stonebranch

Universal Controller 6.4.x

Variables and Functions

© 2018 by Stonebranch, Inc. All Rights Reserved.

1. Variables and FUNCHONS e e e e e e e e 3

1L BUI-IN Variables ... 5

1.2 Variables and FUNCHONS OVEIVIBWottt e et e e e e e e e e e e e e e e e e e e e 42
1.3 User-Defined Variableso 43
L FUNCHONS .t e e e 52
1.5 Launching With Variableso 92
1.6 Listing and Setting Variables from the Command Line et e e e e e 93
1.7 Trigger With Variables 94

1.8 Creating a Set Variable Action within @ Task Or WorKi oW e et e e e e e 95

Universal Controller 6.4.x Variables and Functions

Variables and Functions

m Variables m Built-In Variables
e

Overview Overview

User-Defined Variables Agent Variables

"

- Using Variables
S

Agent-Based Task Instance Variables
Application Monitor Trigger Variables

Cluster Node Variables

Setting Variables under Special Circumstances
Common Variables

Launching With Variables
Composite Trigger Variables

Triggering with Variables
Email Monitor Task Instance/Trigger Variables

Creating a Set Variable Action within a Task or Workflow
File Monitor Task Instance/Trigger Variables

Listing and Setting Variables from the Command Line
File Transfer Task Instance Variables

ﬁ] FTP File Monitor Task Instance Variables

“ Functions OMS Server Variables

Overview PeopleSoft Task Instance Variables

Conditional Functions SAP Task Instance Variables

Credential Functions SQL and Stored Procedure Task Instance Variables
Date Functions SQL Task Instance Variables

Mathematical Functions Stored Procedure Task Instance Variables

3 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Triggering+with+Variables

Universal Controller 6.4.x Variables and Functions

4

Script Functions

SQL/Stored Procedure Functions
String Functions

System Functions

Web Service Functions

=
& The information on these pages also is located in the Universal Controller 6.4.x Variables and Functions.pdf.

| uc-64x-v&f

System Monitor Task Instance Variables

Task Instance Variables (all task type)

Task Monitor Task Instance/Trigger Variables
Trigger Variables (all trigger types)

Variable Monitor Task Instance/Trigger Variables
Web Service Task Instance Variables

z/OS Task Instance Variables

https://www.stonebranch.com/confluence/download/attachments/32014339/Universal+Controller+6.4.x+Variables+and+Functions.pdf?version=20&modificationDate=1517844116000

Universal Controller 6.4.x Variables and Functions

5

/

Built-In Variables

® Overview

® Built-In Variable Categories

® Agent Variables

Agent Hostname

Agent IP Address

Agent IP Address

Agent Mode

Agent Name

Agent Queue Name

® Agent-Based Task Instance Variables
® Agent Hostname
® Agent IP Address

® Agent IP Address

[]

[]

Agent Name
Agent sys_id

® Agent Queue Name
® Application Monitor Trigger Variables

® Trigger Application Name
Trigger Application Status
Trigger Application sys_id
Trigger Application Type
® Cluster Node Variables
Cluster Node Hostname
Cluster Node ID
Cluster Node IP Address
Cluster Node Mode
Cluster Node Name
Cluster Node Running Time
Cluster Node Start Time
® Common Variables

® System Identifier
® Composite Trigger Variables

® Trigger Component Event Time
® Email Monitor Task Instance/Trigger Variables
Body Field
Cc Field
From Field
HTML Body Field
Received Date Field
Reply To Field
Sent Date Field
Subject Field

®* To Field
® File Monitor Task Instance/Trigger Variables

uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Base File Name
File Directory
File Directory (with Final Directory Separator)
File Directory (without Final Directory Separator)
File Extension
Separator
Trigger File Date
Trigger File Group
Trigger File Name
Trigger File Name (No Path)
Trigger File Owner
Trigger File Scan Result
® Trigger File Size
® File Transfer Task Instance Variables
® Destination Password
® Destination User ID
® Source Password
® Source User ID
® FTP File Monitor Task Instance Variables
® Base Trigger File Name
® Files Matching Wildcard
® Remote Trigger File Name
® Remote Trigger File Name (No Path)
® Trigger File Directory
® Trigger File Directory (with Final Directory Separator)
[]
[]
[]
[]

Trigger File Directory (without Final Directory Separator)
Trigger File Extension
Trigger Wildcard
Trigger Wildcard Path Only
® Trigger Wildcard Path Only (without Final Slash)
® OMS Server Variables
® Last OMS Server Connected
® OMS Server IP Address
® OMS Server Status
® OMS Server sys_id
® OMS Server Messaging Sessions Status
® PeopleSoft Task and Task Instance Variables
® Distribution Status
Main Job Name
Main Schedule Name
Process Instance
Process Name
Process Type
® Run Status
® SAP Task Instance Variables
® SAP InfoPackage Request ID
® SAP Job ID
® SAP Job Name
® SAP Process Chain ID
® SAP Process Chain Log ID
® SQL and Stored Procedure Task Instance Variables
® Error Message
® Processed Rows
® Return Code for SQL Statement Outcome
® SQL Task Instance Variables

6 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

® SQL Command Field
® Stored Procedure Task Instance Variables
® Stored Procedure Name
® System Monitor Task Instance Variables
® Actual Size
Actual Size (Rounded)
Actual Size (Scale)
Scale
Size
® Size (Rounded)
® Task Instance Variables
® Cluster Node Hostname
Cluster Node 1D
Cluster Node IP Address
Cluster Node Mode
Cluster Node Name
Cluster Node Running Time
Cluster Node Start Time
Command
Command Parameters
Custom Field 1
Custom Field 2
Description
End Time
Execution User ID
Launch Time
Maximum Retry Count
Parent Workflow Instance sys_id
Parent Workflow Name
Queued Time
Retry Count
Retry Interval
Running Time
Running Time (Text Format)
Script ID
Script Name
Script Parameters
Starting Time
Task Instance Attempts
Task Instance Exit Code
Task Instance Status
Task Instance sys_id
Task Name
Task Reference Count
Task Type
Time Zone (Task time zone)
Time Zone (Trigger time zone)
® Top-Level Workflow Task Instance ID
® Task Monitor Task Instance/Trigger Variables
® Trigger Task Name
® Trigger Task Status
Trigger Task sys_id
Trigger Task Type
Trigger Workflow
® Trigger Variables

7 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

® Trigger Name
® Trigger Time
® Trigger Time (Trigger time zone)
® Variable Monitor Task Instance/Trigger Variables
® Trigger Variable Name
® Trigger Variable Value
® Trigger Variable Previous Value
® Web Service Task Instance Variables
®* URL
Raw Value of URL
URL Host
URL Port
URL Path
Unencoded URL Path
URL Query
® Unencoded URL Query
® 7/OS Task Instance Variables
® JCL Location
® Job Number
® Override JCL Location
® Submitted JCL Location

Overview

Built-in variables are maintained by Universal Controller and provide information about task instances, agents, Universal Message Service (OMS), and cluster nodes. They can be used in free text
fields in triggers, tasks, task actions, and email notifications for agents, OMS servers, and cluster nodes.

Supported built-in variables and their descriptions are provided below. All built-in variables are prefixed with ops_.

Built-In Variable Categories

Built-in variables are listed alphabetically within the following categories on this page:

Agent Variables

Agent-Based Task Instance Variables
Application Monitor Trigger Variables

Cluster Node Variables

Common Variables

Composite Trigger Variables

Email Monitor Task Instance/Trigger Variables
File Monitor Task Instance/Trigger Variables
File Transfer Task Instance Variables

FTP File Monitor Task Instance Variables
OMS Server Variables

PeopleSoft Task Instance Variables

SAP Task Instance Variables

SQL and Stored Procedure Task Instance Variables
SQL Task Instance Variables

Stored Procedure Task Instance Variables

8 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

9

Stored Procedure Task Instance Variables
System Monitor Task Instance Variables

Task Instance Variables

Task Monitor Task Instance/Trigger Variables
Trigger Variables

Variable Monitor Task Instance/Trigger Variables
Web Service Task Instance Variables

z/OS Task Instance Variables

Agent Variables

The following agent variables can be used to pass information into an Agent notification.

Agent Hostname

Description | Resolves to the agent hostname.
Syntax ${ops_agent_hostname}

Example

Agent IP Address

Description = Resolves to the agent IP address (see ${ ops_agent _i p}, below.
Syntax ${ops_agent_ipaddr}

Example

Agent IP Address

Description | Resolves to the agent IP address.

Syntax ${ops_agent_ip}
Example
Agent Mode
Description = Resolves to the agent operational mode (Active, Offline).
Syntax ${ops_agent_mode}
Example
! uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Agents#Agents-SendingNotificationsonStatusofanAgent

Universal Controller 6.4.x Variables and Functions

Agent Name

Description | Resolves to the agent name.
Syntax ${ops_agent_name}

Example

Agent Queue Name

Description | Resolves to the agent queue name.

r. Note
In the user interface, the queue name is labelled Agent Id.

Syntax ${ops_agent_id}

Example

., Note
Although they have the same syntax, ${ops_agent_id}, this Agent Queue Name Agent variable resolves to a different value than the Agent sys_id Agent-based task instance

variable.

Agent-Based Task Instance Variables

The following variables can be used to pass agent information into agent-based task (Windows, Linux/Unix, z/OS, and SAP) notifications; see Creating Email Notifications and Creating SNMP
Notifications.

Agent Hostname

Description | Resolves to the agent hostname.
Syntax ${ops_agent_hostname}

Example

Agent IP Address

Description = Resolves to the agent IP address (see ${ ops_agent _i p}, below.

10 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Email+Notification+Actions
https://www.stonebranch.com/confluence/display/UC64/SNMP+Notification+Actions
https://www.stonebranch.com/confluence/display/UC64/SNMP+Notification+Actions

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_agent_ipaddr}

Example

Agent IP Address

Description | Resolves to the agent IP address.
Syntax ${ops_agent_ip}

Example

Agent Name

Description = Resolves to the agent name.
Syntax ${ops_agent_name}
Example

Agent sys_id

Description | Resolves to the sys_id of the agent.
Syntax ${ops_agent_id}

Example

', Note
Although they have the same syntax, ${ops_agent_id}, this Agent sys_id Agent-based task instance variable resolves to a different value than the Agent Queue Name Agent
variable.

Agent Queue Name

Description | Resolves to the agent queue name.

*. Note
In the user interface, the queue name is labelled Agent Id.

Syntax ${ops_agent_queue_name}

11 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Universal Controller 6.4.x Variables and Functions

Example

Application Monitor Trigger Variables

When a task is launched by an Application Monitor trigger, the following built-in variables are passed into the task being launched by the trigger:

Trigger Application Name

Description = Resolves to the name of the Application being monitored by the trigger.
Syntax ${ops_trigger_appl_name}

Example

Trigger Application Status

Description | Resolves to the status of the Application being monitored by the trigger.
Syntax ${ops_trigger_appl_status}

Example

Trigger Application sys_id

Description | Resolves to the sys_id of the application.
Syntax ${ops_trigger_appl_id}

Example

Trigger Application Type

Description | Resolves to the type of Application being monitored by the trigger, as defined by the Application Type field.
Syntax ${ops_trigger_appl_type}

Example

Cluster Node Variables

The following cluster node variables allow you to pass information into a cluster node (Controller server) notification:

12 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Application+Monitor+Triggers
https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/UC64/Cluster+Nodes#ClusterNodes-SendingNotificationsonStatusofaClusterNode

Universal Controller 6.4.x Variables and Functions

Cluster Node Hostname

Description | Resolves to the hostname of this cluster node.
Syntax ${ops_cluster_hostname}

Example

ops_cl ust er_host nane =
MACHI NEC19A

Cluster Node ID

Description | Resolves to the cluster node's internally-generated build ID.

Syntax ${ops_cluster_id}

Example
ops_cluster_id = MACH NECL9A: 8080- opswi se

Cluster Node IP Address

Description | Resolves to the IP address of this cluster node.
Syntax ${ops_cluster_ipaddr}

Example

ops_cl uster_i paddr =
10. N. N. NN

Cluster Node Mode

Resolves to the current mode of this cluster node: Offline, Active, Passive.

Description

For more information, see Viewing Node Status.
Syntax ${ops_cluster_mode}
Example

ops_cl uster_node = Active

13 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/High+Availability#HighAvailability-ViewingNodeStatus

Universal Controller 6.4.x Variables and Functions

Cluster Node Name

Description = ${ops_cluster_name} is an alias for the ${ops_cluster_id} variable.
Syntax ${ops_cluster_name}

Example

ops_cl uster_nanme =
MACHI NEC19A: 8080- opswi se

Cluster Node Running Time

Description = Resolves to the numbers of days, hours, and minutes that this cluster node has been running since it was last started.
Syntax ${ops_cluster_uptime}

Example

ops_cluster_uptine = 7 Seconds

Cluster Node Start Time
Description = Resolves to the date and time the cluster node (server) was started.

Syntax ${ops_cluster_start_time}

Example

ops_cluster_start_tinme = 2011-09-26 17:35:01
- 0400

Common Variables

The following variable is available for Task Instances, Agents, OMS Servers, and Cluster Nodes.

System Identifier

Description = Resolves to the value of the System Identifier Universal Controller system property.

Syntax ${ops_system_identifier}

14 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-SystemIdentifier

Universal Controller 6.4.x Variables and Functions

Example

Composite Trigger Variables

The following built-in variable is associated with the Composite Trigger type. This variable is only available for Composite Trigger components that have a Built-in Variable Prefix specified.

Trigger Component Event Time

Description = Resolves to the time when a Composite Trigger component fired.
Syntax ${<prefix>_trigger_component_event_time}

Example

Email Monitor Task Instance/Trigger Variables

When one or more tasks are launched by an Email Monitor trigger after the conditions in its associated Email Monitor task are met, the built-in variables described below are passed into the tasks
being launched by the trigger.

For example, the Email Monitor trigger may specify the launch of an Email task each time the associated Email Monitor task detects the status in a Mailbox folder. The Windows task might use one
of these built-in variables as a command argument. Or, if the File Monitor task is not associated with a trigger but is running within a workflow, on completion you can propagate one or more of
these built-in variable values to the parent workflow level using the Set Variable action. This allows you to pass information from the Email Monitor task to a successor task within the same workflow

hierarchy.

Body Field

Description | Resolves to the Body field of the Email.
Syntax ${ops_trigger_email_body}

Example

Cc Field

Description = Resolves to the Cc field of the Email.

Syntax ${ops_trigger_email_cc}
Example
From Field

Description | Resolves to the From field of the Email.

15 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Composite+Trigger
https://www.stonebranch.com/confluence/display/UC64/Email+Monitor+Trigger

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_trigger_email_from}
Example

HTML Body Field

Description | Resolves to the HTML Body field of the Email.
Syntax ${ops_trigger_email_body_html}

Example

Received Date Field

Description = Resolves to the Received Date field of the Email.

Syntax ${ops_trigger_email_received_date}
Example

Reply To Field

Description | Resolves to the Reply-To field of the Email.
Syntax ${ops_trigger_email_reply_to}

Example

Sent Date Field

Description | Resolves to the Sent Date field of the Email.
Syntax ${ops_trigger_email_sent_date}

Example

Subject Field

Description = Resolves to the Subject field of the Email.
Syntax ${ops_trigger_email_subject}

Example

16 / uc-64x-v&f

17

Universal Controller 6.4.x Variables and Functions

To Field

Description | Resolves to the To field of the Email.
Syntax ${ops_trigger_email_to}

Example

File Monitor Task Instance/Trigger Variables

When one or more tasks are launched by a File Monitor trigger after the conditions in its associated File Monitor task are met, the built-in variables described below are passed into the tasks being
launched by the trigger.

For example, the File Monitor trigger may specify the launch of a Windows task each time the associated File Monitor task detects the creation of a specific file. The Windows task might use one of
these built-in variables as a command argument. Or, if the File Monitor task is not associated with a trigger but is running within a workflow, on completion you can propagate one or more of these

built-in variable values to the parent workflow level using the Set Variable action. This allows you to pass information from the File Monitor task to a successor task within the same workflow
hierarchy.

Base File Name

Description | Resolves to the base file name.

Syntax ${ops_trigger_file_name_simple}

File Directory

Description | Resolves to the directory where the new file was created, but not the file itself. If the existence or non-existence of the final directory separator is a requirement, we recommend the
use of ${ ops_trigger_file_fullpath}and ${ops_trigger_file_fullpath_no_separat or}, respectively.

Syntax ${ops_trigger_file_path}

Example

File Directory (with Final Directory Separator)

Description = Resolves to the directory where the new file was created, but not the file itself; includes the final directory separator.
Syntax ${ops_trigger_file_fullpath}
Example

File Directory (without Final Directory Separator)

Description

/

Resolves to the directory where the new file was created, but not the file itself; does not include the final directory separator.

uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/File+Monitor+Trigger

Universal Controller 6.4.x Variables and Functions

Syntax

Example

${ops_trigger_file_fullpath_no_separator}

File Extension

Description | Resolves to the file extension of a file.

Syntax ${ops_trigger_file_name_extension}

Example

Separator

Description = Resolves to the separator appropriate to the platform where the agent is running. For Windows, resolves to a backslash (\); for Linux/Unix, resolves to forward slash (/). This
variable may be useful if you want to piece together a pathname using a combination of text and variables.

Syntax ${ops_trigger_file_separator}

Example

${ops_trigger_file_fullpath}sub_fol der_name
${ops_trigger_file_separator}filenane.txt

Trigger File Date

Description
Syntax

Example

Resolves to the file date of the file that fired the trigger.

${ops_trigger_file_date}

Trigger File Group

Description
Syntax

Example

Resolves to the file group of the file that fired the trigger.

${ops_trigger_file_group}

Trigger File Name

Description

18 / uc-64x-v&f

Resolves to the name of the file that fired the trigger.

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_trigger_file_name}

Example

Trigger File Name (No Path)

Description | Resolves to the name of the file that fired the trigger, but without any path information.

Syntax ${ops_trigger_file_name_nopath}

Example

Trigger File Owner

Description = Resolves to the file owner of the file that fired the trigger.
Syntax ${ops_trigger_file_owner}

Example

Trigger File Scan Result

Description | Resolves to the result of the file scan: FOUND or NOT_FOUND.
Syntax ${ops_trigger_file_scan}

Example

Trigger File Size

Description | Resolves to the file size of the file that fired the trigger.
Syntax ${ops_trigger_file_size}

Example

File Transfer Task Instance Variables

File Transfer variables are available for use in UDM scripts.

19 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/File+Monitor+Task#FileMonitorTask-ScanText
https://www.stonebranch.com/confluence/display/UC64/Scripts

Universal Controller 6.4.x Variables and Functions

Note
These variables differ from all other built-in variables in that they are resolved by Universal Data Mover (UDM) on a UDM agent, not by the Universal Controller. File Transfer

variables are sent to an agent unresolved and UDM performs all resolution for them. The resolved value is never available to the Controller.

=

Unlike the syntax of built-in variables resolved by Universal Controller - ${ <var i abl e- nane>} - the syntax of File Transfer variables is the same as all UDM variables -
$(<vari abl e- nane>).

The following example illustrates the correct way to code them:

open src=srcserver user=$(ops_src_cred_user) pwd=$(ops_src_cred_pwd) dst=dstserver user=$(ops_dst_cred_user) pwd=$(ops_dst_cred_pwd)

Destination Password

Description | Resolves to the destination password.
Syntax $(ops_dst_cred_pwd)

Example

Destination User ID

Description = Resolves to the destination user ID.
Syntax $(ops_dst_cred_user)

Example

Source Password

Description | Resolves to the source password.
Syntax $(ops_src_cred_pwd)

Example

Source User ID

Description | Resolves to the source user ID.

Syntax $(ops_src_cred_user)

20 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UA64/Universal+Data+Mover+Variables

Universal Controller 6.4.x Variables and Functions

Example

FTP File Monitor Task Instance Variables

The following built-in variables are available for FTP File Monitor task instances and provide information about the file or file(s) that matched the monitor's criteria.

You can use these variables in an FTP File Monitor action or in a successor task instance by propagating one or more of these built-in variable values to a parent workflow using the Set Variable
action.

Base Trigger File Name

Description | Resolves to the base file name.
Syntax ${ops_trigger_file_name_simple}

Example

Files Matching Wildcard

Description = Resolves to a comma-separated list of files that matched the wildcard, if one was specified in the Remote Filename field in the FTP File Monitor task.
Syntax ${ops_trigger_files}
Example

ops_trigger_files = COWPANY-2011-11-22.xls,

COVPANY- 2011- 11- 23. x| s, COVPANY- 2011- 11-24. x| s

Remote Trigger File Name

Description = Resolves to the remote file name.
Syntax ${ops_trigger_file_name}
Example

Remote Trigger File Name (No Path)

Description | Resolves to the remote file name without any path information.
Syntax ${ops_trigger_file_name_nopath}
Example

21 |/ uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/FTP+File+Monitor+Task

Universal Controller 6.4.x Variables and Functions

Trigger File Directory

Description = Resolves to the directory where the remote file is located, but not the file itself. ${ops_trigger_file_path} is an alias for ${ops_trigger_file_fullpath_no_separator}.
Syntax ${ops_trigger_file_path}

Example

Trigger File Directory (with Final Directory Separator)

Description | Resolves to the directory where the remote file is located, but not the file itself; includes the final directory separator.
Syntax ${ops_trigger_file_fullpath}

Example

Trigger File Directory (without Final Directory Separator)

Description = Resolves to the directory where the remote file is located, but not the file itself; does not include the final directory separator.
Syntax ${ops_trigger_file_fullpath_no_separator}

Example

Trigger File Extension

Description | Resolves to the file extension of the file.
Syntax ${ops_trigger_file_name_extension}

Example

Trigger Wildcard

Description | Resolves to the contents of the Remote Filename field in the FTP File Monitor task.
Syntax ${ops_trigger_wildcard}

Example

ops_trigger_wldcard =
/ hone/ pr od/ st onebr anch/ COVPANY*. x| s

Trigger Wildcard Path Only

22 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/FTP+File+Monitor+Task

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the path only, with the final slash but without the file name, from the Remote Filename field in the FTP File Monitor task.
Syntax ${ops_trigger_wildcard_path}
Example

ops_trigger_wldcard_path =

= / home/ pr od/ st onebr anch/

Trigger Wildcard Path Only (without Final Slash)

Description = Resolves to the path only, without the final slash and without the file name, from the Remote Filename field in the FTP File Monitor task.
Syntax ${ops_trigger_wildcard_path_no_separator}
Example

ops_trigger_w | dcard_pat h_no_separator = /hone/ prod/stonebranch

OMS Server Variables
The following OMS Server variables allow you to pass information into an OMS Server notification.

Last OMS Server Connected

Description = Resolves to the last OMS Server connected to the Controller in an OMS HA cluster.
Syntax ${ops_oms_last_connected}
Example

OMS Server IP Address

Description | Resolves to the OMS Server IP address.

Syntax ${ops_oms_server_address}

Example

OMS Server Status

Description | Resolves to the current status of the OMS Server.

23 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/FTP+File+Monitor+Task
https://www.stonebranch.com/confluence/display/UC64/FTP+File+Monitor+Task
https://www.stonebranch.com/confluence/display/UC64/OMS+Servers#OMSServers-SendingNotificationsonStatusofanOMSServer

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_oms_status}

Example

OMS Server sys _id

Description | Resolves to the sys_id of the OMS server.
Syntax ${ops_oms_id}

Example

OMS Server Messaging Sessions Status

Description = Resolves to the current status of the OMS Server messaging sessions (heartbeat, input, output): Operational, Impaired, None.
Syntax ${ops_oms_session_status}

Example

PeopleSoft Task and Task Instance Variables

The following built-in variables are available for PeopleSoft tasks and task instances:
Distribution Status
(For task instances only.)
Description = Resolves to the PeopleSoft task instance Distribution Status.
Syntax ${ops_distribution_status}
Example

Main Job Name

Description | Resolves to the PeopleSoft Main Job Name.
Syntax ${ops_main_job_name}

Example

Main Schedule Name

24 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-DistributionStatus
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-MainJobName

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the PeopleSoft task/task instance Main Schedule Name.
Syntax ${ops_main_schedule_name}

Example

Process Instance
(For task instances only.)

Description | Resolves to the PeopleSoft task instance Process Instance.
Syntax ${ops_process_instance}

Example

Process Name

Description = Resolves to the PeopleSoft task/task instance Process/Job Name.
Syntax ${ops_process_name}

Example

Process Type

Description | Resolves to the PeopleSoft task/task instance Process Type.

Syntax ${ops_process_type}
Example
Run Status

(For task instances only.)

Description | Resolves to the PeopleSoft task instance Run Status.
Syntax ${ops_run_status}

Example

SAP Task Instance Variables

For an SAP task instance, where applicable, the following built-in variables resolve to the SAP jobname and SAP jobid of the job running in the SAP system. If you need to use the SAP jobname

25 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-MainScheduleName
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-ProcessInstance
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-Process%2FJobName
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-ProcessType
https://www.stonebranch.com/confluence/display/UC64/PeopleSoft+Task#PeopleSoftTask-RunStatus

Universal Controller 6.4.x Variables and Functions

and/or the SAP jobid from one SAP task instance in a successor SAP task instance, you can use the Set Variable action to propagate these built-in variable values to the parent workflow.

SAP InfoPackage Request ID

Description | Resolves to the SAP InfoPackage Request ID.

Syntax ${ops_sap_requestid}
Example
SAP Job ID

Description | Resolves to the SAP job ID.
Syntax ${ops_sap_jobid}

Example

SAP Job Name

Description = Resolves to the SAP job name.
Syntax ${ops_sap_jobname}

Example

SAP Process Chain ID

Description | Resolves to the SAP Process Chain ID.
Syntax ${ops_sap_chainid}

Example

SAP Process Chain Log ID

Description | Resolves to the SAP Process Chain Log ID.
Syntax ${ops_sap_logid}

Example

SQL and Stored Procedure Task Instance Variables

26 /| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

The following built-in variables are used in SQL tasks and Stored Procedure tasks to collect SQLException data, if any:

Error Message

Description | Resolves to any error message generated by the database.
Syntax ${ops_sql_error_msg}
Example

Processed Rows

Description | Resolves to the number of rows processed.
Syntax ${ops_sql_rows}
Example

Return Code for SQL Statement Outcome

Description = Resolves to a return code that indicates the outcome of the most recently executed SQL statement.
Syntax ${ops_sql_state}
Example

SQL Task Instance Variables

The following built-in variable is available for SQL task instances.

SQL Command Field

Description | Resolves to the value of the SQL Command field.
Syntax ${ops_sqgl_command}
Example

Stored Procedure Task Instance Variables
The following built-in variable is available for Stored Procedure task instances and provides information about the stored procedure itself.

Stored Procedure Name

27 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/SQL+Task
https://www.stonebranch.com/confluence/display/UC64/Stored+Procedure+Task
https://www.stonebranch.com/confluence/display/UC64/SQL+Task#SQLTask-SQLCommand

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the value from the Stored Procedure Name field.
Syntax ${ops_stored_proc_name}

Example

System Monitor Task Instance Variables

The following System Monitor variables show the results for Resource Available and Actual Available that can be utilized in System Monitor tasks.

Actual Size

Description | Actual size determined by the agent.
Syntax ${ops_sm_actual_size}

Example

Actual Size (Rounded)

Description = Same as ops_sm_actual_size, except rounded to the nearest integer.
Syntax ${ops_sm_actual_int_size}

Example

Actual Size (Scale)

Description | Scale of the actual size determined by the agent.
Syntax ${ops_sm_actual_scale}

Example

Scale

Description = Scale specified in the By Scale field for Resource Available of the System Monitor task definition.
Syntax ${ops_sm_scale}

Example

Size

28 |/ uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/System+Monitor+Task

Universal Controller 6.4.x Variables and Functions

Description = Size specified in the Resource Available field of the System Monitor task definition.
Syntax ${ops_sm_size}

Example

Size (Rounded)

Description | Same as ops_sm_size, except that ops_sm_int_size is rounded to the nearest integer.
Syntax ${ops_sm_int_size}

Example

Task Instance Variables

The following built-in variables are associated with task instances for all task types.

Cluster Node Hostname

Description = Resolves to the hostname of the Active cluster node.
Syntax ${ops_cluster_hostname}

Example

ops_cl uster_host nane =
MACHI NEC19A

Cluster Node ID

Description | Resolves to the Active cluster node's internally-generated build ID.
Syntax ${ops_cluster_id}

Example

ops_cluster_id = MACH NECL19A: 8080- opswi se

Cluster Node IP Address

Description | Resolves to the IP address of the Active cluster node.

29 |/ uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Creating+Tasks#CreatingTasks-TaskTypes

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_cluster_ipaddr}

Example

ops_cl uster_i paddr = 10. N. N. NN

Cluster Node Mode

Description | Resolves to the current mode of the cluster node: Offline, Active, Passive.
For more information, see Viewing Node Status.
Syntax ${ops_cluster_mode}

Example

ops_cl uster_node = Active

Cluster Node Name

Description = ${ops_cluster_name} is an alias for the ${ops_cluster_id} variable.
Syntax ${ops_cluster_name}

Example

ops_cl uster_nane =
MACHI NEC19A: 8080- opswi se

Cluster Node Running Time

Description | Resolves to the numbers of days, hours, and minutes that the Active cluster node has been running since it was last started.
Syntax ${ops_cluster_uptime}

Example

ops_cluster_uptime = 7 Seconds

Cluster Node Start Time

Description | Resolves to the date and time the Active cluster node (server) was started.

30 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/High+Availability#HighAvailability-ViewingNodeStatus

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_cluster_start_time}

Example

ops_cluster_start_tinme = 2011-09-26 17:35:01
- 0400

Command

Description | For tasks that launch a command on a Windows or Linux/Unix machine; resolves to the task command.
Syntax ${ops_cmd}

Example

Command Parameters

Description = For tasks that launch a command on a Windows or Linux/Unix machine; resolves to the task command parameters.
Syntax ${ops_cmd_parms}

Example

Custom Field 1

Description | Resolves to the value of user-defined field #1.
Syntax ${ops_custom_field1}

Example

Custom Field 2

Description | Resolves to the value of user-defined field #2.

Syntax ${ops_custom_field2}
Example
Description

Description = Resolves to the value of the Task Description field.

Syntax ${ops_description}

31 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Creating+Tasks#CreatingTasks-UserDefinedFields
https://www.stonebranch.com/confluence/display/UC64/Creating+Tasks#CreatingTasks-UserDefinedFields
https://www.stonebranch.com/confluence/display/UC64/Creating+Tasks#CreatingTasks-TaskDescription

Universal Controller 6.4.x Variables and Functions

Example

End Time

Description | Resolves to the task ending time.
Syntax ${ops_end_time}

Example

Execution User ID

Description = Resolves to the ID of the user who launched the task or to the ID of the user who enabled the trigger that launched the task.
Syntax ${ops_execution_user}

Example

Launch Time

Description | Resolves to the task launch time. For workflows, all descendants will have the same launch time as the top-level workflow.
Syntax ${ops_launch_time}

Example

Maximum Retry Count

Description | Resolves to the maximum retry count.
Syntax ${ops_retry_maximum}

Example

Parent Workflow Instance sys_id

Description = Resolves to the sys_id of the parent workflow task instance.
Syntax ${ops_workflow_id}

Example

Parent Workflow Name

32 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Universal Controller 6.4.x Variables and Functions

33

Description

Syntax

Example

Resolves to the name of the parent workflow.

${ops_workflow_name}

Queued Time

Description

Syntax

Example

Resolves to the date and time that the task was queued for processing.

${ops_queued_time}

Retry Count

Description

Syntax

Example

Resolves to the current retry count.

${ops_retry_count}

Retry Interval

Description

Syntax

Example

Resolves to the retry interval (seconds).

${ops_retry_interval}

Running Time

Description

Syntax

Example

Resolves to the task running time in milliseconds.
${ops_duration}

ops_duration = 130000

Running Time (Text Format)

Description

Syntax

Example

/

uc-64x-v&f

Resolves to the task running time in a more readable representation of the duration time.
${ops_duration_text}

ops_duration_text = 2 Minutes 10 Seconds

Universal Controller 6.4.x Variables and Functions

Script ID

Description = For Windows, Linux/Unix, and SAP tasks where a Script or SAP Definition from Scripts is specified; resolves to the Controller system ID of the script.
Syntax ${ops_script_id}

Example

Script Name

Description | For Windows, Linux/Unix, and SAP tasks where a Script or SAP Definition from Scripts is specified; resolves to the Controller name of the script.
Syntax ${ops_script_name}

Example

Script Parameters

Description | For tasks that run a script on a Windows or Linux/Unix machine; resolves to the task script parameters.
Syntax ${ops_script_parms}

Example

Starting Time

Description = Resolves to the task starting time.
Syntax ${ops_start_time}

Example

Task Instance Attempts

Description | Resolves to the current task instance attempt count. Each Re-run operation increments the attempt. Initial attempt is 1.
Syntax ${ops_attempt}

Example

Task Instance Exit Code

Description | Resolves to the task instance exit code, if any.

34 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Scripts
https://www.stonebranch.com/confluence/display/UC64/Scripts

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_exit_code}
Example

Task Instance Status

Description | Resolves to the current task instance status.
Syntax ${ops_status}

Example

Task Instance sys_id

Description = Resolves to the sys_id of the task instance.

Syntax ${ops_task_id}
Example
Task Name

Description | Resolves to the task name.
Syntax ${ops_task_name}

Example

Task Reference Count

Description | Resolves to the current task reference count.

Each time an instance is created from a specific task, it gets a unique task reference count for that task. For example, if you launch a task twice, the first instance will have task
reference count 1, and the second will have task reference count 2.

Syntax ${ops_task_ref_count}
Example
Task Type

Description | Resolves to the task type.

Syntax ${ops_task_type}

35 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Universal Controller 6.4.x Variables and Functions

Example

Time Zone (Task time zone)

Description | Resolves to the time zone of the task instance, as specified by the Time Zone Preference field.
Syntax ${ops_task_time_zone}

Example

Time Zone (Trigger time zone)

Description = Resolves to the time zone of the trigger that launched the task. If the task was launched by the Trigger Now/Launch Task command, the built-in variable will resolve to the
command's time zone option, or if no time zone option was specified, the server time zone.

Syntax ${ops_time_zone}

Example

Top-Level Workflow Task Instance ID

Description | Resolves to the sys_id of the top-level workflow task instance.
Syntax ${ops_top_level_workflow_id}

Example

Task Monitor Task Instance/Trigger Variables

When the conditions of a Task Monitor task are met and its associated Task Monitor trigger launches one or more tasks, the following built-in variables are passed into the task instances being
launched by the trigger.

For example, the Task Monitor trigger may specify an Email task that will launch each time the conditions in the associated Task Monitor task are met. You might want to specify one or more of
these variables in the body of the email.

If the Task Monitor task is not associated with a trigger but is running within a workflow, on completion you can propagate one or more of these built-in variable values to the parent workflow level by
using the Set Variable action. This allows you to pass information from the Task Monitor task to a successor task within the same workflow hierarchy.

Trigger Task Name

Description | Resolves to the name of the task instance that fired the trigger.
Syntax ${ops_trigger_task_name}

Example

36 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Time+Zone+Preference
https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/UC64/Task+Monitor+Trigger

Universal Controller 6.4.x Variables and Functions

Trigger Task Status
Description = Resolves to the status of the task instance that fired the trigger.
Syntax ${ops_trigger_task_status}

Example

Trigger Task sys_id

Description | Resolves to the sys_id of the task instance that fired the trigger.

Syntax ${ops_trigger_task_id}

Example

Trigger Task Type
Description | Resolves to the type of the task instance that fired the trigger.
Syntax ${ops_trigger_task_type}

Example

Trigger Workflow

Resolves to the name of the workflow instance that fired the trigger.

Description
This variable is available only for a Task Monitor task that has a Workflow Condition specified. If a workflow condition is specified, ${ ops_t ri gger _wor kf | ow_nane} will resolve
to the name of the workflow instance that the workflow condition matched.

Syntax ${ops_trigger_workflow_name}

Example

Trigger Variables

The following built-in variables are associated with all trigger types.
When a task is launched by a trigger, the values of the following built-in variables, if they are specified in the task, are passed into the task instance.

Trigger Name

Description | Resolves to the name of the trigger that launched the task instance.

37 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid
https://www.stonebranch.com/confluence/display/UC64/Task+Monitor+Task
https://www.stonebranch.com/confluence/display/UC64/Task+Monitor+Task#TaskMonitorTask-LaunchingaTaskMonitorTaskWithinaWorkflow
https://www.stonebranch.com/confluence/display/UC64/Triggers#Triggers-TriggerTypes

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_trigger_name}
Example
Trigger Time
Description | Resolves to the scheduled time of the trigger or, if the trigger is not scheduled, the actual trigger time.
If the task is triggered by date/time, it resolves to that specified date/time.
Syntax ${ops_trigger_time}
Example

Trigger Time (Trigger time zone)

Description | Resolves to the trigger time in the time zone of the trigger.
Syntax ${ops_trigger_time_tz}

Example

Variable Monitor Task Instance/Trigger Variables

When the conditions of a Variable Monitor task are met and its associated Variable Monitor trigger launches one or more tasks, the following built-in variables are passed into the task instances
being launched by the trigger.

For example, the Variable Monitor trigger may specify an Email task that will launch each time the conditions in the associated Variable Monitor task are met. You might want to specify one or more
of these variables in the body of the email.

If the Variable Monitor task is not associated with a trigger but is running within a workflow, on completion you can propagate one or more of these built-in variable values to the parent workflow
level by using the Set Variable action. This allows you to pass information from the Variable Monitor task to a successor task within the same workflow hierarchy.

Trigger Variable Name

Description = Resolves to the name of the variable being monitored.
Syntax ${ops_trigger_variable_name}

Example

Trigger Variable Value

Description | Resolves to the current value of the variable being monitored.

38 /| uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Variable+Monitor+Trigger

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_trigger_variable_value}

Example

Trigger Variable Previous Value

Description | Resolves to previous value of the variable being monitored.
Syntax ${ops_trigger_variable_prev_value}
Example

Web Service Task Instance Variables

The following built-in variables are available for Web Service task instances:

URL
Description | Resolves to the entire encoded URL containing the host, port, path and query.

Syntax ${ops_url}

Example

Raw Value of URL

Description = Resolves to the raw value of the URL field.

Syntax ${ops_url_raw}
Example
URL Host

Description = Resolves to the URL host.
Syntax ${ops_url_host}

Example

URL Port

Description | Resolves to the URL port.

39 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_url_port}
Example
URL Path

Description | Resolves to the encoded URL path.
Syntax ${ops_url_path}

Example

Unencoded URL Path

Description | Resolves to the unencoded URL path.

Syntax ${ops_url_path_unencoded}
Example

URL Query

Description | Resolves to the URL query.
Syntax ${ops_url_query}

Example

Unencoded URL Query

Description | Resolves to the unencoded URL query.
Syntax ${ops_url_query_unencoded}

Example

z/OS Task Instance Variables

The following built-in variables are available for z/OS task instances:

JCL Location

Description | Resolves to the file and member name containing the JCL script.

40 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Syntax ${ops_jcl_location}
Example
Job Number

Description | Resolves to the job number assigned to the job by JES.
Syntax ${ops_job_id}

Example

Override JCL Location

Description = Resolves to the file and member name of the JCL location containing a potential override JCL script.
Syntax ${ops_override_jcl_location}

Example

Submitted JCL Location

Description | Resolves to the file and member name of the JCL location that was actually used for job submission.
Syntax ${ops_submitted_jcl_location}

Example

41 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Variables and Functions Overview

® Variables and Functions
® Types of Variables
® Setting Variables under Special Circumstances

Variables and Functions

Variables and functions can be used in free-text fields within tasks and workflows. When a variable or function is specified in a free-text field, the Controller inserts its value into the field when the
task or workflow is run.

Triggers can pass variables and functions into the tasks and workflows that they launch.

Additionally, email notifications for Controller resources (agents, OMS servers, and cluster nodes) can use Built-In Variables that are specific to that type of resource.

Types of Variables

Universal Controller supports the following types of variables, all of which can be used in free text fields within tasks:

User-Defined Variables = These variables are created by the user for use within:

® A single trigger, task, or workflow (that is a trigger-, task-, or workflow-specific variable).
® All trigger, tasks, and workflows (that is, a Global variable).

Built-In Variables These variables, maintained by the Controller, allow you to access information about task instances and other related data, such as task name, task status, and trigger
name.
Functions These variables calculate some value, such as current date and time, or perform some function, such as _replaceAll.

Setting Variables under Special Circumstances

The Controller also supports several features that allow you to set variables under special circumstances:

Manually launch tasks and temporarily set user-defined variables.
Manually launch all of the tasks associated with a trigger while supplying variable values used by the task(s) (see Triggering with Variables).
Use the Set Variable action to set variables within a task or workflow.

L]
°
L]
® Use the ops-variable-set CLI function to set variables.

42 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Manually+Running+and+Controlling+Tasks#ManuallyRunningandControllingTasks-launchwithvariables
https://www.stonebranch.com/confluence/display/UC64/Triggering+with+Variables
https://www.stonebranch.com/confluence/display/UC64/Variable+Functions#VariableFunctions-opsvariableset

Universal Controller 6.4.x Variables and Functions

User-Defined Variables

® Overview
® Variable Naming Conventions
® Resolving User-Defined Variables
® For Tasks Launched by a Trigger
® For Tasks Launched by a Workflow
® For Tasks Launched Manually
® Format for Using Variables
® Creating a Variable
® Creating a Global Variable
® Global Variable Details
® Global Variable Details Field Descriptions
® Creating a Variable Specific to a Trigger, Task, or Workflow
® Automatically Incrementing a Variable

Overview

User-defined Universal Controller variables are available for use in triggers, tasks, and Workflows.
You can define variables to be either:

® Auvailable to a single trigger, task, or workflow; that is, Local.
® Available to all triggers, tasks, and workflows; that is, Global.

You define Local variables (variables specific to a single trigger, task, or workflow) on the Variables tab in the Details of that trigger, task, or workflow. These variables are stored in the
ops_local_variable table.

You define Global variables either by:

® Selecting Other > Variables from the Automation Center navigation pane.
® Using the Set Variable action for a task or workflow.

Global variables are stored in the ops_variable table.

Variable Naming Conventions

® Variable names must begin with a letter.
® Allowable characters are alphanumerics (upper or lower case), and underscore ().
® White spaces are not permitted
® Variable names are not case-sensitive.
Warning
Do not define Controller variables with the prefix ops_. That prefix is reserved for built-in variables.

43 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Triggers
https://www.stonebranch.com/confluence/display/UC64/Creating+Tasks
https://www.stonebranch.com/confluence/display/UC64/Creating+and+Maintaining+Workflows
https://www.stonebranch.com/confluence/display/UC64/Navigator#Navigator-AutomationCenter

Universal Controller 6.4.x Variables and Functions

Resolving User-Defined Variables

When the Controller creates a task instance from a task, it also resolves all variables specified in its free text fields. Because you can define variables at four different levels (trigger, task, workflow,
and global), the Controller follows a prescribed formula to determine which variable takes precedence if duplicate variables have been defined. The general order of precedence, each of which may

or may not exist in any given situation, is as follows:

. Task trigger (highest precedence)
Task

. Workflow trigger

. Workflow

. Global (lowest precedence)

ahwWN R

', Note
You also can use the Set Variable Action of any task or workflow to define a variable. The Set Variable action explicitly states what scope you are setting the variable at, and under

what circumstances.
The following scenarios provide more detailed information about how Controller variables are resolved.

For Tasks Launched by a Trigger

If the trigger defines the variable in the variables tab, that value is used to resolve the variable.

If the trigger does not define the variable, the value from the variable tab in the task Details is used.

If neither the trigger nor the task define the variable, the variable definition in the global variables table is used.
If the global variables table does not define the variable, the variable remains unresolved.

PONPE

1. Task Trigger

2. Task
(Variables tab)

Resolving 3. Global
variables for Variabl
tasks launched aniable

by a trigger

For Tasks Launched by a Workflow

44 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

If the task defines the variable in the variables tab, that value is used to resolve the variable.

If the task does not define the variable, and the workflow was launched by a trigger, the value defined in the trigger is used.

If the workflow's trigger does not define the variable or the workflow was not launched by a trigger, the value defined in the workflow is used.

If the workflow does not define the variable, and there is a parent workflow, the value defined in the parent workflow's trigger is used.

If the parent workflow's trigger does not define the variable or if there is no trigger, the value defined in the parent workflow is used.

If the parent workflow does not define the variable, the Controller checks up a level for the trigger on the next parent workflow.

If that trigger does not define the variable, it checks for variables associated with the workflow. (This continues until the top level workflow is reached.)
If the top-level workflow does not define the variable, the variable definition in the global variables table is used.

If the global variables table does not define the variable, the variable remains unresolved.

©COoONOOAWONE

1. Task 2,
Workflow 3
trigger Workflow 4. Parent
Workflow
a 5. Parent 6. Top-

trigger

workflow level 7 Too-

workflow LOp

trigger e 8. Global
workflow "

Resolving variables for tasks variable

launched by a workflow

For Tasks Launched Manually

1. If the task defines the variable in the variables tab, that value is used to resolve the variable.
2. If the task does not define the variable, the variable definition in the global variables table is used.
3. If the global variables table does not define the variable, the variable remains unresolved.

1. Task
(Variables tab)

2. Global
| Variable

Resolving variahles for
tasks launched manually

45 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Format for Using Variables

When you enter a variable into a text field, precede the variable with the dollar sign ($) and enclose the variable in curly braces ({}). You can enter a series of variables or nested variables.

Examples:

${vari abl e_nane}
${v1}${v2}
${${i nner_vari abl e} }

Creating a Variable

You can create variables that are:

1. Available on a Global level; that is, available for all triggers, tasks, and Workflows.
2. Available only for a specific trigger, task, or Workflow.

Creating a Global Variable

To create a Global variable that is available for all triggers, tasks, and Workflows:

46 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Step 1 From the Automation Center navigation pane, select Other > Variables. The Variables list displays a list of all Global variables. (You also can define a Global variable by using the Set
Variable action for a task or workflow.)

Below the list, Variable Details for a new Global variable displays.

Dashboards [| Variables [J]

V5 Variables Custom Filter v ||S% Filter.. | €] GoTo New | &
Name “ Value Description Updated By Updated -

stonebranch_variable_01
stonebranch_variable_02

1 ops.admin 2016-05-24 14:29:08 -0400
1

stonebranch_variable_03 1 ops.admin 2016-05-24 14:29:09 -0400
1
1

ops.admin 2016-05-24 14:29:09 -0400

stonebranch_variable_04
stonebranch_variable_05

ops.admin 2018-05-24 14:29:09 -0400
ops.admin 2016-05-24 14:29:09 -0400

™ Variable Details [] save [Save &New [T] New

Variable

[

Details

Step 2 Enter / select Details for a new Variable, using the field descriptions below as a guide.

® Required fields display in boldface.
® Default values for fields, if available, display automatically.

To display more of the Details fields on the screen, you can either:
® Use the scroll bar.

® Temporarily hide the list above the Details.
® Click the New button above the list to display a pop-up version of the Details.

Step 3 Click a Save button to save the record in the Controller database.

47 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Navigator#Navigator-AutomationCenter
https://www.stonebranch.com/confluence/display/UC64/Record+Lists#RecordLists-HidingaList%28orDetails%29

Universal Controller 6.4.x Variables and Functions

‘1, Note
To open an existing record on the list, either:

Click a record in the list to display its record Details below the list. (To clear record Details below the list, click the New button that displays above and below the Details.)
[]

Clicking the Details icon next to a record name in the list, or right-click a record in the list and then click Open in the Action menu that displays, to display a pop-up version
of the record Details.

Right-click a record in the a list, or open a record and right-click in the record Details, and then click Open In Tab in the Action menu that displays, to display the record
Details under a new tab on the record list page (see Record Details as Tabs).

Global Variable Details

The following Variable Details is for an existing Global Variable.

See the field descriptions below for a description of all fields that display in the Global Variable Details.

Variable Details: stonebranch_variable_01 - || B[

[F] Update ¢ Delete |5 Refresh 3£ Close
“ariable “ersions

— Details

MName : stonebranch_variable_01 Version : 1

1

Value :

Description :

Member of
Business Senvices :

] Update ¢ Delete #| Refiesh 3 close

For information on how to access additional details - such as Metadata and complete database Details - for Variables (or any type of record), see Records.

Global Variable Details Field Descriptions
The following table describes the fields and buttons in the Variables Details.

Field Name Description

48 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Records#Records-OpeningaRecord
https://www.stonebranch.com/confluence/display/UC64/Action+Menus
https://www.stonebranch.com/confluence/display/UC64/Action+Menus
https://www.stonebranch.com/confluence/display/UC64/User+Interface#UserInterface-RecordDetailsasTabs
https://www.stonebranch.com/confluence/display/UC64/Records#Records-RecordDetailsMetadata
https://www.stonebranch.com/confluence/display/UC64/Records#Records-CompleteDatabaseDetails
https://www.stonebranch.com/confluence/display/UC64/Records

Universal Controller 6.4.x Variables and Functions

Name
Name of the variable. Up to 40 alphanumerics. The name must begin with an alphabetic character and can consist of: alphas (a-z, A-Z), numerics 0-9, _ (underscore).
White spaces are not permitted; names are not case-sensitive.
i Important
Do not define variables with the prefix ops_. The ops__ prefix is reserved for built-in variables.
Version System-supplied. The version number of the current record, which is incremented by the Controller every time a user updates a record. Click the Versions tab to view
previous versions. For details, see Record Versioning.
Value
Value of the variable.
Description

Optional. Description of this variable.

Member of Business

Services User-defined; allows you to select one or more Business Services that this record belongs to.

Metadata This section contains Metadata information about this record.

uuIiD Universally Unique Identifier of this record.

Updated By Name of the user that last updated this record.

Updated Date and time that this record was last updated.

Created By Name of the user that created this record.

Created Date and time that this record was created.

Buttons This section identifies the buttons displayed above and below the Global Variable Details that let you perform various actions.
Save Saves a new variable record in the Controller database.

Save & New Saves a new record in the Controller database and redisplays empty Details so that you can create another new record.
Save & View Saves a new record in the Controller database and continues to display that record.

New Displays empty (except for default values) Details for creating a new record.

Update button
Saves updates to the record.

Delete button
Deletes the current record.

49 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Records#Records-RecordVersioning
https://www.stonebranch.com/confluence/display/UC64/Business+Services
https://www.stonebranch.com/confluence/display/UC64/Records#Records-RecordDetailsMetadata

Universal Controller 6.4.x Variables and Functions

Refresh Refreshes any dynamic data displayed in the Details.

Close For pop-up view only; closes the pop-up view of this task.

Creating a Variable Specific to a Trigger, Task, or Workflow
To create a variable that is specific to a single trigger, task, or Workflow:

Step 1 From the Automation Center navigation pane, select Trigger > <trigger type> or Tasks > <task type>. The records list for that trigger or task type displays. For example:

Linux/Unix Tasks
V5 Linwe/Unix Tasks Custom Filter|—Mone — v | 5 Fiter.. [T GoTo.. £, Mew &
Task Name * Task Description Command or Script Updated By Updated -
EI stonebranch-linuxunixtask-01 Command ops.admin 2014-08-13 13:55:34 -0400
EI stonebranch-linuxunixtask-02 Command ops.admin 2014-08-13 13:55:52 -0400
EI stonebranch-linuxunixtask-03 Command ops.admin 2014-08-13 13:58:11 -0400
EI stonebranch-linuxunixtask-04 Command ops.admin 2014-08-13 13:56:21 -0400
D stonebranch-linuxunixtask-05 Command ops.admin 2014-08-13 13:56:36 -0400
V' Linux/Unix Task Details [E] save [T] New
Linux/Unix Task
-
— General
Task Name : Wersion : 1 L
Task Description :
Member of
Business v
Senices :
Hold on Start: [[]
Virtual Resou!'ce - Hold Reso_urces |:|
Priarity - on Failure
Linux/Unix Details
’7 Agent: v D Agent Cluster - v D ‘

50 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Navigator#Navigator-AutomationCenter

Universal Controller 6.4.x Variables and Functions

Step 2 Open a task on the list and click the Variables tab to display a list of any currently defined variables specific to that record.

Linux/Unix Task Details: stonebranch-linuxunixtask-01 SlllL=1{29
Linux/Unix Task ‘Variables Actions Virtual Resources Mutually Exclusive Instances Triggers Notes Versions
2 Variables New &
Name Value Description Updated By Updated
wariable_1 1 the first variable. ops.admin 2014-07-08 15:43:47 -0400
wvariable_2 2 The second variable ops.admin 2014-07-08 15:44:12 -0400

Step 3 Click the New button to display Variables Details for a new variable.

Variable Details =/ |B)[x
H Save % Save & New Save & View % Close

Variable
— Details
Name -
Value -
Description :

H Save 'J.Eg Save & Mew E;g Save & View 3 Close

Step 4 Using the field descriptions provided for Global Variable Details as a guide, complete the fields as needed.
Step 5 Click the Save button, or right-click in the Details and click Save, to save the record.

Step 6 If appropriate, repeat these steps for any additional variables you want to add.

Automatically Incrementing a Variable

For example: To increment ${ count er }, use a Set Variable action to set ${ count er } with a value of ${ _tri m{(${__add(" ${counter}", "1")})}

51 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Records#Records-OpeningaRecord

Universal Controller 6.4.x Variables and Functions

Functions

52 | uc-64x-v&f

Overview

Formatting Rules
Function Categories
Conditional Functions
Return Conditional Value Depending on Equality of String Parameters
Return Conditional Value Depending on Value of Boolean Parameter
® Credential Functions

Return User Name of a Credential
Return User Password of a Credential

® Date Functions

Checks if Date Argument Equals Today's Date
Resolve to Current Date and Time

Resolve to Current Date and Time (Advanced)
Resolve to Current Unix Epoch Time

Return Date with Offsets

Return Date with Offsets (Advanced)

Return Date with Time Zone

Return Day of Week

Return Days between Dates

Return Non-Business Day of Month

Return Nth Business Day of Month

Return Nth Day of Month

Return Number of Business Days between Dates

® Mathematical Functions

Add

Divide

Multiply

Return Absolute Value
Return Modulo
Subtract

® Script Functions

Returns Path to Data Script

® SQL/Stored Procedure Functions

Return Column Names for SQL Results from Current Task
Return Column Names for SQL Results from Sibling Task
Return SQL Results from Current Task

Return SQL Results from Sibling Task

Return SQL Warnings from Current Task

Return SQL Warnings from Sibling Task

Return String Value of Row/Column by Column Name
Return String Value of Row/Column by Column Number
Return String Values of Columns

® String Functions

Universal Controller 6.4.x Variables and Functions

Convert Characters in Value to Lower Case
Convert Characters in Variable to Lower Case
Convert Characters in Value to Upper Case
Convert Characters in Variable to Upper Case
Escape Characters in Variable Using XML Entities
Escape Characters in Variable Using JSON String Rules
Escape Characters in Variable Using JavaScript String Rules
Escape Characters in Variable Using HTML Entities
Escape Characters in Variable as a Literal Pattern
Randomly Generate a String
Replace Substring of Value with Regular Expression
Replace Substring of Variable with Regular Expression
Return Copy of Value with Whitespace Omitted
Return Copy of Variable with Whitespace Omitted
Return Index of Substring in String Value
Return Index of Substring in String Variable
Return Index of Substring Plus Offset in String Value
Return Index of Substring Plus Offset in String Variable
Return Index of Rightmost Occurrence of Substring in String Value
Return Index of Rightmost Occurrence of Substring in String Variable
Return Index of Rightmost Occurrence of Substring Plus Offset in String Value
Return Index of Rightmost Occurrence of Substring Plus Offset in String Variable
Return Length of Value
Return Length of Variable
Return New String that is Substring of Value
Return New String that is Substring of Variable
Functions
Display Variables
Generate Random Number
Resolve to GUID (Globally Unique ID)
Resolve to Host Name
Resolve to IP Address
Resolve to SYS_ID
Resolve to Variable Value
Resolve Variable
® Resolve Variable (Advanced)
® Web Service Functions
® Raw Output from Task
® Raw Output from Sibling Task
® XML Output Data from Task
® XML Output Data From Sibling Task
® JSON Output Data From Task
[]
[]
[]

® Syste

.'......3........'...............'.

JSON Output Data From Sibling Task
JSON Output Data As Array From Task
JSON Output Data As Array From Sibling Task

Overview

Variables and functions can be used in free-text fields within tasks and workflows. When a variable or function is specified in a free-text field, the Controller inserts its value into the field when the
task or workflow is run.

53 /| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Also, triggers can pass variables and functions into the tasks and workflows they launch.

Universal Controller supports a number of functions that can be specified in free-text fields. They are resolved when a task instance runs or when a Set Variable action containing a function is
executed.

Functions are entered using the following formats:

${_function}
${_function(argl, ..., argN}

Formatting Rules

® Functions must be written either:
® In all lower-case characters.
® Exactly as shown in the tables on this page.
® Functions have zero, one, or multiple parameters.
® Each Function parameter is one of three specific types:
® String
® Integer
® Boolean
® String parameters must be enclosed in single or double quotation marks.
® Integer and Boolean parameters can be enclosed in single or double quotation marks.
¢ All functions allow nesting to two levels. That is, a function can be an argument to another function, which itself can be an argument to another function.
® You must use a double underscore preceding the name of a first-level nested function.
® You must use a triple underscore preceding the name of a second-level nested function.

For example, for 2nd day of next month less one Business Day:

${_formatDate(' ${__dayOf Month(2,' ${___ dateadv('yyyy-mvtdd',0,1)}"')}',"'",-1,true)}

Function Categories

Functions are listed alphabetically within the following categories on this page:

Conditional functions

Credential functions

Date functions

Mathematical functions

Script functions

SQL/Stored Procedure functions
String functions

System functions

Web Service Functions

Conditional Functions

54 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Return Conditional Value Depending on Equality of String Parameters

Description | Returns a conditional value depending on the equality of two string parameters.

(Returns i f _val ue if string val uel is equal to string val ue2; otherwise, el se_val ue is returned.)

Syntax ${_i fEqual (' valuel', 'value2', '"if_value', 'else_value'[, ignore_case])}
Parameters
® val uel
Required; First string.
® val ue2

Required; Second string.
* if_value
Required; Return value if val uel equals val ue2.
® el se_val ue
Required; Return value if val uel does not equal val ue2.
® ignore_case
Optional; Specification (true or false) whether or not to ignore case when comparing val uel and val ue2. Default is false.

Examples

${_ifEqual (' abc', ' def',' YES' ,'NO)}
${_i fEqual (' abc',' ABC ,' YES','NO ,true)}
${_i f Equal (' 2015-08-15'," ${__date()}',’' 17:00',' 18:00")}

Return Conditional Value Depending on Value of Boolean Parameter

Description | Returns a conditional value depending on the value of a boolean parameter.
Returns i f _val ue if val ue is true; otherwise, el se_val ue is returned.
Syntax ${ _ ifTrue(value, "if_value', 'else_value')}

Parameters
® val ue
Required; Boolean value (true or false).
® if_val ue
Required; Return value if val ue is true.
® el se_val ue
Required; Return value if val ue is false.

Example

${_i f True(${__i sToday(' Non', 'E)}, 20:00'," 22:00')}

55 [/ uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Credential Functions

Return User Name of a Credential

Description | Returns a token representing the Resolvable Credential from which you want to embed the corresponding Runtime User.

Syntax ${_credential User (' <credential _name>')}

Parameters
® credential _nane

Required; Name of the Credential.

Return User Password of a Credential

Description | Returns a token representing the Resolvable Credential from which you want to embed the corresponding Runtime Password.
Syntax ${_credential Pnd(' <credenti al _name>')}

Parameters
® credential _nane

Required; Name of the Credential.

Date Functions

Checks if Date Argument Equals Today's Date

Description | Checks if a date argument is equal to today's date in the specified format.

Returns true if dat e is equal to today's date in the specified format; otherwise, false is returned.

Syntax ${_isToday('date'[, 'format', is_relative])}
Parameters
® date
Required; Date to compare to today's date.
® format

Optional; Format of today's date. Default is yyyy-MM-dd.
® is_relative
Optional; Specification (true or false) for whether today's date is relative to the trigger/launch time of the task instance. Default is false.

56 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Credentials#Credentials-ResolvableCredentials
https://www.stonebranch.com/confluence/display/UC64/Credentials#Credentials-ResolvableCredentials

Universal Controller 6.4.x Variables and Functions

Examples

${_isToday(' Ved', 'E)}
${ _i sToday(' ${__dayOMonth(1,'"'," "', true)}')}

Resolve to Current Date and Time

Description | Resolves to the current date and time.
Syntax ${ date(['format', day_offset, hour_offset, mnute offset])}

Parameters

* format
Optional; Date format. The default format is yyyy-MM-dd HH:mm:ss Z. For details on the f or mat parameter, see
https://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

® day_of fset
Optional; +/- number of days to offset.

® hour _of f set
Optional; +/- number of hours to offset.

® minute_of fset
Optional; +/- number of minutes to offset.

Examples

${_date} --> 2012-07-14 12:43:06 - 0400

${ date()} --> 2012-07-14 12:43:06 - 0400

${ _ date('yyyy-Midd', 5)} --> 2012-07-19

${_date('yyyy-Mtdd HH: nmss', -2, -1)} --> 2012-07-12 11:43: 06
${ date('', 0, 0, 10)} --> 2012-07-14 12:53:06 - 0400

Resolve to Current Date and Time (Advanced)

Description | Resolves to the current date and time.

Syntax ${_dateadv([' format', year_offset, nonth_offset, day_offset, hour_offset, mnute_offset])}

57 | uc-64x-v&f

https://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Universal Controller 6.4.x Variables and Functions

Parameters
® format
Date format. The default format is yyyy-MM-dd HH:mm:ss Z. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® year_offset
Optional; +/- number of years to offset.
® nont h_of f set
Optional; +/- number of months to offset.
® day_of f set
Optional; +/- number of days to offset.
® hour_of f set
Optional; +/- number of hours to offset.
® minute_of fset
Optional; +/- number of minutes to offset.

Examples

${_dat eadv} --> 2012-07-29 09: 31:42 -0700
${_dateadv(' yyyy-MwW , -1)} --> 2011-Jul
${_dateadv(' yyyy-MW , 0, -1)} --> 2012-Jun

Resolve to Current Unix Epoch Time

Description | Resolves to the current time in milliseconds since Wed Dec 31 1969 19:00:00 GMT-0500 (EST) — the start of Unix epoch time.
Syntax ${_currentTineM I |is}

Parameters | n/a

Return Date with Offsets

Description | Returns the date after applying offsets. Optionally, can specify the output format.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for Business Days Universal Controller system
property.

Syntax ${_formatDate(['date', 'format', day_offset, use_business_days, hour_offset, mnute_offset, tinezone])}

58 / uc-64x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://en.wikipedia.org/wiki/Unix_time
https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-ExcludeHolidaysforBusinessDays

Universal Controller 6.4.x Variables and Functions

Parameters
® date
Date in format yyyy-MM-dd HH:mm or yyyy-MM-dd. Time (HH:mm) is optional. Default is the current date and time.
® format
Format of returned date. Default is the format used when specifying the date parameter: yyyy-MM-dd HH:mm or yyyy-MM-dd. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® day_offset
+/- number of days to offset.
® use_busi ness_days
Specification (t r ue or f al se) for whether day_of f set is for business days. Default is f al se.
® hour _of fset
+/- number of hours to offset.
® nminute_of fset
+/- number of minutes to offset.
® tinmezone
Time Zone that the date is formatted in.

Example

${ _format Date} --> 2018-08-24 15:37
${ formatDate()} --> 2018-08-24 15:37
${_formatDate('"',' Mddyyyy',5)} --> 08292018

${ f or mat Dat e(' 2018-09-01","',5)} --> 2018- 09- 06
${ format Date(' 2018-09-01',""',-5)} --> 2018-08- 27
${ format Date(' ' 2018-10- 13 12:13: 14 -0400','',5,true, 0,0," Audtralia/Sydney')} --> 2018-10-14 03: 13: 14 +1100

Return Date with Offsets (Advanced)

Description | Returns the date after applying offsets. Optionally, can specify the output format.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for Business Days Universal Controller system
property.

Syntax ${_format DateAdv([' date', 'format', year_offset, nonth_offset, day_offset, use_business_days, hour_offset, minute_offset, tinmezone])}

59 / uc-64x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-ExcludeHolidaysforBusinessDays

Universal Controller 6.4.x Variables and Functions

Parameters
® date
Optional; Date in format yyyy-MM-dd HH:mm or yyyy-MM-dd. Time (HH:mm) is optional. Default is the current date and time.
® format
Optional; Format of returned date. Default is the format used when specifying the date parameter: yyyy-MM-dd HH:mm or yyyy-MM-dd. For details on the f or mat
parameter, see http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® year_offset
Optional; +/- number of years to offset.
®* nont h_of f set
Optional; +/- number of months to offset.
® day_offset
Optional; +/- number of days to offset.
® use_busi ness_days
Optional; Specification (true or false) for whether day_of f set is for business days. Default is false.
® hour _of fset
+/- number of hours to offset.
® nminute_of fset
+/- number of minutes to offset.
® tinmezone
Time Zone that the date is formatted in.

Examples

${ _f or mat Dat eAdv} --> 2012-08-24 15:55
${_format Dat eAdv()} --> 2012-08-24 15:55
${_format Dat eAdv("' "', "' MMddyyyy', 1)} --> 08242013

${ _f or mat Dat eAdv(' 2012-09-01','',0,1)} --> 2012-10-01
${ _f or mat Dat eAdv(' 2012-09-01','',0,-1)} --> 2012-08-01
${ _f or mat Dat eAdv(’ 2012-09-01',"' ", 0,0, 5, fal se)} --> 2012-09- 06

Return Date with Time Zone

Description | Returns the Date and Time in another time zone.

Syntax ${_formatDateTz(\'date-tine', 'target-time-zone'[, 'output-format'])}

60 / uc-64x-v&f

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Universal Controller 6.4.x Variables and Functions

Parameters
® date-tine
Date and time in any of the following formats:
® yyyy-MM-DD HH:mm

yyyy-MM-DD HH:mm:ss
yyyy-MM-DD HH:mm Z
yyyy-MM-DD HH:mm:ss Z.
yyyy-MM-DD HH:mm:ss.SSS
yyyy-MM-DD HH:mm:ss.SSS Z.
® target-time-zone

Time zone in which to format the date and time.
® out put - f or mat

Optional; Format of the date and time in the other time zone.

Examples

${_format Dat eTz(' 2018- 10- 13 01: 02: 03 -0400', 'Australia/Sydney')} --> 2018-10-13 16: 02: 03 +1100

${_f ormat Dat eTz(' 2018-10- 13 01: 02: 03 -0400', 'Australia/Sydney','yyyy-Midd HH: nm Z)} --> 2018-10-13 16: 02 +1100

${ _format Dat eTz(' ${ops_l aunch_time}', '${ops_time_zone}')} = ${_formatDateTz(' 2018-06-13 15: 35: 00 -0400', 'Europe/Berlin')} =
2018-06-13 21:35: 00 +0200

Return Day of Week

Description | Returns the day of week for the specified date as a number.
Syntax ${_dayOf Week(['date', 'first_dow , first_dow value])}

Parameters
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
® first_dow
Optional; Specification for whether the week starts on Sunday or Monday. Values are sun and mon (not case-sensitive). Default is sun.
® fjirst_dow val ue
Optional; Starting value for the first day of week. Value must be a non-negative number. Default is 1.

Example

${_dayOf Week} --> 6

${_dayOf Week()} --> 6

${ _dayOf Week(' 2012-07-04')} --> 4

${ _dayOf Week(' 2012-07-04', 'nmon')} --> 3

Return Days between Dates

61 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description | Returns the number of days between datel and date2.
® |f return value is > 0, date2 is after datel.
® |f return value is < O, date?2 is before datel.
® |f return value is 0, datel is equal to date2.

The start date is inclusive, but the end date is not.

Syntax ${_daysBetween(' datel', 'date2')}
Parameters
® datel
Required; First date in format yyyy-MM-dd.
® date2

Required; Second date in format yyyy-MM-dd.

Example

${_daysBet ween(' 2012-08-01',"'2012-09-01')} --> 31

Return Non-Business Day of Month

Description = Returns the Nth non-business day of month for the month of the date specified. Optionally, can start from the end of the month.

1, Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for Business Days Universal Controller system

property.
Syntax ${_nonBusi nessDayCf Mont h(i ndex, ['date', 'format', reverse])}
Parameters
® index
Required; Nth non-business day of month.
® date
Optional; Date in format yyyy-MM-dd. If blank, defaults to the current date.
* format

Optional; Format of returned date. Default is yyyy-MM-dd. For details on the f or mat parameter, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

® reverse
Optional; Specification (true or false) for starting from the end of the month. Default is false.

62 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-ExcludeHolidaysforBusinessDays
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Universal Controller 6.4.x Variables and Functions

Examples

${_nonBusi nessDayCf Mont h(1)} --> 2012-08- 04
${_nonBusi nessDayXf Mont h(1, ' 2012-09-01')} --> 2012-09-01
${_nonBusi nessDayOf Mont h(1, ' 2012-09-01"',"'"',true)} --> 2012-09-30

Return Nth Business Day of Month

Description | Returns the Nth business day of month for the month of the date specified. Optionally, can start from the end of the month.

. Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for Business Days Universal Controller system

property.
Syntax ${_busi nessDayXf Mont h(i ndex, ['date', 'format', reverse])}
Parameters
® index
Required; Nth business day of month.
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
® format
Optional; Format of returned date. Default is yyyy-MM-dd. (For details on the f or mat par anet er, see
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
® reverse
Optional; Specification (t r ue or f al se) for starting from the end of the month. Default is f al se.
Examples

${ _busi nessDayCf Mont h(1)} --> 2012-08-01
${_busi nessDayCf Mont h(1, ' 2012-09-01')} --> 2012-09-04
${ _busi nessDayCf Mont h(1,'2012-09-01',"',true)} --> 2012-09-28

Return Nth Day of Month

Description | Returns the Nth day of month for the month of the date specified. Optionally, can start from the end of the month.

Syntax ${_dayOf Mont h(index, ['date', 'format', reverse])}

63 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-ExcludeHolidaysforBusinessDays
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Universal Controller 6.4.x Variables and Functions

Parameters
® index
Required; Nth day of month.
® date
Optional; Date in format yyyy-MM-dd. Default is the current date.
* format
Optional; Format of returned date. Default is yyyy-MM-dd.
® reverse
Optional; Specification (t r ue or f al se) for starting from the end of the month. Default is f al se.
Examples

${_dayOf Month(5)} --> 2012- 08- 05
${ _dayOf Mont h(15, ' 2012- 09-01' , ' MM dd/ yyyy')} --> 09/ 15/ 2012
${ dayCf Month(1,' 2012-09-01',' ', true)} --> 2012-09- 30

Return Number of Business Days between Dates

Description | Returns the number of business days between datel and date2.
® |f return value is > 0, dat e2 is after dat el.
® |f return value is < 0, dat e2 is before dat el.
® |f return value is O, dat el is equal to dat e2.

The start date is inclusive, but the end date is not.

1 Whether a holiday is treated as a business day or a non-business day is specified by the Exclude Holidays for Business Days Universal Controller system

property.
Syntax ${_busi nessDaysBet ween(' datel', 'date2')}
Parameters | Parameters:
® datel
Required; First date in format yyyy-MM-dd.
® date2

Required; Second date in format yyyy-MM-dd.

Example

${_busi nessDaysBet ween(' 2012- 08-01',"' 2012-09-01')} --> 23

64 |/ uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Universal+Controller+Properties#UniversalControllerProperties-ExcludeHolidaysforBusinessDays

Universal Controller 6.4.x Variables and Functions

Mathematical Functions

Add
Description | Return the sum of the augend added with the addend.
Syntax ${_add(augend, addend)}
Parameters
® augend
Integer to which the addend is being added.
® addend

Integer being added to the augend.

Example
${_add(' 77*, '33")} --> 110
Using Variables for augend and addend (${augend} = 17, ${addend} = 5):
${_add(' ${augend}', ' ${addend}')} --> 22
Divide

Description | Return the quotient of the dividend divided by divisor.

Syntax ${ _divide(dividend, divisor)}
Parameters
® dividend
Integer being divided by the di vi sor .
® divisor

Integer being used to divide the di vi dend.

65 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Example
${ _ divide('7','20')} -->0
${ divide('20",'7")} -->2
${_divide('20','5')} --> 4
Using Variables for dividend and divisor (${dividend} = 100, ${\divisor} = 5)
${ _divide(' ${dividend}',"' ${divisor}')} --> 20
Multiply
Description | Return the product of the multiplicand multiplied with the multiplier.
Syntax ${ _multiply(multiplicand, multiplier)}
Parameters
® nultiplicand
Integer being multiplied by the mul ti pli er.
®* nultiplier
Integer being used to multiply the mul ti pl i cand.
Example

${_multiply('7',"20')} --> 140

Using Variables for multiplicand and multiplier (${multiplicand} = 100, ${multiplier} = 5):

${_multiply('${mul tiplicand}',' ${multiplier}')} --> 500

Return Absolute Value

Description | Return the absolute value of the parameter.

Syntax {_abs(paraneter)}

66 / uc-64x-v&f

http://en.wikipedia.org/wiki/Absolute_value

Universal Controller 6.4.x Variables and Functions

Parameters
® paraneter
Integer (positive or negative value).

Example

${_abs('-1200')} --> 1200
${ _abs(* 1200')} --> 1200

Using Variables for parameter (${parameter} = -100):

${_abs(' ${paraneter}')} --> 100

Return Modulo

Description | Return the modulo (remainder) of the dividend divided by divisor.
Syntax ${_nod(di vi dend, divisor)}
Parameters
® dividend
Integer being divided by the di vi sor.
® divisor
Integer being used to divide the di vi dend.
Example

${_nmod(' 10', '2')} --> 0
${ _nod(' 10", '3')} --> 1
${_nod(' 70', '65')} --> 5

Using Variables for dividend and divisor (${dividend} = 23, ${divisor} = 5):

${_nmod(" ${di vi dend}',' ${divisor}')} --> 3

Subtract

67 |/ uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description = Return the difference of the subtrahend subtracted from the minuend.
Syntax ${_subtract (m nuend, subtrahend)}

Parameters
® mi nuend

Integer from which the subt r ahend is being subtracted.
® subtrahend

Integer being subtracted from the m nuend.

Example

${_subtract(' 77','33")}
${_subtract('33",'77')} --> -44

Using Variables for minuend and subtrahend (${minuend} = 100, ${subtrahend} = 5):

${_subtract (' ${mi nuend}',' ${ subtrahend }')} --> 95

Script Functions

Returns Path to Data Script

Description = Returns a token representing the path to a Data Script that you want to embed.
Syntax ${_scriptPath('script_nane')}

Parameters
® script_nanme
Required; Name of the Data Script.

Example

${_scriptPath(' nyscriptdata')}

. Note
_scri pt Pat h requires Agent 6.4.0.0 or later.

68 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Scripts#Scripts-DataScripts
https://www.stonebranch.com/confluence/display/UC64/Scripts#Scripts-EmbeddingaDataScript

Universal Controller 6.4.x Variables and Functions

SQL/Stored Procedure Functions

Return Column Names for SQL Results from Current Task

Description = Returns the column names for the SQL results from the current SQL or Stored Procedure task. Column names are separated by the specified separ at or .

Syntax ${_resul t sCol umNanes([' separator'])}

Parameters
® separator
Optional; Column name separator (default = comma).

Return Column Names for SQL Results from Sibling Task

Description = Returns the column names for the SQL results from a sibling SQL or Stored Procedure task, within the same workflow. Column names are separated by the specified separ at or .

Syntax ${_resul t sCol umNanesFroniTask(' name' [, 'separator'])}

Parameters
® nane
Required; Name of the sibling task that the results should come from. The task must be within the same workflow.

® separator
Optional; Column name separator (default = comma).

Return SQL Results from Current Task

Description = Returns all SQL results from the current SQL or Stored Procedure task. Columns are separated by the specified separ at or and rows are separated by a new line.
Syntax ${_resultsAl | (['separator', 'rowSeparator'])}

Parameters
® separator
Optional; Column separator (default = comma).
® rowSepar at or
Optional; Overrides default New Line character.

Return SQL Results from Sibling Task

Returns all SQL results from a sibling SQL or Stored Procedure task, within the same workflow. Columns are separated by the specified separ at or and rows are separated by a
new line.

Description

Syntax ${_resul t sAl | FromTask(' name' [, 'separator', 'rowSeparator'])}

69 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® nane
Required; Name of the task that the results should come from. The task must be within the same workflow.

® separator

Optional; Column separator (default = comma).
® rowSepar at or

Optional; Overrides default New Line character.

Return SQL Warnings from Current Task
Description | Returns all SQL warnings from the current SQL or Stored Procedure task. Columns are separated by the specified separ at or and rows are separated by a new line.

Syntax ${_SQ.Warni ngs(['separator'])}

Parameters
® separator
Optional; Column separator (default = comma).

Return SQL Warnings from Sibling Task

Returns all SQL warnings from a sibling SQL or Stored Procedure task, within the same workflow. Columns are separated by the specified separ at or and rows are separated by

Description
a new line.
Syntax ${_SQLWar ni ngsFronTask(' name' [, 'separator'])}
Parameters
® nane

Required; Name of the sibling task that the warnings should come from. The task must be within the same workflow.

® separator
Optional; Column separator (default = comma).

Return String Value of Row/Column by Column Name

Description = Returns the string value of a row/column from a previously executed SQL task within the same workflow, or from the current SQL task.

Syntax ${_resul tsCol um(' name', 'colnane'[, rownum 'default_value'])}

70 /| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

71

Parameters

® nane

Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you want to execute the function against the current
task, use an empty string for the name parameter.

® col nane

Required; Name of column to retrieve.

® rownum

Optional; Numeric row number in result set to retrieve (default = 1).

® default_val ue

Optional; Default value to return if result not found.

Return String Value of Row/Column by Column Number

Description

Syntax

Parameters

Returns the string value of a row/column from a previously executed SQL task within the same workflow, or from the current SQL task.

${_resul t sCol umByNo(' nane', col nun{, rownum °'default_value'])}

® nane
Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you want to execute the function against the current
task, use an empty string for the name parameter.
® col num
Required; Number of column to retrieve. First column in result is 1, second is 2, and so on.
® rownum
Optional; Numeric row number in result set to retrieve (default = 1).
® defaul t _val ue
Optional; Default value to return if result not found.

Return String Values of Columns

Description

Syntax

Parameters

Returns the string values of columns in a specific row in CSV (comma-separated values) format, from a previously executed SQL task within the same workflow, or from the current
SQL task.

${_resul t sCol umsCSV(' nane' [, rownuni)}

® name
Required; Name of a sibling SQL task within the same workflow from which you want the function to fetch results. If you want to execute the function against the current

task, use an empty string for the name parameter.
® rownum
Optional; Numeric row number in result set to retrieve (default = 1).

String Functions

String Functions can accept:

/

uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

® String content in a String parameter.
® Variable name in a String parameter (prefixed with _var) from which string content can be obtained.
® Integer and Boolean parameters.

For String functions that accept a String value parameter directly, the value parameter can be specified using hard-coded text, variables, functions, or any combination of the three.

1. Note
When using String functions that accept a String value parameter directly, you should be aware of expectations with respect to escape characters and escape sequences (see

Escape Sequences, below).

For String functions that accept a variable name parameter, the fully resolved value of the variable by the specified name will be used as the String value argument. The variable must be fully
resolvable and must not contain an unresolved function.

1. Note
Indexing functions use zero-based numbering; that is, the initial element is assigned the index 0.

Escape Sequences

An escape character preceded by a backslash (\) is an escape sequence (see the following table for a list of escape sequences).

If you are using a String function to manipulate a String value that potentially may contain an escape sequence, you should use the String function that accepts a variable name parameter to allow
for passing the value to the function without the escape sequence being interpreted.

Escape Sequences Escape Sequence Description

\t Insert a tab in the text at this point.

\b Insert a backspace in the text at this point.

\n Insert a newline in the text at this point.

\r Insert a carriage return in the text at this point.

\f Insert a formfeed in the text at this point.

\ Insert a single quote character in the text at this point.
\ Insert a double quote character in the text at this point.
\\ Insert a backslash character in the text at this point.

Convert Characters in Value to Lower Case

72 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description | Converts all of the characters in the val ue to lower case using the rules of the default locale.
Syntax ${_toLower Case(' val ue')}
Parameters

® val ue
Required; String to convert to lower case.

Convert Characters in Variable to Lower Case

Description | Converts all of the characters in the variable to lower case using the rules of the default locale.
Syntax ${_var ToLower Case(' vari abl eNange') }

Parameters
® vari abl eNanme
Required; Name of the variable being passed into the function.

Convert Characters in Value to Upper Case

Description | Converts all of the characters in the val ue to upper case using the rules of the default locale.
Syntax ${_t oUpper Case(' value')}

Parameters
® val ue
Required; String to convert to upper case.

Convert Characters in Variable to Upper Case

Description | Converts all of the characters in the variable to upper case using the rules of the default locale.
Syntax ${ _var ToUpper Case(' vari abl eNane')}

Parameters
® vari abl eNanme
Required; Name of the variable being passed into the function.

Escape Characters in Variable Using XML Entities

Description = Escapes the characters in a variable value using XML entities.

Syntax ${_var EscapeXm (' vari abl eNane')}

73 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® vari abl eNanme
Required; Name of the variable being passed into the function. The variable value will be escaped for insertion into XML.
Example Variable Name:
escape_me

Variable Value:
'1234567890\E-=[]\;",./ ~'@#$% &*()_+{}|:"<>?

${_var EscapeXm (' escape_ne')} --> "1234567890\E-=[]\; ',./ ~! @$% &anp; *()_+{}]|: " &l t; > ; ?

Escape Characters in Variable Using JSON String Rules

Description | Escapes the characters in a variable value using JSON string values.
Syntax ${_var EscapeJson(' vari abl eNane') }
Parameters
® vari abl eNane
Required; Name of the variable being passed into the function. The variable value will be escaped for insertion into JSON.
Example Variable Name:

escape_me

Variable Value:
"1234567890\E-=[]\;',./ ~l@#$%"&*()_+{}|:"<>?

${ _varEscapeJson(' escape_ne')} --> "1234567890\\E-=[]\\;"',.\/ ~! @$W& ()_+{}]|:\"<>?

Escape Characters in Variable Using JavaScript String Rules

Description | Escapes the characters in a variable value using JavaScript String rules.
Syntax ${_var EscapeJavaScri pt (' vari abl eNane') }
Parameters

® vari abl eNanme

Required; Name of the variable being passed into the function. The variable value will be escaped for insertion into JavaScript.

74 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Example Variable Name:
escape_me

Variable Value:
1234567890\E-=[]\;",./ ~|@#$%"&()_+{}|:"<>?

${ _var EscapeJavaScri pt (' escape_me')} --> ~1234567890\\E-=[]\\;\"', . \/ ~I @$9%& ()_+{}|:\"<>?

Escape Characters in Variable Using HTML Entities

Description | Escapes the characters in a variable value using HTML entities. (Supports all known HTML 4.0 entities.)
Syntax ${_varEscapeHt nl (' vari abl eNane')}
Parameters
® vari abl eName
Required; Name of the variable being passed into the function. The variable value will be escaped for insertion into HTML.
Example Variable Name:

escape_me

Variable Value:
1234567890\E-=[]\;',./ ~|@#$%"&()_+{}|:"<>?

${_var EscapeHt m (' escape_ne')} --> "1234567890\E-=[]\;"',./

~! @$% &anp; *() _+{}|: " ; & t; > ; ?

Escape Characters in Variable as a Literal Pattern

Description | Returns a literal regular expression pattern String for the value of the specified variable.

This method produces a String that can be used to create a Pattern that would match the String as if it were a literal pattern.
Syntax ${_varLiteral Pattern(' vari abl eNare')}
Parameters

® vari abl eNanme

Required; Name of the variable being passed into the function. The variable value will be escaped for insertion into a regular expression as a literal pattern.

75 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Example Variable Name:
escape_me

Variable Value:
1234567890\E-=[]\;",./ ~|@#$%"&()_+{}|:"<>?

${_varLiteral Pattern(' escape_ne')} --> \Q 1234567890\BE\\B\ Q- =[]\;"',./ ~1 @$% & ()_+{}|:"<>?\E

Randomly Generate a String

Description | Randomly generates a String with a specified length.

Syntax ${_randonttring(l ength[, 'excludeCharacters', 'defaultCharacters'])}

Parameters
® |ength
Required; String length.
® excl udeCharact er
Optional; String containing characters to exclude from the default character set.
® defaul t Character
Optional; String for overriding default character set.

r. Note
The following characters are included in the default character set, in addition to the space character.

ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz1234567890 -=~1@#3$%"&*()_+[\{}|;":",.I<>?

Example

${_randonBtring(24, '', ' ABCDEFGHI JKLMNOPQRSTUWKYZ1234567890@#$% ')} --> 5* L8T1RNESAQNEKPA@EQLIJID

Replace Substring of Value with Regular Expression

Description | Replaces each substring of value that matches the specified regular expression, regex, with the specified replacement.

Syntax ${ _replaceAll ('value', 'regex', 'replacenment')}

76 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Wildcards+and+Regular+Expressions
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Universal Controller 6.4.x Variables and Functions

Parameters
® val ue
Required; Input string.
® regex
Required; Regular expression.
® repl acenent
Required; Replacement string.

Replace Substring of Variable with Regular Expression

Description | Replaces each substring of var i abl eName that matches the specified regular expression, regex, with the specified replacement.
Syntax ${ _varRepl aceAl | (' vari abl eNane', 'regex', 'replacenent')}
Parameters

® vari abl eNane

Required; Name of the variable being passed into the function.
® regex

Required; Regular expression.
® repl acenent

Required; Replacement string.

Return Copy of Value with Whitespace Omitted

Description = Returns a copy of val ue, with leading and trailing whitespace omitted.
Syntax ${_trim' value')}
Parameters

® val ue
Required; String to trim.

Return Copy of Variable with Whitespace Omitted

Description = Returns a copy of var i abl eNane, with leading and trailing whitespace omitted.
Syntax ${_varTrin('variabl eNane')}
Parameters

® vari abl eNane
Required; Name of the variable being passed into the function.

Return Index of Substring in String Value

77 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Wildcards+and+Regular+Expressions
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Universal Controller 6.4.x Variables and Functions

Description | Returns the index within the string value of the first occurrence of the specified substring, st r .

Syntax ${_indexOf (' value', 'str')}
Parameters
* val ue
Any string.
® str

Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first character of the first such substring is returned; if it does not
occur as a substring, -1 is returned.

Return Index of Substring in String Variable

Description | Returns the index within the string variable of the first occurrence of the specified substring, st r .
Syntax ${_varl ndexf (' vari abl eNanme', 'str')}

Parameters
® vari abl eNanme

Required; Name of the variable being passed into the function.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the variable, the index of the first character of the first such substring is returned; if it
does not occur as a substring, -1 is returned.

Return Index of Substring Plus Offset in String Value

Description = Returns the index within this string of the first occurrence of the specified substring plus the specified offset. The integer returned is the smallest value.

Syntax ${_indexOWthO fset('value', "str', offset)}
Parameters
® val ue
Required; Any string.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first character of the first such substring is returned; if it
does not occur as a substring, -1 is returned.
* of fset

Required; Number (positive or negative) to offset the found index.

Return Index of Substring Plus Offset in String Variable

Description | Returns the index within this string of the first occurrence of the specified substring plus the specified offset. The integer returned is the smallest variable.

Syntax ${_varl ndexOf Wt hOf f set (' vari abl eNane', 'str', offset)}

78 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® vari abl eNanme
Required; Name of the variable being passed into the function.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the variable, then the index of the first character of the first such substring is returned,; if
it does not occur as a substring, -1 is returned.

® of fset
Required; Number (positive or negative) to offset the found index.

Return Index of Rightmost Occurrence of Substring in String Value

Description | Returns the index within the string value of the rightmost occurrence of the specified substring, str .

Syntax ${_lastlndexO ('value', "str')}
Parameters
* val ue
Required; Any string.
® str

Required; Substring to search for. If the st r argument occurs one or more times as a substring within the value, then the index of the first character of the last such
substring is returned. If it does not occur as a substring, -1 is returned.

Return Index of Rightmost Occurrence of Substring in String Variable

Description | Returns the index within the string variable of the rightmost occurrence of the specified substring, str .
Syntax ${_varLast| ndexOf (' vari abl eNane', 'str')}

Parameters
® vari abl eName

Required; Name of the variable being passed into the function.
® str

Required; Substring to search for. If the st r argument occurs one or more times as a substring within the variable, then the index of the first character of the last such
substring is returned. If it does not occur as a substring, -1 is returned.

Return Index of Rightmost Occurrence of Substring Plus Offset in String Value

Description = Returns the index within this string of the rightmost occurrence of the specified substring, plus the specified offset. The returned index is the largest value.

Syntax ${_lastI ndexOf Wt hOf fset (' value', 'str', offset)}

79 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® val ue
Required; Any string.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the value, then the index of the first character of the first such substring is returned; if it
does not occur as a substring, -1 is returned.
* of fset

Required; Number (positive or negative) to offset the found index.

Return Index of Rightmost Occurrence of Substring Plus Offset in String Variable

Description | Returns the index within this string of the rightmost occurrence of the specified substring, plus the specified offset. The returned index is the largest variable.
Syntax ${_varLast| ndexOF Wt hOf f set (' vari abl eNanme', 'str', offset)}

Parameters
® vari abl eNane

Required; Name of the variable being passed into the function.
® str

Required; Substring to search for. If the st r argument occurs as a substring within the variable, then the index of the first character of the first such substring is returned; if
it does not occur as a substring, -1 is returned.
® of fset

Required; Number (positive or negative) to offset the found index.

Return Length of Value

Description | Returns the length of val ue.
Syntax ${_length('value')}
Parameters

® val ue
Required; Any string.

Return Length of Variable

Description | Returns the length of var i abl eNare.

Syntax ${_varLengt h(' vari abl eNane' [, useEnptyFor Undefined])}

80 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® vari abl eNanme

Required; Name of the variable being passed into the function.
® useEnpt yFor Undefi ned

Optional; Specification (true or false) for the handling of a missing variable name. Default is false.
® |f useEnpt yFor Undef i ned = true, the function will return O.

® |f useEnpt yFor Undef i ned = false, the function will remain unresolved if the variable name does not exist.

Return New String that is Substring of Value

Description | Returns a new string that is a substring of val ue. The substring begins at begi nl ndex and extends to the character at endl ndex -1.
Syntax ${ _substring('value', beginlndex][, endlndex])}
Parameters
® val ue
Required; String to make a substring from.
® begi nl ndex
Required; Beginning index, inclusive.
® endl ndex
Optional; Ending index, exclusive.
Example

${_substring(' hanburger', 4, 8)} --> urge
${_substring('sniles', 1, 5)} -->nile

Return New String that is Substring of Variable

Description | Returns a new string that is a substring of var i abl eNane. The substring begins at begi nl ndex and extends to the character at endl ndex -1.
Syntax ${_var Substring(' vari abl eName', begi nl ndex[, endlndex])}
Parameters

® vari abl eNanme

Required; Name of the variable being passed into the function.
® begi nl ndex

Required; Beginning index, inclusive.
¢ endl ndex

Optional; Ending index, exclusive.

81 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Examples If the value of the f ood variable is hamburger, and the value of the f ace variable is smiles:

${_varSubstring('food', 4, 8)} --> urge
${_varSubstring('face', 1, 5)} -->nile

System Functions

Display Variables

Description | Displays all the defined and built-in variables associated with the task instance.
Syntax ${_scope}
Parameters @ (none)

Example

${_scope} --> {ops_workflow_ id=, ops_task_type=Uni x,
ops_st at us=DEFI NED, ops_retry_interval =60,
ops_exit_code=0, ops_retry_maxi num=0, ops_cnd_parns=,
ops_cmd=ls -la; exit ${_randonm('9')};, ops_retry_count=0,
ops_agent _i d=67e4994143d2617201cdf 4ba9df 9ab0a,

ops_t ask_i d=84880af 243d26172019aa1d25988a8f 9,

ops_t ask_name=Cpswi se - Linux Ls}

Generate Random Number

Description | Generates a random number between nax (inclusive) and mi n (inclusive)

Syntax ${_randonm([max, mn])}
Parameters
® max
Optional; Upper bound (inclusive) on the random number (default = 9).
® nmin

Optional; Lower bound (inclusive) on the random number (default = 0).

Resolve to GUID (Globally Unique ID)

Description | Resolves to a 32-byte GUID (Globally Unique ID).

82 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Syntax ${_qgui d}

Parameters = (none)

Resolve to Host Name

Description | Resolves to the hostname of the machine running the Controller, if available.
Syntax ${_host nane}

Parameters @ (none)

Resolve to IP Address

Description | Resolves to the IP address of the machine running the Controller.
Syntax ${_i paddr ess}

Parameters = (none)

Resolve to SYS_ID

Description | Resolves to the sys_id of the first task instance found within the same workflow specified by the sibling name.
Syntax ${_siblingid('sibling_nane')}
Parameters

® sibling_name
Required; Sibling name.

Example

${ _siblingid(' Tinmer 60')} --> 5dbaaah943d26172015e10ab3e894e10

Resolve to Variable Value

Description = Locates the specified variable in the specified sibling task instance within the same workflow and resolves to the variable value.

Syntax ${_var Lookup(' si bl ing_nane', 'variable_name'[, 'def'])}

83 /| uc-64x-v&f

https://www.stonebranch.com/confluence/display/SMLRI/Glossary#Glossary-sysid

Universal Controller 6.4.x Variables and Functions

Parameters
® sibling_name
Required; Name of the sibling task instance from which the function is collecting the variable value.
® variabl e_nane

Required; Name of the variable being collected by the function.
® def

Optional; default value to return if the variable is not defined in the sibling task instance.

Resolve Variable

Description | Resolves the variable specified by the var i abl e_name parameter and substitutes the def aul t _val ue if the variable cannot be resolved.
Syntax ${ _resolve('variable_nane', 'default_value')}

Parameters
® variabl e_nane
Required; Variable name.
® defaul t _val ue
Required; Default value to use if the variable cannot be resolved.

Resolve Variable (Advanced)

Description | Resolves the variable specified by the var i abl e_name parameter and substitutes the default value if the variable cannot be resolved.
Syntax ${_resol veadv(' variabl e_narme', 'default_value', [use_default_if_blank])}

Parameters
® variabl e_nane
Required; Variable name.
® default_val ue
Required; Default value to use if the variable cannot be resolved.
® use_defaul t_if_blank

Optional; Specification (true or false) for whether or not to use the default value if the variable is empty or blank. (If use_def aul t _i f _bl ank is false, _r esol veadv
behaves like _resolve.)

Web Service Functions

All functions will remain unresolved if no Web Service output record can be found for the task instance, for the current attempt.

All functions will remain unresolved if a required parameter either is not specified or specified incorrectly.

Raw Output from Task

84 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the raw output data of the Web Service task instance that is resolving the function.
If the optional string parameter def aul t Val ue is not specified, the default is " (empty).
® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found, but the path expression does not yield a result, the function will resolve to the default value.
Syntax ${_responseRaw([' defaul t _value'])}
Parameters

® defaul t _val ue
Optional; Default value to return if the result is not found.

Raw Output from Sibling Task

Description | Resolves to the raw output data of the Web Service task instance specified by the si bl i ngNane parameter.

The sibling task instance must be within the same workflow, and the Execution User of the task instance that is resolving the function must have Read permission for the sibling
task instance.

If the optional string parameter def aul t Val ue is not specified, the default is " (empty).
® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found but the path expression does not yield a result, the function will resolve to the default value.
Syntax ${ _responseRawFr onTask("' si bl i ngName' [, ' def aul t Val ue'])}
Parameters
® siblingName
Required; Name of a sibling task instance.

® default_val ue
Optional; Default value to return if the result is not found.

XML Output Data from Task

85 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the XML output data of the Web Service task instance that is resolving the function, corresponding to the evaluated xPat h expr essi on.
If the optional string parameter def aul t Val ue is not specified, the default is " (empty).

® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found, but the path expression does not yield a result, the function will resolve to the default value.

If the optional string parameter del i mi t er is not specified, the default is the new line character (\n).
If the optional boolean parameter prett yPri nt is not specified, the default is false.

® IfprettyPrint istrue, XML fragments will be pretty printed/indented. If XML fragments already have some kind of indentation, the pret t yPri nt may not have an
impact on the formatting.

Syntax ${_responseXPat h(' xPat hExpression'[,"'defaultValue','delimter',prettyPrint])}

Parameters
® xPat hExpressi on
Required; xPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® delimter
Optional; If xPat hExpr essi on evaluates to multiple results, the delimiter to be used to separate those results. Default is New Line character (\n).
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

86 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Examples If you want to obtain the i nf o element text from the following Web Service Task XML output, you could use either of two examples for this Function.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<command- r esponse>
<t ype>set _vari abl e</type>
<success>true</ success>
<info>No changes detected for variable variabl eName, ignoring Set Variable command. </i nf o>
<errors></errors>
</ command- r esponse>

Example 1

${_responseXPath('//info')}

Select the info node in the document no matter where it is.

Example 2

${_responseXPat h('/ conmand-response/info')}

Select the info node from a specific path in the document, starting from the root node.

Using either of these examples will resolve to the following: No changes detected for variable var i abl eName, ignoring Set Variable command.

XML Output Data From Sibling Task

Description | Resolves to the XML output data of the Web Service task instance specified by the siblingName, corresponding to the evaluated xPath expression.

The sibling task instance must be within the same workflow and the Execution User of the task instance that is resolving the function must have Read permission for the sibling task
instance.

If the optional string parameter def aul t Val ue is not specified, the default is " (empty).

® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found but the path expression does not yield a result, the function will resolve to the default value.

If the optional string parameter del i mi t er is not specified, the default is the new line character (\n).
If the optional boolean parameter pr et t yPri nt is not specified, the default is false.

® |f true, XML fragments will be pretty printed/indented. If XML fragments already have some kind of indentation, the pretty print option may not have an impact on the
formatting.

87 | uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Syntax ${_responseXPat hFronirask(' si bl i ngNane', ' xPat hExpression'[,"'defaultValue',6 'delimter', prettyPrint])}

Parameters
® siblingName
Required; Name of a sibling task instance.
® xPat hExpr essi on
Required; xPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® delimter
Optional; If xPat hExpr essi on evaluates to multiple results, the delimiter to be used to separate those results. Default is New Line character (\n).
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

JSON Output Data From Task

Description | Resolves to the JSON output data of the Web Service task instance that is resolving the function, corresponding to the evaluated JSONPath expression.
If the optional string parameter def aul t Val ue is not specified, the default is " (empty).

® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found but the path expression does not yield a result, the function will resolve to the default value.

If the optional string parameter del i mi t er is not specified, the default is the new line character (\n).
If the optional boolean prettyPrint parameter is not specified, the default is false.

® |f true, JSON will be pretty printed/indented.

Syntax ${_responseJsonPat h(' pat hExpression' [,' defaultValue','delimter', prettyPrint])}

Parameters
® pat hExpressi on
Required; jsonPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® delimter
Optional; If pat hExpr essi on evaluates to multiple results, the delimiter to be used to separate those results. Default is New Line character (\n).
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

JSON Output Data From Sibling Task

88 /| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Description | Resolves to the JSON output data of the Web Service task instance specified by the siblingName, corresponding to the evaluated JSONPath expression.

The sibling task instance must be within the same workflow and the Execution User of the task instance that is resolving the function must have Read permission for the sibling task
instance.

If the optional string parameter def aul t Val ue is not specified, the default is " (empty).

® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found but the path expression does not yield a result, the function will resolve to the default value.

If the optional string parameter del i m t er is not specified, the default is the new line character (\n).
If the optional boolean prettyPrint parameter is not specified, the default is false.

® |f true, JSON will be pretty printed/indented.

Syntax ${ _responseJsonPat hFronTTask(' si bl i ngNanme' , ' pat hExpression' [, "' defaultValue', 'delimter', prettyPrint])}

Parameters
® siblingName
Required; Name of a sibling task instance.
® pat hExpressi on
Required; jsonPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® delimter
Optional; If pat hExpr essi on evaluates to multiple results, the delimiter to be used to separate those results. Default is New Line character (\n).
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

JSON Output Data As Array From Task

Description | Resolves to the JSON output data of the Web Service task instance that is resolving the function, corresponding to the evaluated JSONArray expression.
If the optional string parameter def aul t Val ue is not specified, the default is " (empty).
® |f the output record cannot be found, the function will remain unresolved.

® |f the output record is found but the path expression does not yield a result, the function will resolve to the default value.

If the optional boolean prettyPrint parameter is not specified, the default is false.

® |f true, JSON will be pretty printed/indented.

Syntax ${_responseJsonPat hAsArray(' pat hExpression'[,"'defaul tValue', prettyPrint])}

89 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Parameters
® pat hExpressi on
Required; jsonPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

JSON Output Data As Array From Sibling Task

Description | Resolves to the JSON output data of the Web Service task instance specified by the siblingName, corresponding to the evaluated JSONArray expression.

The sibling task instance must be within the same workflow and the Execution User of the task instance that is resolving the function must have Read permission for the sibling task
instance.

If the optional string parameter def aul t Val ue is not specified, the default is " (empty).

® |f the output record cannot be found, the function will remain unresolved.
® |f the output record is found but the path expression doesn't yield a result, the function will resolve to the default value.

If the optional boolean prettyPrint parameter is not specified, the default is false.

® |f true, JSON will be pretty printed/indented.

Syntax ${ _responseJsonPat hAsArrayFroniTask(' si bl i ngNane' , ' pat hExpression' [, ' defaul tValue',prettyPrint])}

Parameters
® siblingName
Required; Name of a sibling task instance.
® pat hExpressi on
Required; jsonPath expression.
® defaul t Val ue
Optional; Default value to return if the result is not found.
® prettyPrint
Optional; Specification (true or false) for whether or not XML fragments will be pretty printed (indented).

90 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

91 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Launching With Variables

For information on how to launch a task with variables, see Provide Temporary Variable Values and Launch a Task Manually on the Manually Running and Controlling Tasks page.

92 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Manually+Running+and+Controlling+Tasks#ManuallyRunningandControllingTasks-ProvideTemporaryVariableValuesandLaunchaTaskManually
https://www.stonebranch.com/confluence/display/UC64/Manually+Running+and+Controlling+Tasks

Universal Controller 6.4.x Variables and Functions

Listing and Setting Variables from the Command Line

To list and set variables from the command line, use the List Variables (ops-variable-list) and Set Variables (ops-variable-set) commands of the Universal Controller Command Line Interface (CLI).

93 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Variable+Functions#VariableFunctions-opsvariablelist
https://www.stonebranch.com/confluence/display/UC64/Variable+Functions#VariableFunctions-opsvariableset
https://www.stonebranch.com/confluence/display/UC64/Command+Line+Interface+%28CLI%29

Universal Controller 6.4.x Variables and Functions

Trigger With Variables

For information on how to use variables when manually launching tasks associated with a trigger, see Triggering with Variables (in the Triggers and Calendars section of this documentation).

94 | uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Triggering+with+Variables
https://www.stonebranch.com/confluence/display/UC64/Triggers+and+Calendars

Universal Controller 6.4.x Variables and Functions

95

Creating a Set Variable Action within a Task or Workflow

Overview

Variables and Variable Scope
Creating a Set Variable Action

Set Variable Details Field Descriptions

Overview

The Set Variable action allows you to set a variable to a specific value for a task or workflow, and to select a scope (level of usage) for that variable (see Variables and Variable Scope, below).
Unless you set the scope of the variable to GLOBAL, which specifies that the variable can be accessed at any time by any task, workflow, or trigger, the value exists in memory only for the time that
the task or workflow is running, or until another Set Variable action sets the variable to another value.

1 Note
Variables with a Variable Scope set to GLOBAL are added to the list of global variables on the Variables list (Automation Center > Other > Variables) after the task or workflow
is run.

You can use the Set Variable action to create a new variable or modify an existing variable.
When creating a Set Variable action, you can trigger the Set Variable action based on one or more of the following:

Status
Exit codes
Late start

°
L]
°
® Late or early finish

Variables and Variable Scope

A variable defined for a task under the Variables tab for that task is used only by that task.

A variable defined for a workflow under the Variables tab for that workflow is available for any task in that workflow; a task will use the variable value defined for the workflow unless the variable is
defined for that task.

A variable defined for a task or workflow in the Set Variable Action Details lets you specify, in the Variable Scope field, the scope of that variable. You can specify that a variable be available for:

® Only the task where it is set.

® All tasks within the task's parent (immediate) workflow.

® All tasks within the task’s top-level parent workflow.

® All tasks and workflow instances.

For example, if you set a variable for a task to be available within the scope of its parent workflow, the value of that variable is propagated up to the parent workflow level. As each task in the
workflow is run, that value is available for that task.

| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

Creating a Set Variable Action

Step 1 Display the Task Details of the task for which you are creating the Set Variable action.

Step 2 = Click the Actions tab. A list of any defined Actions for that task displays.

Linux/Unix Task Details: stonebranch-linuxunixtask-01 -
Linux/Unix Task " @ Variables “ @ Actions " @ Virtual Resources ” @ Mutually Exclusive " Instances ” @ Triggers ” @ Notes " @ Versions |
v 2 Abort Actions ‘ | New || &

Status ™ Description Type Details Exit Codes On Late Start On Late Finish On Earty Finish Cancel Process If Active ‘Override Exi... Halt On Force Finish Update: ™

Failed 20 No No No No No ops.admin
Cancelled 12 Ho Ho No Ho No ops.admin
[] m]]
~ 0 Email Notifications [New || @
~ 0 Set Variables | New || &
A 0 SNMP Notifications | New -
~ 0 System Operations [New || @

96 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

97

Step 3 Click the New button that displays on the Set Variables row. The Set Variable Details pop-up displays.

Set Variable Details =8

[E] save Save & New Save &View € Close
Set Variable

— Action Criteria

Status : ~

Exit Codes :

On Late Start:
On Late Finish :
On Early Finish :

ooO

Description :

— Action Details
Variable Scope : | Self »

Name :

Value :

=] save [iZ Save & New Save & View # Cclose

Step 4 Using the field descriptions below as a guide, complete the fields as needed.
Step 5 Click a Save button to save the record in the Controller database.

Step 6 If appropriate, repeat these steps for any additional Set Variable actions you want to create.

Set Variable Details Field Descriptions

The table below describes the fields and buttons in the Set Variable Details.

Field Description

Name

Action This section contains criteria for performing the action.

Criteria

Type Displays - on the Set Variables actions list - the Variable Scope, Name, and Value for this action.
Details

| uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

98

Action
Inheritance | For Workflow tasks only; the records that this action applies to.
Options:
® Self
The action applies only to the workflow; it is not inherited by its children tasks. For example, if the action is defined for the Defined status, when the workflow where the
action is specified transitions into the Defined status, the action will run for the workflow. When children tasks within this workflow transition into the Defined status, the
action will not run.
® Self/Children
The action applies to the workflow and any children under the workflow (it is as if each child under the workflow had the action specified on itself). For example, if the
workflow or any of its children transition into the Defined status, the action will run.
® Children
This action applies only to the children under the workflow and not the workflow itself. For example, if any child of this workflow transitions into the Defined status, the action
will run. However, when the workflow where this action is specified transitions into the Defined status, this action will not run.
Status The status of the task, by itself or together with an exit code, that will trigger this Set Variable action. You can specify as many statuses as needed.
Exit Codes
Specifies one or more exit codes that will trigger the event. If you specify an exit code, you must also specify at least one status. Use commas to separate multiple exit codes; use a
hyphen to specify a range. Example: 1, 5, 22-30.
On Late
Start Generates the action or notification if the task started late, based on the Late Start Time specified in the task.
On Late
Finish Generates the action or notification if the task finishes late, based on the Late Finish time specified in the task.
On Early
Finish Generates the action or notification if the task finishes early, based on the Early Finish Time specified in the task.
Description = Description of this action.
Action This section contains additional details about the action.
Details
[uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-Defined
https://www.stonebranch.com/confluence/display/UC64/Displaying+Task+Instance+Status#DisplayingTaskInstanceStatus-TaskInstanceStatusTypes

Universal Controller 6.4.x Variables and Functions

Variable
Scope Applies to variables associated with a task in a workflow.
Options:
Scope Scope Description
Value
Self 1 The variable is updated or created in the scope of the task instance running the action. If the task instance is a workflow, then any child of that
workflow will be able to read that variable.
Parent 2 The variable is updated or created in the immediate parent workflow scope, allowing a child within a workflow to make a variable available to any
other child in the same workflow (at the same level).
Top Level Parent | 3 The variable is updated or created at the top-level workflow variable scope, allowing a child anywhere in the workflow hierarchy to make a variable
available to any other child in the workflow hierarchy, regardless of which level in the workflow the task instances are running.
Global 4 A global variable will be updated and or created. Allows for variables to be shared across independent workflows.
System If Variable Scope = Global; Status of the Set Variable action that will trigger a system notification.
Notification
Options:
®* None
® QOperation Failure (default)
® Operation Success/Failure
® QOperation Success
. Note
The Controller must be configured for system notifications in order for system notifications to be triggered.
Name
Name of the variable. Up to 40 alphanumerics. The name must begin with an alphabetic character and can consist of: alphas (a-z, A-Z), numerics 0-9, _ (underscore). White spaces
are not permitted; names are not case-sensitive.
i Important
Do not define variables with the prefix ops_. The ops_ prefix is reserved for built-in variables.
Value

Value of the variable.

Metadata = This section contains Metadata information about this record.

uuID Universally Unique Identifier of this record.

99 / uc-64x-v&f

https://www.stonebranch.com/confluence/display/UC64/Installing+Universal+Controller#InstallingUniversalController-ConfigureSystemNotifications
https://www.stonebranch.com/confluence/display/UC64/Records#Records-RecordDetailsMetadata

Universal Controller 6.4.x Variables and Functions

Updated Name of the user that last updated this record.
By

Updated Date and time that this record was last updated.

Created By = Name of the user that created this record.

Created Date and time that this record was created.

Buttons This section identifies the buttons displayed above and below the Action Details that let you perform various actions.
Save Saves a new Action record in the Controller database.

Save & Saves a new record in the Controller database and redisplays empty Details so that you can create another new record.
New

Save & Saves a new record in the Controller database and continues to display that record.

View

New Displays empty (except for default values) Details for creating a new record.

Update

Saves updates to the record.

Delete

Deletes the current record.
Refresh Refreshes any dynamic data displayed in the Details.
Close Closes the Details pop-up of this action.

100 / uc-64x-v&f

Universal Controller 6.4.x Variables and Functions

101 / uc-64x-v&f

	Variables and Functions
	Built-In Variables
	Variables and Functions Overview
	User-Defined Variables
	Functions
	Launching With Variables
	Listing and Setting Variables from the Command Line
	Trigger With Variables
	Creating a Set Variable Action within a Task or Workflow

