or right-click in the Details and then click Save, to save the record and return to the Actions List.

Step 6 If appropriate, repeat these steps for any additional Set Variable actions you want to create.

Set Variable Details Field Descriptions
The table below describes the fields and buttons in the Set Variable Details.

Field Description
Name

33 / ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Action This section contains criteria for performing the action.

Criteria

Type Displays - on the Set Variables actions list - the Variable Scope, Name, and Value for this action.
Details

Action

Inheritance | For Workflow tasks only; the records this action applies to.
Options:
® SELF - This action applies only to the workflow; it is not inherited by its children tasks.

® SELF/CHILDREN - This action applies to the workflow and its contained tasks (children).
® CHILDREN - This action applies only to the tasks within the workflow (children).

Status The status that will trigger the action. To trigger a Set Variable action, you can specify status only, or status and exit code. You
can specify as many statuses as needed.

Exit Codes
Specifies one or more exit codes that will trigger the event. If you specify an exit code, you must also specify at least one status.
Use commas to separate multiple exit codes; use a hyphen to specify a range. Example: 1, 5, 22-30.

On Late

Start Generates the action or notification if the task started late, based on the Late Start Time specified in the task.

On Late

Finish Generates the action or notification if the task finishes late, based on the Late Finish time specified in the task.

On Early

Finish Generates the action or notification if the task finishes early, based on the Early Finish Time specified in the task.

Description = Description of this action.

Action This section contains additional details about the action.
Details
Variable
Scope Applies to variables associated with a task in a workflow.
Options:
Scope Scope Description
Value
SELF 1 The variable is set only within the scope of the task that executes the Set Variable action.
PARENT 2 The variable is set within the scope of the (immediate) parent workflow. After it is set, any

task within the parent workflow can access that variable.

TOP_LEVEL_PARENT 3 The variable is set within the scope of the top level parent. Example: Workflow A contains
workflow B and workflow B contains workflow C. If a Set Variable action is executed by a
task within workflow C with Variable Scope set to TOP_LEVEL_PARENT, then the variable
will be set in workflow A's scope. This means that after it is set, tasks in workflow A,
workflow B and workflow C can access that variable.

GLOBAL 4 The variable is set at the global variable level and, as such, is accessible by any task,
workflow, or trigger. If the global variable is not already defined, it will be created.

Name
Name of the variable. Up to 40 alphanumerics. The name must begin with an alphabetic character and can consist of: alphas (a-z,
A-Z), numerics 0-9, _ (underscore). White spaces are not permitted; names are not case-sensitive.

P

Important
Do not define variables with the prefix ops_. The ops__ prefix is reserved for built-in variables.

34 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-TaskInstanceStatusTypes

Opswise Controller 6.1.x Variables and Functions

Value
Value of the variable.
Buttons This section identifies the buttons displayed above and below the Action Details that let you perform various actions.
Save Saves a new Action record in the Controller database.
Update
Saves updates to the record.
Delete
Deletes the current record.
Refresh Refreshes any dynamic data displayed in the Details.
Close Closes the Details pop-up of this action.

35 / ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Listing and Setting Variables from the Command Line

To list and set variables from the command line, use the List Variables (ops-variable-list) and Set Variables (ops-variable-set) commands of the
Opswise Controller Command Line Interface (CLI).

36 / ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-opsvariablelist
https://www.stonebranch.com/confluence/display/OWC610/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-opsvariableset
https://www.stonebranch.com/confluence/display/OWC610/Command+Line+Interface+%28CLI%29

Opswise Controller 6.1.x Variables and Functions

Functions

Overview
Formatting Rules
Function Categories
Date Functions
® Return Nth Business Day of Month

Return Number of Business Days between Dates
Resolve to Current Unix Epoch Time
Resolve to Current Date and Time
Resolve to Current Date and Time (Advanced)
Return Nth Day of Month
Return Day of Week
Return Days between Dates
Return Date with Offsets
Return Date with Offsets (Advanced)
Return Non-Business Day of Month
® Mathematical Functions

® Return Modulo

* Add
® Subtract
[]
[]

Multiply
Divide

® Return Absolute Value
® SQL/Stored Procedure Functions
Return SQL Results from Current Task
Return SQL Results from Sibling Task
Return String Value of Row/Column by Column Name
Return String Value of Row/Column by Column Number
Return Column Names for SQL Results from Current Task
Return Column Names for SQL Results from Sibling Task
Return String Values of Columns
Return SQL Warnings from Current Task
Return SQL Warnings from Sibling Task
® String Functions
Return Index of Substring in String Value
Return Index of Substring Plus Offset in String Value
Return Index of Rightmost Occurrence of Substring in String Value
Return Index of Rightmost Occurrence of Substring Plus Offset in String Value
Return Length of Value
Replace Substring of Value with Regular Expression
Return New String that is Substring of Value
Convert Characters in Value to Lower Case
Convert Characters in Value to Upper Case
Return Copy of Value with Whitespace Omitted
Return Index of Substring within String Variable
Return Index of Substring Plus Offset in String Variable
Return Index of Rightmost Occurrence of Substring in String Variable
Return Index of Rightmost Occurrence of Substring Plus Offset in String Variable
Return Length of Variable
Replace Substring of Variable with Regular Expression
Return New String that is Substring of Variable
Convert Characters in Variable to Lower Case
Convert Characters in Variable to Upper Case
Return Copy of variable
Functions
Resolve to GUID (Globally Unique ID)
Resolve to Host Name
Resolve to IP Address
Generate Random Number
Resolve Variable
Resolve Variable (Advanced)
Display Variables
Resolve to SYS_ID
Resolve to Variable Value

® Syste

.........3.'...............'..

Overview

37 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Variables and functions can be used in free-text fields within tasks and workflows. When a variable or function is specified in a free-text field, the
Controller inserts its value into the field when the task or workflow is run.

Also, triggers can pass variables and functions into the tasks and workflows they launch.

Opswise Controller supports a number of functions that can be specified in free-text fields. They are resolved when a task instance runs or when
a Set Variable action containing a function is executed.

Functions are entered using the following formats:

${ function}
${_function(argl, ..., argN)}

Formatting Rules

® Functions must be written either in all lower case or exactly as shown in the tables on this page.

® Any parameter can be quoted. Strings must be quoted with single or double quotation marks.

® All functions allow nesting to one level. That is, a function can be an argument to another function.
You must use a double underscore preceding the name of a nested function:
${_function(argl, ..., argN}

For example:

${_substring("${ops_trigger_file_name_sinple}", "${__indexf("${ops_trigger_file_name_sinple}",
"))}

Function Categories

There are five categories of Functions:

Date functions

Mathematical functions

System functions

String functions

SQL/Stored Procedure functions

Date Functions

Return Nth Business Day of Month

Description | Returns the Nth business day of month for the month of the date specified. Optionally, can start from the end of the month.

. Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for
Business Days Opswise Controller system property.

Syntax ${_busi nessDayXf Mont h(i ndex, [date, format, reverse])}

38 / o0ps-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays

Opswise Controller 6.1.x Variables and Functions

Parameters
® index
Required; Nth business day of month.
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
* format
Optional; Format of returned date. Default is yyyy-MM-dd. (For details on the f or mat par anet er, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® reverse
Optional; Specification (t r ue or f al se) for starting from the end of the month. Default is f al se.
Examples

${_busi nessDayCf Mont h(1)} --> 2012-08-01
${_busi nessDayCXf Mont h(1, "2012-09-01")} --> 2012-09-04
${_busi nessDayO Mont h(1, "2012-09-01","",true)} --> 2012-09-28

Return Number of Business Days between Dates

Description | Returns the number of business days between datel and date2.
® |f return value is > 0, dat e2 is after dat el.
® |f return value is < 0, dat e2 is before dat el.
® |f return value is O, dat el is equal to dat e2.

The start date is inclusive, but the end date is not.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for
Business Days Opswise Controller system property.

Syntax ${_busi nessDaysBet ween(dat el, date2)}
Parameters | Parameters:

® datel
Required; First date in format yyyy-MM-dd.
® date2
Required; Second date in format yyyy-MM-dd.

Example

${_busi nessDaysBet ween("2012- 08- 01", "2012- 09-01")} --> 23

Resolve to Current Unix Epoch Time

Description | Resolves to the current time in milliseconds since Wed Dec 31 1969 19:00:00 GMT-0500 (EST) — the start of Unix epoch time.
Syntax ${_currentTimeM I 1li s}
Parameters n/a

Example

Resolve to Current Date and Time

Description | Resolves to the current date and time.

Syntax ${ _date([format, day_offset, hour_offset, mnute_offset])}

39 / ops-61x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
http://en.wikipedia.org/wiki/Unix_time

Opswise Controller 6.1.x Variables and Functions

Parameters

® format
Optional; Date format. The default format is yyyy-MM-dd HH:mm:ss Z. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

® day_of fset
Optional; +/- number of days to offset.

® hour_of fset
Optional; +/- number of hours to offset.

® mnute_of fset
Optional; +/- number of minutes to offset.

Examples

${ _ date} --> 2012-07-14 12:43:06 -0400
${ date()} --> 2012-07-14 12:43:06 -0400
${_date("yyyy-M#dd", 5)} --> 2012-07-19
${_date("yyyy-M#dd HH: nmss", -2, -1)}

--> 2012-07-12 11:43:06
${_date("", 0, 0, 10)} --> 2012-07-14 12:53: 06 - 0400

Resolve to Current Date and Time (Advanced)

Description | Resolves to the current date and time.
Syntax ${_dateadv([format, year_offset, nmonth_offset, day_offset, hour_offset, mnute_offset])}

Parameters
® format
Date format. The default format is yyyy-MM-dd HH:mm:ss Z. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® year_of fset
Optional; +/- number of years to offset.
® nont h_of f set
Optional; +/- number of months to offset.
® day_of fset
Optional; +/- number of days to offset.
® hour_of fset
Optional; +/- number of hours to offset.
® ninute_of fset
Optional; +/- number of minutes to offset.

Examples

${_dateadv} --> 2012-07-29 09: 31:42 -0700
${_dat eadv("yyyy-Mw', -1)} --> 2011-Jul
${_dateadv("yyyy-MwW', 0, -1)}

--> 2012-Jun

Return Nth Day of Month

Description = Returns the Nth day of month for the month of the date specified. Optionally, can start from the end of the month.

Syntax ${_dayOf Mont h(i ndex, [date, format, reverse])}
Parameters
® index
Required; Nth day of month.
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
* format
Optional; Format of returned date. Default is yyyy-MM-dd.
® reverse

Optional; Specification (t r ue or f al se) for starting from the end of the month. Default is f al se.

40 |/ ops-61x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Opswise Controller 6.1.x Variables and Functions

Examples

${_dayCf Month(5)} --> 2012-08- 05
${ _dayCf Mont h(15, " 2012- 09- 01", " MM dd/ yyyy")} --> 09/ 15/ 2012
${ dayOf Mont h(1, " 2012- 09-01","", true)} --> 2012-09- 30

Return Day of Week

Description | Returns the day of week for the specified date as a number.
Syntax ${_dayOf Week([date, first_dow, first_dow value])}

Parameters
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
* first_dow
Optional; Specification for whether the week starts on Sunday or Monday. Values are sun and mon (not
case-sensitive). Default is sun.
® fjirst_dow val ue

Optional; Starting value for the first day of week. Value must be a non-negative number. Default is 1.

Example

${_dayOf Week} --> 6

${_dayOf Wek()} --> 6

${ _dayOf Week(" 2012- 07-04")} --> 4

${ _dayOf Week("2012- 07-04", "non")} --> 3

Return Days between Dates

Description = Returns the number of days between datel and date2.
® |freturn value is > O, date?2 is after datel.
® |f return value is < 0, date2 is before datel.
® |f return value is 0, datel is equal to date2.

The start date is inclusive, but the end date is not.

Syntax ${_daysBet ween(datel, date2)}
Parameters
® datel
Required; First date in format yyyy-MM-dd.
® date2

Required; Second date in format yyyy-MM-dd.

Example

${_daysBet ween("2012- 08- 01", "2012- 09-01")} --> 31

Return Date with Offsets

41 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Description | Returns the date after applying offsets. Optionally, can specify the output format.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for
Business Days Opswise Controller system property.

Syntax ${ formatDate([date, format, day_offset, use_business_days, hour_offset, mnute_offset])}
Parameters
® date
Date in format yyyy-MM-dd HH:mm or yyyy-MM-dd. Time (HH:mm) is optional. Default is the current date and time.
® format

Format of returned date. Default is the format used when specifying the date parameter: yyyy-MM-dd HH:mm or
yyyy-MM-dd. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® day_offset
+/- number of days to offset.
® use_busi ness_days
Specification (t r ue or f al se) for whether day_of f set is for business days. Default is f al se.
® hour_of fset
+/- number of hours to offset.
® nminute_of fset
+/- number of minutes to offset.

Example

${ formatDate} --> 2012-08-24 15:37
${ formtDate()} --> 2012-08-24 15: 37
${ format Date("", "Maldyyyy",5)} --> 08292012

${_f or mat Dat e(" 2012- 09- 01", "",5)} --> 2012-09- 06
${_format Dat e("2012-09-01","",-5)} --> 2012-08-27
${_format Date("2012-09-01","",5,true)} --> 2012-09-10

Return Date with Offsets (Advanced)

Description | Returns the date after applying offsets. Optionally, can specify the output format.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for
Business Days Opswise Controller system property.

Syntax ${ _format Dat eAdv([date, format, year_offset, nonth_offset, day_offset, use_business_days,
hour _offset, mnute_offset])}

42 | ops-61x-v&f

https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays

Opswise Controller 6.1.x Variables and Functions

43

Parameters

® date
Optional; Date in format yyyy-MM-dd HH:mm or yyyy-MM-dd. Time (HH:mm) is optional. Default is the current date and
time.

* format
Optional; Format of returned date. Default is the format used when specifying the date parameter: yyyy-MM-dd HH:mm
or yyyy-MM-dd. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

® year_offset
Optional; +/- number of years to offset.

® nont h_of f set
Optional; +/- number of months to offset.

® day_of fset
Optional; +/- number of days to offset.

® use_busi ness_days
Optional; Specification (true or false) for whether day_of f set is for business days. Default is false.

® hour_offset
+/- number of hours to offset.

® ninute_of fset
+/- number of minutes to offset.

Examples

${_f or mat Dat eAdv} --> 2012-08-24 15:55
${_format Dat eAdv()} --> 2012-08-24 15:55
${_format Dat eAdv("", "MWdyyyy", 1)} --> 08242013

${ _f or mat Dat eAdv(" 2012- 09-01","",0,1)} --> 2012- 10- 01
${ _f or mat Dat eAdv("2012-09-01","",0,-1)} --> 2012-08-01
${ _f or mat Dat eAdv(" 2012- 09-01","", 0,0, 5, fal se)} --> 2012-09- 06

Return Non-Business Day of Month

Description | Returns the Nth non-business day of month for the month of the date specified. Optionally, can start from the end of the month.

. Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for
Business Days Opswise Controller system property.

Syntax ${_nonBusi nessDayO Mont h(i ndex, [date, format, reverse])}
Parameters
® index
Required; Nth non-business day of month.
® date
Optional; Date in format yyyy-MM-dd. If blank, defaults to the current date.
® format

Optional; Format of returned date. Default is yyyy-MM-dd. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

® reverse
Optional; Specification (true or false) for starting from the end of the month. Default is false.

Examples

${_nonBusi nessDayXf Mont h(1)} --> 2012-08-04
${_nonBusi nessDayO Mont h(1, "2012-09-01")} --> 2012-09-01
${_nonBusi nessDayX Mont h(1, *2012-09- 01", "",true)} --> 2012-09-30

Mathematical Functions

Return Modulo

| ops-61x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
https://www.stonebranch.com/confluence/display/OWC610/Opswise+Controller+Properties#OpswiseControllerProperties-ExcludeHolidaysforBusinessDays
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Opswise Controller 6.1.x Variables and Functions

Description = Return the modulo (remainder) of the dividend divided by divisor.

Syntax ${_nod(di vi dend, divisor)}
Parameters
¢ dividend
Integer being divided by the di vi sor .
® divisor

Integer being used to divide the di vi dend.

Example
${_nmod(" 10", "2")} --> 0
${_nod("10", "3")} -->1
${_nod("70", 65")} --> 5
Using Variables for dividend and divisor (${dividend} = 23, ${divisor} = 5):
${ _rmod("${di vidend}", "${divisor}")} --> 3
Add
Description | Return the sum of the augend added with the addend.
Syntax ${_add(augend, addend)}
Parameters
® augend
Integer to which the addend is being added.
® addend

Integer being added to the augend.

Example
${_add(" 77", "33")} --> 110
Using Variables for augend and addend (${augend} = 17, ${addend} = 5):
${_add("${augend}", "${addend}")} --> 22
Subtract

Description = Return the difference of the subtrahend subtracted from the minuend.
Syntax ${_subtract (m nuend, subtrahend)}

Parameters
® m nuend
Integer from which the subt r ahend is being subtracted.
® subtrahend
Integer being subtracted from the m nuend.

44 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Example
${_subtract ("77","33")} --> 44
${_subtract("33","77")} --> -44
Using Variables for minuend and subtrahend (${minuend} = 100, ${subtrahend} = 5):
${_add(" ${m nuend}", "${ subtrahend }")} --> 95
Multiply
Description = Return the product of the multiplicand multiplied with the multiplier.
Syntax ${_mul tiply(nultiplicand, multiplier)}
Parameters

® multiplicand
Integer being multiplied by the mul ti pli er.
® multiplier
Integer being used to multiply the nul ti pl i cand.

Example
${_multiply("7","20")} --> 140
Using Variables for multiplicand and multiplier (${multiplicand} = 100, ${multiplier} = 5):
${_multiply("${nultiplicand}","${nultiplier}")} --> 500
Divide

Description = Return the quotient of the dividend divided by divisor.

Syntax ${_di vi de(di vi dend, divisor)}
Parameters
® dividend
Integer being divided by the di vi sor.
® divisor

Integer being used to divide the di vi dend.

45 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Example

${_divide("7","20")}
${ divide("20","7")} --> 2
${ di vi de(" 20", "5")}

Using Variables for dividend and divisor (${dividend} = 100, ${\divisor} = 5)

${_di vi de(" ${di vi dend}", " ${di vi sor}")} --> 20

Return Absolute Value

Description | Return the absolute value of the parameter.
Syntax {_abs(paraneter)}
Parameters

® paraneter
Integer (positive or negative value).

Example

${_abs("-1200")} --> 1200
${ _abs("1200")} --> 1200

Using Variables for parameter (${parameter} = -100):

${_abs("${paraneter}")} --> 100

SQL/Stored Procedure Functions

Return SQL Results from Current Task

Description = Returns all SQL results from the current SQL or Stored Procedure task. Columns are separated by the specified separ at or
and rows are separated by a new line.

Syntax ${_resultsA | ([separator, rowSeparator])}
Parameters Parameters:
® separator

Optional; Column separator (default = comma).
® rowSepar at or

Optional; Overrides default New Line character.

Example

Return SQL Results from Sibling Task

Description | Returns all SQL results from a sibling SQL or Stored Procedure task, within the same workflow. Columns are separated by the
specified separ at or and rows are separated by a new line.

46 | ops-61x-v&f

http://en.wikipedia.org/wiki/Absolute_value

Opswise Controller 6.1.x Variables and Functions

Syntax ${_resul tsAl | FronTask(nane[, separator, rowSeparator])}

Parameters
® nane
Required; Name of the sibling task that the results should come from. The task must be within the same workflow.
® separator
Optional; Column separator (default = comma).
® rowSepar at or
Optional; Overrides default New Line character.

Example

Return String Value of Row/Column by Column Name

Description = Returns the string value of a row/column from a previously executed SQL task within the same workflow, or from the current SQL

task.
Syntax ${_resul t sCol um(nare, col nane[, rownum default_value])}
Parameters
® nane
Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you
want to execute the function against the current task, use an empty string for the name parameter.
® col nane
Required; Name of column to retrieve.
® rownum
Optional; Numeric row number in result set to retrieve (default = 1).
® default_val ue
Optional; Default value to return if result not found.
Example

Return String Value of Row/Column by Column Number

Description | Returns the string value of a row/column from a previously executed SQL task within the same workflow, or from the current SQL

task.
Syntax ${_resul t sCol umByNo(nane, col nuni, rownum default_value])}
Parameters
® nane
Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you
want to execute the function against the current task, use an empty string for the name parameter.
® col num
Required; Number of column to retrieve. First column in result is 1, second is 2, and so on.
® rownum
Optional; Numeric row number in result set to retrieve (default = 1).
® defaul t _val ue
Optional; Default value to return if result not found.
Example

Return Column Names for SQL Results from Current Task

Description | Returns the column names for the SQL results from the current SQL or Stored Procedure task. Column names are separated by
the specified separ at or .

Syntax ${_resul t sCol umNanes([separator])}
Parameters

® separator
Optional; Column name separator (default = comma).

Examples

47 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Return Column Names for SQL Results from Sibling Task

Description = Returns the column names for the SQL results from a sibling SQL or Stored Procedure task, within the same workflow. Column
names are separated by the specified separ at or .

Syntax ${_resul t sCol umNanesFr onirask(nane[, separator])}

Parameters
® nane

Required; Name of the sibling task that the results should come from. The task must be within the same workflow.
® separator

Optional; Column name separator (default = comma).

Examples

Return String Values of Columns

Description | Returns the string values of columns in a specific row in CSV (comma-separated values) format, from a previously executed
SQL task within the same workflow, or from the current SQL task.
Syntax ${_resul t sCol umsCSV(nane[, rownuni)}

Parameters
® nane

Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you
want to execute the function against the current task, use an empty string for the name parameter.

® rownum
Optional; Numeric row number in result set to retrieve (default = 1).

Example

Return SQL Warnings from Current Task

Description = Returns all SQL warnings from the current SQL or Stored Procedure task. Columns are separated by the specified separ at or
and rows are separated by a new line.

Syntax ${_SQ.Warni ngs([separator])}
Parameters

® separator
Optional; Column separator (default = comma).

Example

Return SQL Warnings from Sibling Task

Description | Returns all SQL warnings from a sibling SQL or Stored Procedure task, within the same workflow. Columns are separated by the
specified separ at or and rows are separated by a new line.

Syntax ${_SQLWar ni ngsFronTask(name[, separator])}

Parameters
® nane

Required; Name of the sibling task that the warnings should come from. The task must be within the same workflow.
® separator

Optional; Column separator (default = comma).

Example

String Functions

String functions pass in either a value or a variable; for each String function that passes in a value, there is a corresponding String function that

48 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

passes in a variable.

String functions that pass in a variable are prefixed with _var . The variables must be fully resolved; they cannot resolve to a function.

In the Syntax for each String function in the following tables, the name of each function that passes a value and the name of the corresponding
function that passes a variable link to each other.

. Note
Indexing functions use zero-based numbering; that is, the initial element is assigned the index 0.

Return Index of Substring in String Value

Description | Returns the index within the string value of the first occurrence of the specified substring, st r .
Syntax ${_indexOf(value, str)}
Parameters
® val ue
Any string.
® str
Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first character
of the first such substring is returned; if it does not occur as a substring, -1 is returned.
Example

Return Index of Substring Plus Offset in String Value

Description | Returns the index within this string of the first occurrence of the specified substring plus the specified offset. The integer returned
is the smallest value.

Syntax ${_indexOfWithOffset(value, str, offset)}

Parameters
® val ue
Required;Any string.
® str

Required;Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first

character of the first such substring is returned,; if it does not occur as a substring, -1 is returned.
* of fset

Required; Number (positive or negative) to offset the found index.

Example

Return Index of Rightmost Occurrence of Substring in String Value

Description | Returns the index within the string value of the rightmost occurrence of the specified substring, st r .
Syntax ${ lastindexOf(value, str)}
Parameters
* val ue
Required; Any string.
® str
Required; Substring to search for. If the st r argument occurs one or more times as a substring within the value, then
the index of the first character of the last such substring is returned. If it does not occur as a substring, -1 is returned.
Example

Return Index of Rightmost Occurrence of Substring Plus Offset in String Value

49 | ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Description | Returns the index within this string of the rightmost occurrence of the specified substring, plus the specified offset. The returned
index is the largest value.
Syntax ${ lastindexOfWithOffset(value, str, offset)}
Parameters
* val ue
Required; Any string.
® str
Required; Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first
character of the first such substring is returned; if it does not occur as a substring, -1 is returned.
® of fset
Required; Number (positive or negative) to offset the found index.
Example

Return Length of Value

Description | Returns the length of val ue.
Syntax ${_length(value)}

Parameters
® val ue
Required; Any string.

Example

Replace Substring of Value with Regular Expression

Description | Replaces each substring of value that matches the specified regular expression, regex, with the specified replacement.
Syntax ${_replaceAll(value, regex, replacement)}
Parameters
® val ue
Required; Input string.
® regex
Required; Regular expression.
® repl acenent
Required; Replacement string.
Example

Return New String that is Substring of Value

Description | Returns a new string that is a substring of val ue. The substring begins at begi n_i ndex and extends to the character at
end_i ndex -1.

Syntax ${ substring(value, begin_index[, end_index])}

Parameters

® val ue

Required; String to make a substring from.
® begi n_i ndex

Required; Beginning index, inclusive.
® end_i ndex

Optional; Ending index, exclusive.

50 / o0ps-61x-v&f

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Opswise Controller 6.1.x Variables and Functions

Example

${_substring("hanmburger", 4, 8)}
resol ves to "urge".

${_substring("sniles", 1, 5)}
resolves to "mle".

Convert Characters in Value to Lower Case

Description | Converts all of the characters in the val ue to lower case using the rules of the default locale.
Syntax ${_toLowerCase(value)}
Parameters
® val ue
Required; String to convert to lower case.
Example

Convert Characters in Value to Upper Case

Description | Converts all of the characters in the val ue to upper case using the rules of the default locale.
Syntax ${_toUpperCase(value)}
Parameters
* val ue
Required; String to convert to upper case.
Example

Return Copy of Value with Whitespace Omitted

Description | Returns a copy of val ue, with leading and trailing whitespace omitted.
Syntax ${_trim(value)}
Parameters
® val ue
Required; String to trim.
Example

Return Index of Substring within String Variable

Description | Returns the index within the string variable of the first occurrence of the specified substring, st r .
Syntax ${_varlndexOf(variableName, str)}
Parameters
® vari abl eNanme
Required; Variable that this function is passing in.
® str
Required; Substring to search for. If the st r argument occurs as a substring within the variable, the index of the first
character of the first such substring is returned; if it does not occur as a substring, -1 is returned.
Example

Return Index of Substring Plus Offset in String Variable

51 / o0ps-61x-v&f

52

Opswise Controller 6.1.x Variables and Functions

Description | Returns the index within this string of the first occurrence of the specified substring plus the specified offset. The integer returned
is the smallest variable.

Syntax ${ varIndexOfWithOffset(variableName, str, offset)}

Parameters
® vari abl eNane
Required; Variable that this function is passing in.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the variable, then the index of the

first character of the first such substring is returned; if it does not occur as a substring, -1 is returned.
® of fset

Required; Number (positive or negative) to offset the found index.

Example

Return Index of Rightmost Occurrence of Substring in String Variable

Description | Returns the index within the string variable of the rightmost occurrence of the specified substring, str .
Syntax ${ varLastindexOf(variableName, str)}
Parameters
® vari abl eNane
Required; Variable that this function is passing in.
® str
Required; Substring to search for. If the st r argument occurs one or more times as a substring within the variable, then
the index of the first character of the last such substring is returned. If it does not occur as a substring, -1 is returned.
Example

Return Index of Rightmost Occurrence of Substring Plus Offset in String Variable

Description | Returns the index within this string of the rightmost occurrence of the specified substring, plus the specified offset. The returned
index is the largest variable.

Syntax ${_varLastindexOfWithOffset(variableName, str, offset)}

Parameters
® vari abl eNane

Required; Variable that this function is passing in.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the variable, then the index of the

first character of the first such substring is returned; if it does not occur as a substring, -1 is returned.
® of fset

Required; Number (positive or negative) to offset the found index.

Example

Return Length of Variable

Description = Returns the length of var i abl eNane.

Syntax ${_varLength(variableName[, useEmptyForUndefined])}

Parameters
® vari abl eNanme

Required; Variable that this function is passing in.
® useEnpt yFor Undef i ned

Optional; Specification (true or false) for the handling of a missing variable name. Default is false.
® |f useEnpt yFor Undef i ned = true, the function will return 0.

® |f useEnpt yFor Undef i ned = false, the function will remain unresolved if the variable name does not exist.

Example

| ops-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Replace Substring of Variable with Regular Expression

Description | Replaces each substring of var i abl eNane that matches the specified regular expression, regex, with the specified
replacement.

Syntax ${_varReplaceAll(variableName, regex, replacement)}

Parameters
® vari abl eNanme
Required; Variable that this function is passing in.
® regex
Required; Regular expression.
® repl acenent
Required; Replacement string.

Example

Return New String that is Substring of Variable

Description | Returns a new string that is a substring of var i abl eName. The substring begins at begi n_i ndex and extends to the character
at {end_index}} -1.

Syntax ${_varSubstring(variableName, beginindex, endindex)}

Parameters
® vari abl eNanme
Required; Variable that this function is passing in.
® begi n_i ndex
Required; Beginning index, inclusive.
® end_i ndex
Required; Ending index, exclusive.

Examples

${_substring("hanmburger", 4, 8)}
resolves to "urge".

${_substring("smles", 1, 5)}
resolves to "nmile".

Convert Characters in Variable to Lower Case

Description | Converts all of the characters in the variable to lower case using the rules of the default locale.
Syntax ${_varToLowerCase(variableName)}

Parameters
® vari abl eNanme
Required; Variable that this function is passing in.

Example

Convert Characters in Variable to Upper Case

Description | Converts all of the characters in the variable to upper case using the rules of the default locale.
Syntax ${_varToUpperCase(variableName)}

Parameters
® vari abl eNanme
Required; Variable that this function is passing in.

Example

53 / o0ps-61x-v&f

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Opswise Controller 6.1.x Variables and Functions

Return Copy of variable

Description | Returns a copy of var i abl eNane, with leading and trailing whitespace omitted.
Syntax ${_varTrim(variableName)}
Parameters

® vari abl eNanme
Required; Variable that this function is passing in.

Example

System Functions

Resolve to GUID (Globally Unique ID)

Description | Resolves to a 32-byte GUID (Globally Unique ID).
Syntax ${_qui d}
Parameters @ (none)

Example

Resolve to Host Name

Description | Resolves to the hostname of the machine running the Controller, if available.
Syntax ${_host nane}
Parameters = (none)

Example

Resolve to IP Address

Description | Resolves to the IP address of the machine running the Controller.
Syntax ${_i paddr ess}
Parameters = (none)

Example

Generate Random Number

Description | Generates a random number between nmax (inclusive) and mi n (inclusive)

Syntax ${_randonm([max, mn])}
Parameters
® max
Optional; Upper bound (inclusive) on the random number (default = 9).
® nmin

Optional; Lower bound (inclusive) on the random number (default = 0).

Example

Resolve Variable

54 | 0ps-61x-v&f

Opswise Controller 6.1.x Variables and Functions

Description | Resolves the variable specified by the vari abl e_name parameter and substitutes the def aul t _val ue if the variable cannot

be resolved.
Syntax ${_resol ve(vari abl e_nane, default_value)}
Parameters
® variabl e_nane
Required; Variable name.
® defaul t _val ue
Required; Default value to use if the variable cannot be resolved.
Example

Resolve Variable (Advanced)

Description | Resolves the variable specified by the var i abl e_name parameter and substitutes the default value if the variable cannot be

resolved.
Syntax ${_resol veadv(vari abl e_nane, default_value, [use_default_if_blank])}
Parameters
® variabl e_nane
Required; Variable name.
® defaul t _val ue
Required; Default value to use if the variable cannot be resolved.
® use_defaul t_if_blank
Optional; Specification (true or false) for whether or not to use the default value if the variable is empty or blank. (If
use_defaul t _i f_bl ank is false, _r esol veadv behaves like _resolve.)
Example

Display Variables

Description | Displays all the defined and built-in variables associated with the task instance.

Syntax ${ _scope}

Parameters = (none)

Example
${_scope} --> {ops_workflow_ id=, ops_task_type=Uni x,
ops_st at us=DEFI NED, ops_retry_interval =60,
ops_exit_code=0, ops_retry_maxi mum=0, ops_cnd_parns=,
ops_cnmd=ls -la; exit ${_randon('9')};, ops_retry_count=0,
ops_agent _i d=67e4994143d2617201cdf 4ba9df 9ab0a,

ops_t ask_i d=84880af 243d26172019aa1d25988a8f 9,
ops_t ask_name=Cpswi se - Linux Ls}

Resolve to SYS ID

Description = Resolves to the sys_id of the first task instance found within the same workflow specified by the sibling name.
Syntax ${_si blingi d(sibling_nane)}
Parameters

® sibling_nane
Required; Sibling name.

55 | o0ps-61x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Opswise Controller 6.1.x Variables and Functions

Example

${_siblingid("Timer 60")}
--> bdbhaaab943d26172015e10ab3e894e10

Resolve to Variable Value

Description | Locates the specified variable in the specified sibling task instance within the same workflow and resolves to the variable value.
Syntax ${_var Lookup(si bl i ng_nane, variabl e_nane[,def])}

Parameters
® sibling_nane

Required; Name of the sibling task instance from which the function is collecting the variable value.
® variabl e_nane

Required; Name of the variable being collected by the function.
® def

Optional; default value to return if the variable is not defined in the sibling task instance.

Example

56 / 0ps-61x-v&f

	Variables and Functions
	Variables and Functions Overview
	User-Defined Variables
	Built-In Variables
	Launching With Variables
	Trigger With Variables
	Creating a Set Variable Action within a Task or Workflow
	Listing and Setting Variables from the Command Line
	Functions

