

Universal Agent 6.6.x

User Guide

© 2019 by Stonebranch, Inc. All Rights Reserved.

1. Universal Agent 6.6.x User Guide . 7
1.1 Universal Command Overview . 8
1.2 Universal Data Mover Overview . 12
1.3 Universal Agent Features . 14
1.4 Universal Agent Components . 15
1.5 Remote Execution via Universal Command and Universal Data Mover . 24

1.5.1 Universal Command - Remote Execution . 25
1.5.1.1 Remote Execution via Universal Command - Primer . 27
1.5.1.2 Remote Execution via Universal Command - Examples . 31

1.5.1.2.1 Back up UNIX Directory to zOS Dataset . 33
1.5.1.2.2 Restore UNIX Directory Backup from zOS Dataset to UNIX Directory . 35
1.5.1.2.3 Directory Listing for UNIX Server from zOS . 37
1.5.1.2.4 Directory Listing for Windows Server from zOS . 38
1.5.1.2.5 Provide Network Status of Remote UNIX from zOS . 39
1.5.1.2.6 Use UNIX tee Command to Store stdout to Local Server and zOS . 40
1.5.1.2.7 Use an Encrypted Command File for User ID and Password on zOS . 41
1.5.1.2.8 Override Standard zOS IO File ddnames . 43
1.5.1.2.9 Override zOS Standard Files with Procedure Symbolic Parameters . 44
1.5.1.2.10 Specifying UCMD for zOS Options with the EXEC PARM . 45
1.5.1.2.11 Executing an Existing Windows .bat File from zOS . 46
1.5.1.2.12 Using Manager Fault Tolerance from zOS . 47
1.5.1.2.13 Restarting a Manager Fault Tolerant UCMD Manager on zOS . 49
1.5.1.2.14 Automatically Create a Unique zOS Command ID Using CA-Driver Variables . 51
1.5.1.2.15 Automatically Create a Unique zOS Command ID Using Zeke Variables . 54
1.5.1.2.16 Automatically Create a Unique zOS Command ID Using OPC Variables . 56
1.5.1.2.17 Universal Submit Job from zOS to IBM i Using Remote Reply Facility . 58
1.5.1.2.18 Executing Universal Return Code within a Script via UCMD Manager for zOS . 60
1.5.1.2.19 Executing URC and UMET within a Script via UCMD Manager for zOS . 62
1.5.1.2.20 Back up UNIX Directory to Windows . 64
1.5.1.2.21 Restore UNIX Directory Backup from Windows to UNIX . 66
1.5.1.2.22 Provide Network Status of Remote UNIX from Windows . 68
1.5.1.2.23 Redirect Standard Out and Standard Error to Windows . 70
1.5.1.2.24 Start UNIX Background Process from Windows . 71
1.5.1.2.25 Redirect Standard Input from Initiating System on Windows . 72
1.5.1.2.26 Universal Submit Job from Windows to IBM i . 73
1.5.1.2.27 Provide Network Status of Remote Windows from UNIX . 74
1.5.1.2.28 Redirect Standard Out and Standard Error to UNIX . 75
1.5.1.2.29 Redirect Standard Input from Initiating System to UNIX . 76
1.5.1.2.30 Redirect Standard Input in UNIX Background Process . 77
1.5.1.2.31 Issue Universal Submit Job from UNIX to IBM i . 78
1.5.1.2.32 Provide Network Status of Remote Windows from IBM i . 79
1.5.1.2.33 Execute Script to Provide Network Status of Remote Windows from IBM i . 80
1.5.1.2.34 Display Library with Manager Fault Tolerance Active Using USBMJOB . 81
1.5.1.2.35 Universal Submit Job from zOS to IBM i . 83
1.5.1.2.36 Provide Network Status of Remote Windows from HP NonStop . 85
1.5.1.2.37 Execute Script to Provide Network Status of Remote Windows from HP NonStop . 86

1.5.2 Universal Data Mover - Remote Execution . 87
1.5.2.1 Remote Execution via Universal Data Mover - Primer . 88
1.5.2.2 Remote Execution via Universal Data Mover - Examples . 92

1.5.2.2.1 Windows Directory Listing Using a Batch File - Default Directory . 93
1.5.2.2.2 Windows Directory Listing Using a Batch File - Returned File . 95
1.5.2.2.3 UNIX - Listing Using a Shell Script . 97
1.5.2.2.4 UNIX - Integrating UDM with FTP Using a Shell Script . 99
1.5.2.2.5 UNIX - Integrating UDM with FTP Using a Command Reference . 100
1.5.2.2.6 IBM i from Windows, UNIX, or IBM i - exec Command Return Codes . 102

1.6 Remote Execution for SAP Systems . 104
1.6.1 Remote Execution for SAP Systems - Examples . 105

1.6.1.1 Define Job, Run Job, Get Output, and Purge Job . 106
1.6.1.2 Submitting Job to SAP Using SAP Job as Template - zOS . 108
1.6.1.3 Submitting Job to SAP Using Job Definition File - zOS . 110
1.6.1.4 Running Job on SAP Using SAP Job - zOS . 112
1.6.1.5 Running Job on SAP Using Job Definition File - zOS . 114
1.6.1.6 Running an SAP Job on a Specific SAP Server - zOS . 116
1.6.1.7 Variant Substitution - zOS . 118
1.6.1.8 Creating a Variant Substitution Using GENERATE VARDEF Command - zOS . 121
1.6.1.9 Creating a Job Definition Using GENERATE JOBDEF Command - zOS . 123
1.6.1.10 Submitting an SAP Job Using SAP Job as Template - UNIX . 125
1.6.1.11 Submitting an SAP Job Using Job Definition File - UNIX . 127
1.6.1.12 Running an SAP Job Using SAP Job as Template - UNIX . 129
1.6.1.13 Running an SAP Job Using a Job Definition File - UNIX . 131
1.6.1.14 Running an SAP Job on a Specific SAP Server - UNIX . 133
1.6.1.15 Variant Substitution - UNIX . 135
1.6.1.16 Creating a Variant Definition Using GENERATE VARDEF Command - UNIX . 138
1.6.1.17 Creating Job Definition Using GENERATE JOBDEF Command - UNIX . 140

1.6.2 Mass Activities Support Example for zOS . 142

1.6.3 Batch Input Monitoring Example for zOS . 146
1.6.4 Mass Activities Support in Universal Connector . 149
1.6.5 Batch Input Monitoring in Universal Connector . 151
1.6.6 Universal Data Mover - Remote Execution for SAP Systems . 153

1.6.6.1 Remote Execution for SAP Systems via UDM - Examples . 154
1.6.6.1.1 Raising an SAP Event for zOS Example . 155
1.6.6.1.2 Raising an SAP Event for UNIX Example . 157

1.7 Web Services Execution . 159
1.7.1 Universal Agent - Web Services Examples . 160

1.7.1.1 Using Universal Agent to Publish to a SOA Workload - Windows and UNIX . 161
1.7.1.2 Message Payload for SOAP - Windows and UNIX . 166
1.7.1.3 Logging Configuration - Windows and UNIX . 167
1.7.1.4 UAC HTTP Form - Windows and UNIX . 170
1.7.1.5 Outbound SOAP Implementation - zOS . 172
1.7.1.6 Inbound SOAP Implementation - Windows and UNIX . 175
1.7.1.7 Inbound JMS Implementation - Windows and UNIX . 181

1.7.2 Universal Data Mover - Web Services Execution . 185
1.7.2.1 Web Services Execution (Inbound Implementation) - Examples . 186

1.7.2.1.1 Inbound Implementation - JMS . 187
1.7.2.1.2 Inbound Implementation - SOAP . 191

1.8 Copying Files to and from Remote Systems . 198
1.8.1 Copy from Local zOS to Remote Windows . 200
1.8.2 Copy from Remote Windows to Local zOS . 201
1.8.3 Copy from Local zOS to Remote UNIX . 202
1.8.4 Copy from Remote UNIX to Local zOS . 203
1.8.5 Copy from Local zOS to Remote IBM i . 204
1.8.6 Copy from Remote IBM i to Local zOS . 205
1.8.7 Copy from Local zOS to Remote HP NonStop . 206
1.8.8 Copy from Remote HP NonStop to Local zOS . 207
1.8.9 Third-Party Copy via Local zOS, from Windows to UNIX . 208
1.8.10 Third-Party Copy via Local zOS, from UNIX to Windows . 210
1.8.11 Third-Party Copy via Local zOS, from Windows to Windows . 212
1.8.12 Third-Party Copy via Local zOS, from UNIX to UNIX . 215
1.8.13 Copy from Local zOS to Remote System (in Binary) . 217
1.8.14 Copy from Remote System to Local zOS (in Binary) . 218
1.8.15 Copy from Local zOS to Remote zOS . 219
1.8.16 Copy from Remote zOS to Local zOS . 221
1.8.17 Copy from Local zOS to Remote Windows (with Windows Date Variables) . 223
1.8.18 Copy from Local zOS to Remote UNIX (with UNIX Date Variables) . 225
1.8.19 Copy from Remote UNIX to Local zOS Using cat Command . 226
1.8.20 Copy from Remote UNIX to Local Windows . 227
1.8.21 Copy From Local Windows to Remote UNIX . 229
1.8.22 Copy from Remote UNIX to Local Windows Using the UNIX cat Command . 231
1.8.23 Copy from Local UNIX to Remote Windows . 232
1.8.24 Copy Encrypted File from Local UNIX to Remote Windows . 233
1.8.25 Copy from Remote Windows to Local UNIX . 234
1.8.26 Copy Encrypted File from Remote Windows to Local UNIX . 235
1.8.27 Copy from Remote Windows to Local IBM i via UCMD Manager . 236
1.8.28 Copy from Remote IBM i to Local Windows via UCMD Manager . 238
1.8.29 Copy from Local Windows to Remote IBM i via UCMD Manager . 239
1.8.30 Copy from Local IBM i to Remote Windows via UCMD Manager . 240
1.8.31 Copy from Remote Windows to Local HP NonStop via UCOPY . 242
1.8.32 Copy from Local HP NonStop to Remote Windows via UCOPY . 243
1.8.33 Copy from Remote Windows to Local HP NonStop (using STDOUT) - 1 . 244
1.8.34 Copy from Remote Windows to Local HP NonStop (using STDOUT) - 2 . 245
1.8.35 Copy from Local HP NonStop to Remote Windows (using STDIN) - 1 . 247
1.8.36 Copy from Local HP NonStop to Remote Windows (using STDIN) - 2 . 248

1.9 Transferring Files to and from Remote Systems . 250
1.9.1 Transfer Sessions . 251
1.9.2 Transferring Files to and from Remote Systems - Examples . 253

1.9.2.1 Copy a File to an Existing zOS Sequential Data Set . 254
1.9.2.2 Copy a File to a New zOS Sequential Data Set . 256
1.9.2.3 Copy a zOS Sequential Data Set to a File . 257
1.9.2.4 Copy a Set of Files to an Existing zOS Partitioned Data Set . 258
1.9.2.5 Copy a Set of Files to a New zOS Partitioned Data Set . 260
1.9.2.6 Simple File Copy to the Manager - Windows and UNIX . 261
1.9.2.7 Simple File Copy to the Server - Windows and UNIX . 262
1.9.2.8 Copy a Set of Files - Windows and UNIX . 263
1.9.2.9 Copy a File to an Existing IBM i File . 264
1.9.2.10 Copy an IBM i Data Physical File to a File . 265
1.9.2.11 Copy a Set of Files to an Existing Data Physical File . 266
1.9.2.12 Copy a File to a New IBM i Data Physical File . 267
1.9.2.13 Copy a File to a New IBM i Source Physical File . 268
1.9.2.14 Copy a Set of Files to a New Data Physical File on IBM i . 269
1.9.2.15 Copy Different Types of IBM i Files Using forfiles and $(_file.type) . 270

1.9.2.16 Invoke a Script from an IBM i Batch Job . 271
1.10 Encryption . 272

1.10.1 Encryption - Examples . 274
1.10.1.1 Creating Encrypted Command File - zOS . 275
1.10.1.2 Using Encrypted Command File - zOS . 277
1.10.1.3 Creating Encrypted Command File - Windows . 278
1.10.1.4 Using Encrypted Command File - Windows . 280
1.10.1.5 Creating Encrypted Command File - UNIX . 281

1.10.2 Using Encrypted Command File - UNIX . 283
1.10.3 Creating Encrypted Command File - IBM i . 284
1.10.4 Using Encrypted Command File - IBM i . 286
1.10.5 Creating Encrypted Command File - HP NonStop . 287

1.11 Configuration Management for Universal Agent . 289
1.11.1 Configuration Methods . 290

1.11.1.1 Configuration Methods - Command Line . 291
1.11.1.2 Configuration Methods - Command File . 293
1.11.1.3 Configuration Methods - Environment Variables . 294
1.11.1.4 Configuration Methods - Configuration File . 296

1.11.2 Remote Configuration . 298
1.11.3 Universal Configuration Manager . 302

1.11.3.1 Universal Configuration Manager - Installed Components . 306
1.11.4 Configuration Refresh . 322
1.11.5 Refreshing via Universal Control Examples . 325

1.11.5.1 Refreshing via Universal Control Examples - Overview . 326
1.11.5.2 Refreshing Universal Broker from zOS . 327
1.11.5.3 Refreshing a Component from zOS . 329
1.11.5.4 Refreshing Universal Broker from Windows . 330
1.11.5.5 Refreshing a Component from Windows . 331
1.11.5.6 Refreshing Universal Broker from UNIX . 332
1.11.5.7 Refreshing a Component from UNIX . 333
1.11.5.8 Refreshing Universal Broker from IBM i . 334
1.11.5.9 Refreshing a Component from IBM i . 335
1.11.5.10 Refreshing Universal Broker from HP NonStop . 336
1.11.5.11 Refreshing a Component from HP NonStop . 337

1.11.6 Merging Configuration Options . 338
1.11.6.1 Files Used in UPI Merge Examples . 339
1.11.6.2 Merge Configuration Files Using Program Defaults . 341
1.11.6.3 Merge Configuration Files Introducing New Options . 343
1.11.6.4 Merge Configuration Files Using Installation-Dependent Values . 345

1.11.7 Configuration Options . 347
1.12 Component Management . 348

1.12.1 Component Definition . 349
1.12.2 Component Definition Options . 350
1.12.3 Starting and Stopping Agent Components . 351
1.12.4 Starting and Stopping Agent Components - Examples . 353

1.12.4.1 Starting and Stopping Universal Broker - zOS . 354
1.12.4.2 Starting Universal Broker - Windows . 355
1.12.4.3 Starting Universal Broker - UNIX . 357
1.12.4.4 Starting, Ending, Working with Universal Broker - IBM i . 359
1.12.4.5 Starting Universal Broker - HP NonStop . 361
1.12.4.6 Starting and Stopping Universal Enterprise Controller - zOS . 363
1.12.4.7 Starting and Stopping Universal Enterprise Controller - Windows . 365
1.12.4.8 Starting a zOS Component via Universal Control . 366
1.12.4.9 Stopping a zOS Component via Universal Control . 367
1.12.4.10 Starting a Windows Component via Universal Control . 368
1.12.4.11 Stopping a Windows Component via Universal Control . 369
1.12.4.12 Starting a UNIX Component via Universal Control . 370
1.12.4.13 Stopping a UNIX Component via Universal Control . 371
1.12.4.14 Starting an IBM i Component via Universal Control . 372
1.12.4.15 Stopping an IBM i Component via Universal Control . 373
1.12.4.16 Stopping an HP NonStop Component via Universal Control . 374

1.12.5 Maintaining Universal Broker Definitions in UEC Database . 375
1.12.5.1 Maintaining Broker Definitions in UEC Database - zOS and Windows . 376
1.12.5.2 Maintaining Broker Definitions in UEC Database - zOS . 381
1.12.5.3 Maintaining Broker Definitions in UEC Database - Windows . 383

1.13 Event Monitoring and File Triggering . 385
1.13.1 Event Monitoring and File Triggering - Universal Event Monitor . 386
1.13.2 Event Monitoring and File Triggering - UEMLoad . 391
1.13.3 Event Monitoring and File Triggering - Examples . 393

1.13.3.1 Starting an Event-Driven UEM Server - zOS . 395
1.13.3.2 Refreshing an Event-Driven UEM Server - zOS . 396
1.13.3.3 Using a Stored Event Handler Record - zOS . 397
1.13.3.4 Handling an Event with a Script - zOS . 399
1.13.3.5 Handling an Expired Event - zOS . 401
1.13.3.6 Continuation Character (-) in zOS Handler Script . 403

1.13.3.7 Continuation Character (+) in zOS Handler Script . 404
1.13.3.8 Continuation Characters (- and +) in zOS Handler Script . 405
1.13.3.9 Using a Stored Event Handler Record - Windows . 406
1.13.3.10 Execute Script for Triggered Event Occurrence - Windows . 408
1.13.3.11 Handling an Expired Event - Windows . 410
1.13.3.12 Add a Single Event Record - Windows . 412
1.13.3.13 Add a SIngle Event Handler Record - Windows . 413
1.13.3.14 List All Event Definitions - Windows . 414
1.13.3.15 Export Event Definition and Handler Databases - Windows . 415
1.13.3.16 List a Single Event Handler Record - Windows . 416
1.13.3.17 List Event Definitions and Handlers Using Wildcards - Windows . 417
1.13.3.18 Add Record(s) Using Definition File - Windows . 418
1.13.3.19 Add Records Remotely Redirected from STDIN - Windows . 419
1.13.3.20 Add Records Redirected from STDIN (for zOS) - Windows . 420
1.13.3.21 Definition File Format - Windows . 421
1.13.3.22 Using a Stored Event Handler Record - UNIX . 424
1.13.3.23 Execute Script for Triggered Event Occurrence - UNIX . 426
1.13.3.24 Handling an Expired Event - UNIX . 428
1.13.3.25 Add a Single Event Record - UNIX . 430
1.13.3.26 Add a Single Event Handler Record - UNIX . 431
1.13.3.27 List All Event Definitions - UNIX . 432
1.13.3.28 List a Single Event Handler Record - UNIX . 433
1.13.3.29 Export Event Definition and Handler Databases - UNIX . 434
1.13.3.30 List Event Definitions and Handlers Using Wildcards - UNIX . 435
1.13.3.31 Add Record(s) Using Definition File - UNIX . 436
1.13.3.32 Add Record(s) Remotely Redirected from STDIN - UNIX . 437
1.13.3.33 Add Record(s) Remotely Redirected from STDIN (for zOS) - UNIX . 438
1.13.3.34 Definition File Format - UNIX . 439

1.14 Fault Tolerance Implementation . 442
1.14.1 Network Fault Tolerance - Universal Command . 443
1.14.2 Network Fault Tolerance - Universal Connector . 444
1.14.3 Network Fault Tolerance - Universal Data Mover . 445
1.14.4 Manager Fault Tolerance - Universal Command . 447

1.14.4.1 Manager Fault Tolerance - Universal Command - Functionality . 448
1.14.4.2 Manager Fault Tolerance - Universal Command - Component Management . 455

1.14.5 Client Fault Tolerance - Universal Connector . 457
1.14.5.1 Client Fault Tolerance - Universal Connector Jobs . 458

1.14.5.1.1 Client Fault Tolerance - Universal Connector Jobs - Modes . 459
1.14.5.1.2 Client Fault Tolerance - Universal Connector Jobs - Parameters . 460
1.14.5.1.3 Client Fault Tolerance - Universal Connector Jobs - Command ID Job Step . 461
1.14.5.1.4 Client Fault Tolerance - Universal Connector Jobs - Command Identifier . 462
1.14.5.1.5 Client Fault Tolerance - Universal Connector Jobs - Requesting Restart . 463

1.14.5.2 Client Fault Tolerance - Universal Connector Process Chains . 464
1.14.5.2.1 Client Fault Tolerance - Universal Connector Process Chains - Modes . 465
1.14.5.2.2 Client Fault Tolerance - Universal Connector Process Chains - Parameters . 466
1.14.5.2.3 Client Fault Tolerance - Universal Connector Process Chains - Dummy Job with Log ID and Command ID Job

 Steps . 467
1.14.5.2.4 Client Fault Tolerance - Universal Connector Process Chains - Command Identifier . 468
1.14.5.2.5 Client Fault Tolerance - Universal Connector Process Chains - Requesting Restart . 469

1.14.5.3 Sample Command Lines For Working With Client Fault Tolerance . 470
1.14.5.3.1 Working With Job Definition Files . 471
1.14.5.3.2 Working With Pre-defined SAP Jobs . 475

1.14.6 Implementing Fault Tolerance - Examples . 479
1.14.6.1 Implementing Manager Fault Tolerance for Windows . 480

1.15 Monitoring and Alerting . 481
1.15.1 Universal Query - zOS . 483
1.15.2 Universal Query - UNIX and Windows . 484
1.15.3 Universal Query - IBM i . 485
1.15.4 Universal Query - HP NonStop . 486
1.15.5 Universal Query - Output . 487
1.15.6 Monitoring and Alerting - Examples . 488

1.16 Messaging and Auditing . 489
1.16.1 Messaging . 490
1.16.2 Auditing . 493
1.16.3 Creating Write-to-Operator Messages - Examples . 494

1.16.3.1 Issue WTO Message to zOS Console . 495
1.16.3.2 Issue WTO Message to zOS Console and Wait for Reply . 496

1.17 Message Translation . 497
1.17.1 Message Translation - Examples . 499

1.17.1.1 Translating Error Messages . 500
1.17.1.2 Execute Universal Message Translator from zOS . 502
1.17.1.3 Execute UMET from zOS Manager (with Table on Remote Server) . 503
1.17.1.4 Execute UMET from zOS Manager (with Table on zOS) . 505
1.17.1.5 Execute Universal Message Translator from Windows . 507
1.17.1.6 Execute Universal Message Translator from UNIX . 508

1.17.1.7 Execute Universal Message Translator from IBM i . 509
1.17.1.8 Execute Universal Message Translator from HP NonStop . 510

1.18 Network Data Transmission for Universal Agent . 511
1.18.1 SSL (Secure Socket Layer) Protocol . 512
1.18.2 Universal V2 Protocol . 515
1.18.3 Universal Application Protocol . 516
1.18.4 Network Data Transmission Tuning . 518
1.18.5 Network Data Transmission Configurable Options . 520

1.19 Event Log Dump for Windows . 523
1.19.1 Windows Event Log Dump - Examples . 524

1.19.1.1 Execute Universal Event Log Dump from zOS Manager . 525
1.19.1.2 Execute Universal Event Log Dump from a Windows Server . 527

1.20 zOS CANCEL Command Support . 528
1.20.1 zOS CANCEL Command Support - Universal Command . 529
1.20.2 zOS CANCEL Command Support - Universal Connector . 530
1.20.3 zOS CANCEL Command Support - Universal Data Mover . 531

Universal Agent 6.6.x User Guide

 / ua-66x-user7

Universal Agent 6.6.x User Guide

Overview
User Guide Information

Currently, IBM i runs Workload Automation 5.1.0, and HP NonStop runs Universal Command 2.1.1.

Information IBM i and HP NonStop in this User Guide refer to these versions.

Overview
The Universal Agent 6.6.x User Guide provides information on the enterprise scheduling features of Universal Agent (Universal Command) and
the intelligent file transfer features of Universal Agent (Universal Data Mover), and the Universal Agent components that are required as part of
the solution presented by each feature.

Describes how each feature fits into the Universal Agent business solution.
Illustrates example solutions of how each feature can be implemented.
Identifies the Agent components used as part of each solution.
Provides links to technical documentation for the components.

User Guide Information
The Universal Agent user guide contains user and technical information pertaining to both Universal Command and Universal Data Mover, which
share many features and functionality.

Universal Command Overview
Universal Data Mover Overview
Universal Agent Features
Universal Agent Components
Remote Execution via Universal Command and Universal Data Mover
Remote Execution for SAP Systems
Web Services Execution
Copying Files to and from Remote Systems
Transferring Files to and from Remote Systems
Encryption
Configuration Management for Universal Agent
Component Management
Event Monitoring and File Triggering
Monitoring and Alerting
Messaging and Auditing
Message Translation
Network Data Transmission for Universal Agent
Event Log Dump for Windows
z/OS CANCEL Command Support

Universal Agent 6.6.x User Guide

 / ua-66x-user8

Universal Command Overview

Universal Agent
What is Universal Agent?

Workload Types
Event-Driven Capabilities
Universal Agent

How Customers use Universal Agent
Deployment

Usage
Implementation

Universal Agent

Universal Agent (using Universal Command as its core component) is the business solution for job scheduling.Universal Automation Center

Together with , Universal Agent forms a common Agent (a single code base to install) that handles both managed fileUniversal Data Mover
transfers and your enterprise workload automation.

Universal Agent integrates with your current scheduling engine, enabling standardized system-wide processes and procedures.

It allows job execution without regard to the platform or scheduling solution. It also enables the integration of multiple scheduling solutions. You
can set up standardized Universal Agent processes to execute any workload anywhere in your environment, allowing job scheduling across
platforms without specialized platform-dependent scheduling solutions or training. Using Universal Agent, all elements of the business process
are visible. Execution information can be stored in a centralized repository to further reduce the complexities of historical data and audit
requirements.

The single scheduling tool environment allows for centralized monitoring and control over the environment with your existing tools. This allows for
proactive management where jobs can be automatically delayed when resources are not available, avoiding time-consuming cleanup after
multiple abends.

Universal Agent allows for integrated support and configuration for new types of workload applications, such as Internet and message-based
processing. At the same time, it reduces the complexity of the environment while providing proactive intervention for system maintenance and
server failures.

Additionally, Universal Agent promotes standardization of security policies and central configuration of its components. Other considerations
include ease of platform deployment and consolidated audit history.

https://www.stonebranch.com/confluence/display/UAC64/Universal+Automation+Center

Universal Agent 6.6.x User Guide

 / ua-66x-user9

What is Universal Agent?

Universal Agent is a workload automation (job scheduling) agent that can be deployed with any workload automation tool from any vendor on any
. Universal Agent extends workload automation tools to operate across a wide variety of platforms, execute a wide variety ofsupported platform

workload types, and provide event-driven automation capabilities.

Workload Types

z/OS batch jobs (Universal Controller only)
z/OS Started Tasks and Started Jobs (All schedulers)
z/OS USS commands and scripts (All schedulers)
z/Linux commands and scripts (All schedulers)
i5/OS batch jobs and commands (All schedulers)
Windows commands and scripts (All schedulers)
UNIX commands and scripts (All schedulers)
Linux commands and scripts (All schedulers)
HP NonStop commands and scripts (All schedulers)
SAP (All schedulers)
Web services SOAP protocol
Web services JMS protocol
Web services MQ Series
Web services Http(s) protocol
Websphere XD

https://www.stonebranch.com/confluence/display/SMLRI/Platform+Support+for+Universal+Controller+6.6.x+and+Universal+Agent+6.6.x

Universal Agent 6.6.x User Guide

 / ua-66x-user10

Event-Driven Capabilities

File detection for z/OS systems (Universal Controller only)
File detection for Windows, UNIX, and Linux Servers
Web services events for SOAP, JMS, and MQ Series

Universal Agent

How Customers use Universal Agent

Universal Agent makes any job scheduler cross platform and workload automation enabled, provides a lower cost collaborative scheduling agent,
and simplifies your infrastructure with a single automation agent for multiple automation tasks.

Deployment

Universal Agent can be deployed in any of the following ways:

Universal Agent with Universal Controller
Universal Agent with any non-Stonebranch Scheduler
Automation Agent for automation tools such as network monitors, enterprise consoles, software distribution, and more.

Usage

Businesses learn more ways every day to leverage technology for a competitive advantage.

The Information Technology (IT) infrastructure consists of a diverse array of software and hardware systems. Database management, transaction
management, resource planning, information warehouse, customer support, e-mail, web servers, and much more are required to sustain a
business's technological advantage.

This array of corporate software runs on a large variety of hardware platforms, which in turn run a variety of operating systems. The management
of such technology grows more complex each year, if not each month.

The methods, processes, and personnel used to manage the computing environment are as much a part of the business's technology investment
as is the software and hardware being managed. Replacing or altering these proven management techniques and tools can be costly as well as
risky to a business's success.

Universal Agent leverages the management resources of today to manage the technology of tomorrow. For example, the z/OS computing
environment has been centered around the batch process for years, and for good reason. Nothing else has proven itself to be more easily and

Universal Agent 6.6.x User Guide

 / ua-66x-user11

reliably managed.

Universal Agent permits the management of distributed platforms, such as UNIX and Windows, using the same reliable z/OS batch process. The
batch processes used to forecast, schedule, manage output, and manage archives can be used to manage the distributed platforms in the same
manner.

Implementation

Universal Agent provides simplified implementation, enabling rapid deployment throughout any environment. A common infrastructure and
command language means that deployments are not platform-specific.

User's access to servers and files is managed via native operating system security. Also, user's access to Universal Agent is centrally managed.
All Universal Agent installation materials and documentation are delivered electronically via the Stonebranch . This ensures thatCustomer Portal
customers can always access the most current versions and documentation.

All Universal Agent functions and components are delivered in a single install package for each platform. Native operating system packaging
simplifies installation. Universal Agent license keys are not CPU-specific. This simplifies deployment and ensures business continuity.

Stonebranch offers several programs to assist in implementation. These programs are targeted to help organizations implement the solution
quickly in order to obtain the fastest return on investment. They include education, implementation, migration and consulting services. See our
website at for more information.http://www.stonebranch.com/services.html

https://stonebranch.zendesk.com/hc/en-us
http://www.stonebranch.com/services.html

Universal Agent 6.6.x User Guide

 / ua-66x-user12

Universal Data Mover Overview

Universal Data Mover
Usage
Universal Data Mover
Implementation

Universal Data Mover

Universal Data Mover is the solution for managed file transfer.Universal Automation Center

Together with (using Universal Command as its core component), Universal Data Mover forms a common Agent (a single codeUniversal Agent
base to install) that handles both managed file transfers and your enterprise workload automation.

In addition to the basic features inherent in the managed file transfer of files between servers and applications - security, visibility, manageability,
reliability, and compliance - Universal Data Mover provides additional features for managed file transfer.

Universal Data Mover inter-operates with your current job scheduling and automation tools, providing complete visibility for all scheduled and
automated event-driven file transfers; not only end-to-end from the file movement perspective, but also top-to-bottom integration with application
processes.

Comprehensive and intuitive filtering in Universal Data Mover allows you to find information about file transfer activity such as failed transfers and
successful transfers, how much data was transferred, and transfer attributes.

Universal Data Mover provides a layered approach to security enforcement that protects networks and controls access to data and servers. Data
encryption can be enforced in a way that ensures compliance requirements are always met.

Usage

The managed file transfer of data provided by Universal Data Mover lets you streamline business processes by optimizing the integration of file
transfers with your business processes. This helps you avoid delays and maximize revenue.

Using Universal Data Mover enables you to securely transfer files to external partners without disruption of their current business processes. The
integration capabilities and ease of use provided by Universal Data Mover enable you to manage thousands of servers with minimum interaction.

Intelligently transferred data supports your ability to analyze and plan. Universal Data Mover ensures that your Managed File Transfer
environment runs effectively and efficiently, providing historical data to make informed decisions.

Universal Data Mover enables you to report on data related to all aspects of file transfers specific to user needs. Valuable data is preserved for
compliance reporting. All file transfer events that are related are recorded in a central database that can be extracted for reporting and auditing
purposes.

Universal Data Mover delivers flexible visibility tools and capabilities to meet your own business and operational needs for both internal and
external communications. With its proactive monitoring, Universal Data Mover provides you with the maximum possible time to address any
technical issues that may arise. You do not have to wait for a failed transfer to discover server or network problems.

Universal Data Mover

https://www.stonebranch.com/confluence/display/UAC64/Universal+Automation+Center

Universal Agent 6.6.x User Guide

 / ua-66x-user13

Implementation

Universal Data Mover provides simplified implementation, enabling rapid deployment throughout any environment. A common infrastructure and
scripting language means that deployments are not platform-specific.

User access to servers and files is managed via operating system security. Also, user access to Universal Data Mover is centrally managed. All
Universal Data Mover installation materials and documentation are delivered electronically via the Stonebranch . This ensuresCustomer Portal
that customers can always access the most current versions and documentation.

All Universal Data Mover functions and components are delivered in a single installation package for each platform. Native operating system
packaging simplifies installation. Universal Data Mover license keys are not CPU-specific. This simplifies deployment and ensures business
continuity.

Stonebranch offers several programs to assist in implementation. These programs are targeted to help organizations implement the solution
quickly in order to obtain the fastest return on investment. They include education, implementation, migration and consulting services. See our
website at for more information.http://www.stonebranch.com/services.html

https://stonebranch.zendesk.com/hc/en-us
http://www.stonebranch.com/services.html

Universal Agent 6.6.x User Guide

 / ua-66x-user14

Universal Agent Features

Features

The features that make Universal Agent an independent scheduling agent solution encompass a variety of core and supporting functionality.

The following text describes these features and provides links to detailed information about each one. This includes examples that illustrate
feature implementation and links to detailed technical information about the used in that implementation.Components

The Universal Command component of Universal Agent is a command line interface that allows of all job scheduling to beRemote Execution
initiated - regardless of operating system - any machine in your enterprise any machine in your enterprise.from to

The Universal Data Mover component of Universal Agent allows for the in a manner that is bothTransferring Files to and from Remote Systems
secure and efficient. Transfer sessions can be initiated between the machine initiating the transfer and a remote machine, or between two remote
machines.

Remote Execution for SAP Systems offers a command line interface that allows you to control background processing tasks in an SAP system
from any machine in your enterprise.

Elaborate functionality enables the monitoring local and remote system events, and permits execution ofEvent Monitoring and File Triggering
system commands or scripts based on the outcome of the events.

Web Services Execution enables Universal Agent to extend its remote execution functionality to Internet and message-based workload and create
file-based events from inbound Internet and message-based application messages.

For Universal Agent systems on Windows, the feature offers the ability to select records from a Windows event log andWindows Event Log Dump
write them to a specified output file.

Universal Agent also provides a command line interface for , whether from manager to server orCopying Files to and from Remote Systems
server to manager.

Universal Agent's array of record information throughout an enterprise. Information on all Universal AgentUniversal Agent Databases
installations, including the current status of every component is maintained, as well as user and configuration data, is maintained. The databases
also store information that defines Universal Agent system occurrences (events), the action to implement for those events, and the progress of
each event.

The feature of Universal Agent provides for monitoring the status and activity of all Agents in an enterprise and the postingMonitoring and Alerting
of alerts regarding the statuses. This information is available through a user interface, but it also provides for the command line querying of a job
status and activity of a specific Agent.

Configuration Management tools allow for flexible methods of configuration. enables all systems in an enterprise to beRemote Configuration
configured from a single machine. On Windows systems, configuration can be made via Universal Agent's Universal Configuration Manager
graphical user interface.

Additionally, Universal Agent offers various methods for the of all component data. Universal Agent Configuration Refresh Component
 is built around the particular needs of individual components.Management

A rich system provides continuous system feedback via six different levels of messages. The system can be modified toMessaging and Auditing
provide different levels of messaging, from diagnostic and alert messages, which are always provided, to audit level, which produces messaging
on all aspects of system functionality.

With , error messages returned by commands can be translated into return codes.Message Translation

Universal Agent is enabled at many levels. Access to files, directories, configuration data is strictly controlled, as is userUniversal Agent Security
authentication. All Universal Agent components implement using the TCP/IP protocol. For of transmittedNetwork Data Transmission Encryption
data, Universal Agent uses SSL to provide the highest level of security available.

Fault Tolerance Implementation allows Universal Agent to recover from an array of error conditions, at both network and component levels, such
as may occur in any large enterprise. Since network fault tolerance enables servers to continue processing even after a job is canceled, Universal
Agent's allows - on z/OS operating systems - termination of those jobs.z/OS CANCEL Command Support

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Databases
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Security

Universal Agent 6.6.x User Guide

 / ua-66x-user15

Universal Agent Components

Overview
Universal Command
Universal Command Agent for SOA
Universal Data Mover
Universal Event Monitor

UEMLoad
Universal Event Monitor for SOA
Universal Enterprise Controller

UECLoad
Universal Event Subsystem

Universal Enterprise Controller Client Applications
I-Activity Monitor
I-Management Console
I-Administrator

Universal Connector for SAP
Universal Broker
Universal Automation Center Agent (UAG)
Universal Message Service (OMS)
Universal Controller Command Line Interface
Universal Agent Utilities

Universal Certificate
Universal Control
Universal Copy
Universal Database Dump
Universal Database Load
Universal Display Log File
Universal Encrypt
Universal Event Log Dump
Universal FTP Client
Universal Message Translator
Universal Install Merge
Universal Query
Universal Return Code
Universal Spool List
Universal Spool Remove
Universal Submit Job
Universal Write-to-Operator

Additional Documentation
Installation and Administration
Messages and Codes

Overview

Universal Agent are implemented via a set of inter-related components that provide for a complete independent scheduling agentfeatures
business solution. One or more components provide the technical structure for the implementation of every feature.

This page provides a description of each component that comprises Universal Agent. Each description provides links to the technical
documentation (Reference and Quick Reference Guides) specific to that component. Reference Guides provide detailed technical information
about the usage, syntax, format, and values of component commands and configuration options, as well as other information specific to the
component. Quick Reference Guides provide summary information on the usage, syntax, format, and values of component commands or
configuration options.

Stonebranch also provides separate documents for the installation of operating system-specific component packages and for component-specific
error messaging. For links to these documents, see .Additional Documentation

Universal Command

Universal Command (UCMD), the core component for Universal Agent's enterprise scheduling functionality, allows you to extend the command
line interface of a local operating system to the command line interface of any remote system that can be reached on a computer network. Any
type of program, command, or script file that can be run from the command line interface can be run by Universal Command.

The Universal Command interface is operating-system independent. The remote and local systems can be running two different operating
systems.

Universal Agent 6.6.x User Guide

 / ua-66x-user16

1.
2.
3.
4.

Universal Command consists of two components:

Manager, on the local system, extends a command line interface to a remote system.
Server, on the remote system, executes commands on behalf of the manager.

The manager supplies input files to, and receives output files from, the remote command on the server in real-time. As long as the remote
command is running, the manager runs. When the remote command ends, the manager ends with the exit status of the remote command. With
standard out and standard error as well as the exit status of the remote command available from the manager, there is no need for access to or
expertise on the remote operating system.

As such, Universal Command interfaces with your platform-specific job scheduling solutions, providing visibility and control throughout your entire
enterprise. This enables you to have an end-to-end view of all workload activity.

Technical Documentation

For detailed information on Universal Command, see the following documents:

Universal Command 6.6.x Reference Guide

Universal Command 6.6.x Quick Reference Guide

Universal Command Agent for SOA

Universal Command Agent for SOA - the SOA "Publisher" - lets you extend the workload execution and management features of Universal Agent
to Internet and message-based workload. It receives its payload input from Universal Command through STDIN. When the parameters and data
are passed in, the workload execution request is processed and any return data is passed back to Universal Command. It lets you invoke these
workloads using protocols such as JMS, HTTP, and SOAP.

Universal Command Agent for SOA can be initiated from a variety of sources, regardless of platform, such as one or more job scheduling
systems, workflow engines, or EAI tools, as well as from business applications and end users, enabling you to consolidate your Internet and
message-based workload within your current enterprise scheduling environment.

Universal Command Agent for SOA enables you to:

Consolidate your Internet and message-based workload within your current Enterprise Scheduling environment.
Use your existing scheduler, or other workload management applications, along with your new or existing Stonebranch components.
Use your existing development, test, and production business processes.
Use a single point of workload execution that is not tied to specific vendor hardware or software platforms.

Note
Universal Event Monitor for SOA - the SOA "Listener" - is a file-based event monitoring component available for use with
Universal Agent that can be triggered by internet and message-based events.

Technical Documentation

For detailed information on Universal Command Agent for SOA, see the following documents:

Universal Command Agent for SOA 6.6.x Reference Guide

Getting Started with Universal Command Agent for SOA - MQ Connector 6.6.x

Getting Started with Universal Command Agent for SOA - XD Connector 6.6.x

Universal Data Mover

Universal Data Mover (UDM) is the core component for Universal Data Mover's managed file transfer functionality. In a secure and automated
manner, it allows you to transfer data between any platforms in your environment and initiated from any platform.

Every Universal Data Mover transfer operation is comprised of three components: manager, primary server, and secondary server. The manager
receives commands from the user through an interactive session and/or an external script file. It then establishes a transfer session, invoking the
primary and secondary servers, which actually conduct the transfer operations. Data is transferred between the servers, with either able to act as
the source in a transfer operation.

A transfer session can either be two-party or three-party:

In a two-party transfer session, the manager also serves as the primary transfer server. Transfer operations occur between the
manager/primary server and the secondary server.
In a three-party transfer session, the manager acts solely as a control point for transfer operations, sending commands to the primary and

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Getting+Started+with+Universal+Command+Agent+for+SOA+-+MQ+Connector+6.6.x
https://www.stonebranch.com/confluence/display/UA66/Getting+Started+with+Universal+Command+Agent+for+SOA+-+XD+Connector+6.6.x

Universal Agent 6.6.x User Guide

 / ua-66x-user17

secondary servers to be executed. Transfer operations take place between the two machines under which these servers are running.

The extensive integration capabilities of Universal Data Mover allow data to be pre- and post-processed.

Universal Data Mover exceeds current security and auditing requirements, including SOX, GLBA, and HIPAA. It supports the most modern
security standards and methodology, including SSL encryption, X.509 certificates, and proxy certificates.

If there is a connection failure, Universal Data Mover ensures that all interrupted transfers resume without manual intervention. It integrates with
your existing workload management solution to issue alerts if connections are not reestablished after an acceptable time interval.

Technical Documentation

For detailed information on Universal Data Mover, see the following documents:

Universal Data Mover 6.6.x Reference Guide

Universal Data Mover 6.6.x Quick Reference Guide

Universal Event Monitor

Universal Event Monitor (UEM) provides a platform-independent means of monitoring local and remote system events, and executing system
commands and scripts based on the outcome of those events.

It integrates with your workload management infrastructure to initiate both movement of the data to the appropriate platform and immediate
processing of the data as soon as it is available; that is, by executing system commands and scripts based on the outcome of the events that it is
monitoring.

Universal Event Monitor detects file creation in real-time on the operating system level and invokes a "handler" to take action on every file
matching predefined criteria - whether it is renaming it, processing it locally, moving the file to another server, or notifying your job scheduling
system to initiate further processing. It provides rule-based alerts and notifications that enable you to immediately handle any issues that may
arise.

Universal Event Monitor can run in either of two modes: demand-driven or event-driven.

In demand-driven mode, the Universal Event Monitor manager provides the Universal Event Monitor server with event definitions and
event handlers, which is a command or script that the server executes based on the outcome of the event. This can be initiated from any
system running Universal Agent and scheduled through your scheduling engine.
In event-driven mode, a server monitors one or more system events simultaneously based on event definitions stored in its event
definition database. The server monitors each event until it is no longer active, or until the event-driven server ends.
Universal Event Monitor supports the most modern security standards and methodology, including SSL encryption.

UEMLoad

The UEMLoad utility handles all event definition and event handler database management tasks, including adds, updates, deletes, and lists /
exports. UEMLoad forwards database requests to a UEM Server, which validates the information.

Technical Documentation

For detailed information on Universal Event Monitor and UEMLoad, see the following documents:

Universal Event Monitor 6.6.x Reference Guide

Universal Event Monitor 6.6.x Quick Reference Guide

UEMLoad 6.6.x Quick Reference Guide

Universal Event Monitor for SOA

Universal Event Monitor for SOA - the SOA "Listener" - lets you create file-based events from inbound Internet and message-based messages,
and write the events to file.

It integrates Internet and message-based applications with systems management functions such as alerting and notification, incident and problem
management, job scheduling, and data movement.

Note
Universal Command Agent for SOA - the SOA "Publisher" - is a workload execution component available for use with Universal
Agent.

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+6.6.x+Quick+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user18

Technical Documentation

For detailed information on Universal Event Monitor for SOA, see the following document:

Universal Event Monitor for SOA 6.6.x Reference Guide

Universal Enterprise Controller

Universal Enterprise Controller (UEC) provides alerts for activity and availability of the Universal Agent components installed throughout your
enterprise. It prevents jobs from starting and files from being transferred or processed during hardware failures or network issues.

Universal Enterprise Controller issues alerts when a component becomes unreachable or unavailable, as well as when the component is again
available. These alerts can be picked up by your automation tool and used to pause the submission of jobs and file transfers for nodes that are
unavailable, and resume submission once network connectivity or system availability has been reestablished, without manual intervention. You
can route these alerts to your existing automation console. This allows for a simple, quick and comprehensive integration, as these systems can
remain unchanged when additional agents are added to your infrastructure.

Universal Enterprise Controller installs on a single, central platform, providing the management layer that enables the ,Universal Event Subsystem
, , and to centralize visibility and management of your workload infrastructure.I-Activity Monitor I-Management Console I-Administrator

UECLoad

UECLoad is a command line application that permits Universal Enterprise Controller users to add, delete, and view Agents in the Universal
Enterprise Controller database.

Via UECLoad, a user can add or delete individual Agents, or supply an Agents definition file () with definitions to be added or deleted fromdeffile
Universal Enterprise Controller. UECLoad also can be used to export audit and history records created with the Universal Event Subsystem to
multiple formats including text, html, and csv.

Universal Event Subsystem

The Universal Event Subsystem (UES) records, routes, and manages event messages generated by Universal Agent components. Event
messages are generated whenever a component performs an action that impacts the computing environment on which it executes. The records
are stored centrally and can be exported for audit and history reporting, as well as for archival.

Technical Documentation

For detailed information on Universal Enterprise Controller, UECLoad, and the Universal Event Subsystem, see the following documents:

Universal Enterprise Controller 6.6.x Reference Guide

Universal Event Subsystem 6.6.x Event Definitions

UECLoad 6.6.x Quick Reference Guide

Universal Enterprise Controller Client Applications

Universal Enterprise Controller Client Applications are a suite of three stand-alone client applications for Windows operating systems used to
manage and provide visibility to the Universal Agent infrastructure:

I-Activity Monitor
I-Management Console
I-Administrator

I-Activity Monitor

The I-Activity Monitor client application provides you with end-to-end visibility of workload management activity throughout your Universal Agent
environment.

It provides a graphical user interface for displaying information about the current status and posted alerts for all Agents and SAP systems being
monitored by .Universal Enterprise Controller

Whether the workload consists of regular jobs, scripts or commands, I-Activity Monitor lets you see where all processes are executed, as well as
when, where, and how they were initiated.

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Enterprise+Controller+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Subsystem+6.6.x+Event+Definitions
https://www.stonebranch.com/confluence/display/UA66/UECLoad+6.6.x+Quick+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user19

I-Activity Monitor also identifies Universal Data Mover file transfer jobs, the current state of each transfer, and every instruction executed in a file
transfer script. This enables you to know exactly which files have been transferred and which files are still pending.

In addition, I-Activity Monitor can display activity regardless of whether it was initiated by a scheduling system, workflow engine, business
application, or end user.

I-Management Console

The I-Management Console client application provides a graphical user interface for remote configuration of all Agents in an enterprise. From a
single machine, you can configure a single Agent's components or, simultaneously, multiple Agents.

With I-Management Console, you can define standard security access and authentication policies and ensure that they are active across all
servers. You can define which users are allowed to change the policies. An audit log lets you determine when changes were made - and who
made them.

I-Management Console lets you distribute configuration information to any server, regardless of its operating system or Universal Agent release
level. It knows which properties apply for each individual Agent based upon release level and operating system, and will only send the appropriate
properties to each Agent.

I-Administrator

The I-Administrator client application lets you maintain information on all Agents that monitors and the SAPUniversal Enterprise Controller
systems to which Universal Enterprise Controller has access. It lets you add, modify, and delete users, Agents, groups, and SAP systems.

I-Administrator also lets you maintain Universal Enterprise Controller users and their permissions.

Technical Documentation

For detailed information on Universal Enterprise Controller Client Applications, see the following document:

Universal Enterprise Controller Client Applications 6.6.x User Guide

Universal Connector for SAP

Universal Connector for SAP (USAP) is a command line interface that controls background processing within an SAP system, allowing any
computer on a network to manage SAP background processing tasks from any scheduling system on any platform.

When Universal Connector is told which SAP system to connect to and what background processing tasks to perform, it connects to that SAP
system and processes the request.

Universal Connector provides the functionality to integrate SAP systems into both local administrative tools and enterprise system management
infrastructures. It lets you extend your existing scheduling tools to SAP batch workloads, enabling you to manage all of your scheduling activities
from one tool.

Certified by SAP, Universal Connector uses standard SAP interfaces only, such as XBP3.0, without installing any modules into the SAP
environment or onto a SAP server. It installs on a single central platform and connects to any number of SAP systems.

Universal Connector integrates with your output management tools to provide central audit and archive capability for both SAP joblogs and
spoollists. Additionally, error messages logged to the SAP system log during the job's execution are copied to its joblog, enabling you to identify
and resolve SAP batch issues without requiring access to the SAP system.

Technical Documentation

For detailed information on Universal Connector, see the following documents:

Universal Connector for SAP 6.6.x Reference Guide

Universal Connector for SAP 6.6.x Quick Reference Guide

Universal Broker

Universal Broker (UB), required on all systems running Universal Agent, manages Universal Agent components.

It receives requests to start (or restart) a component on behalf of a user (person or component). Universal Broker tracks and reports on all
components that it has started until their completion.

Technical Documentation

https://www.stonebranch.com/confluence/display/UA66/Universal+Enterprise+Controller+Client+Applications+6.6.x+User+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+6.6.x+Quick+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user20

For detailed information on Universal Broker, see the following documents:

Universal Broker 6.6.x Reference Guide

Universal Automation Center Agent (UAG)

Universal Automation Center Agent (UAG) provides agent services for , the Stonebranch, Inc. workload automation solutionUniversal Controller
that performs job scheduling, file transfer, and event monitoring across all server platforms in the enterprise.

UAG enables the Controller to schedule workload, transfer files, and monitor events on a Universal Agent system, integrating with the Controller
to provide distributed, workload automation throughout the enterprise.

UAG automatically starts when the starts and stops when the Universal Broker stops.Universal Broker

Technical Documentation

For detailed information on Universal Automation Center Agent, see the following documents:

Universal Automation Center Agent 6.6.x Reference Guide

Universal Message Service (OMS)

Universal Message Service (OMS) is the network communication provider between Universal Controller 6.6.x and Universal Agent 6.6.x.

OMS can be configured to automatically start/restart when the starts/restarts and stop when the Universal Broker stops. It alsoUniversal Broker
can be configured to start/restart manually.

Technical Documentation

For detailed information on Universal Message Service, see the following document:

Universal Message Service (OMS) 6.6.x Reference Guide

Universal Controller Command Line Interface

Universal Controller Command Line Interface (CLI) is a set of commands that perform specific actions in a Universal Controller for executing work
on an Agent.

Technical Documentation

For detailed information on Universal Controller Command Line Interface, see the following documents:

Universal Controller Remote Interfaces

Universal Agent Utilities

Universal Agent Utilities perform a variety of functions for one or more operating systems (some utilities are operating-system specific).

Universal Certificate

Universal Agent supports X.509 version 1 and version 3 certificates to securely identify users and computer systems. Although implementing a
fully featured PKI infrastructure is beyond the scope of Universal Agent, if your organization has not yet established one, you can use Universal
Certificate (UCERT) to create digital certificates and private keys.

Universal Control

Universal Control (UCTL) provides the ability to start and stop Universal Agent components, and to refresh component configuration data.

Universal Copy

Universal Copy (UCOPY) provides a means to copy files from either manager-to-server or server-to-manager. (For full-featured managed file

https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UC66/Universal+Controller+6.6.x
https://www.stonebranch.com/confluence/display/UA66/Universal+Automation+Center+Agent+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Service+%28OMS%29+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UC66/Remote+Interfaces

Universal Agent 6.6.x User Guide

 / ua-66x-user21

transfer, see .)Universal Data Mover

Universal Database Dump

Universal Database Dump (UDBDUMP), tailored specifically for Stonebranch databases, allows you to dump one or more databases for back-up
and restore purposes.

Universal Database Load

Universal Database Load (UDBLOAD), tailored specifically for Stonebranch databases, allows you to restore a database that has been previously
dumped.

Universal Display Log File

Universal Display Log File (UDSPLOGF) is available for the IBM i operating system only, lets you read job log files, write them to standard out,
and, optionally, delete the files after read.

Universal Encrypt

Universal Encrypt (UENCRYPT) encrypts the contents of command files into an unintelligible format (for privacy reasons).

Although all Universal Agent command line options can be encrypted using Universal Encrypt, most organizations use it to encrypt and store
authentication credentials such as or . The encrypted command file can be decrypted only by Stonebranch product programs.userid password
No decrypt command is provided to decrypt the command file.

Universal Event Log Dump

Universal Event Log Dump (UELD) lets you select records from one of the Windows event logs and write them to a specified output file.

All records from a log can be dumped, or event records can be selected according to the date and time that they were generated. Universal Event
Log Dump can be run any time as a stand-alone application. It also is designed to work with , which provides centralizedUniversal Command
control from any operating system and additional options for redirecting output.

Universal FTP Client

Universal FTP Client (UFTP) transfers files to and from servers using any of the following file transfer protocols: FTP, FTPS, SFTP, and TFTP.

UFTP on a local machine (localhost) communicates with FTP Server software on a remote host and transfers files specified on its command line
to another file on the client/server.

Files can be listed using a comma as a delimiter (a comma-delimited list of files). The transfer result is never concatenated in a single file; each
file copies to a file of the same name.

Universal Message Translator

Universal Message Translator (UMET) translates error messages into return (exit) codes based on a user-defined translation table.

Every command ends with a return code that indicates the success or failure of the command execution. Typically, a return code of 0 indicates
success; all other codes indicate failure. However, a small number of commands do not set their return code under failure conditions; instead,
they issue error messages. Based on the user-defined translation table, Universal Message Translator translates these error messages into return
codes.

Universal Install Merge

Universal Install Merge (UPIMERGE) merges options and values from one component configuration file or component definition file with another.

UPIMERGE runs automatically during a Universal Agent installation upgrades on UNIX and Windows. During the install, UPIMERGE combines
options and values from existing configuration and component definition files with the options and values in the most recent versions of those files
(delivered with the distribution package). The result of each merge is a single file, with preserved options and values residing alongside any new
options and values that were introduced to support new Universal Agent features.

Universal Query

Universal Agent 6.6.x User Guide

 / ua-66x-user22

1.
2.

Universal Query (UQUERRY) queries any for Broker-related and active component-related information. You can issue UniversalUniversal Broker
Query from any Universal Agent installation to query any Universal Broker in the Stonebranch infrastructure.

Universal Return Code

Universal Return Code (URC) is a Windows utility that performs the function of ending a process with a return code that is equal to its command
line argument.

The return code of a Windows batch script is the return code of the last command executed. You can use Universal Return Code as the last
command to set the return code of the batch script to something different than the return code of the last command executed.

Universal Spool List

Universal Spool List (USLIST) lets you list database records. The functions that Universal Spool List provide are required for possible database
clean-up or problem resolution at the direction of Stonebranch, Inc. Customer Support.

Universal Spool Remove

Universal Spool Remove (USLRM) lets you remove component records from the Stonebranch databases. However, you should use Universal
Spool Remove only at the direction of Stonebranch, Inc. Customer Support.

Universal Submit Job

Universal Submit Job (USBMJOB) is a command for the IBM i operating system that encapsulates the IBM Submit Job (SBMJOB) command.

Universal Submit Job builds on the functionality of SBMJOB by providing a job submission command that better suits the needs of a remote user
issuing IBM i commands via Universal Agent.

Universal Write-to-Operator

Universal Write-to-Operator (UWTO) is a command line utility for the z/OS UNIX System Services (USS) environment.

Universal Write-to-Operator lets you issue two types of messages to z/OS consoles:

Write-To-Operator (WTO) messages
Write-To-Operator-with-Reply (WTOR) messages.

Technical Documentation

For detailed information on Universal Agent Utilities, see the following documents:

Universal Agent Utilities 6.6.x Reference Guide

Universal Certificate 6.6.x Quick Reference Guide

Universal Control 6.6.x Quick Reference Guide

Universal Query 6.6.x Quick Reference Guide

Additional Documentation

In addition to component-specific documentation, Stonebranch also provides the following documentation for Universal Agent:

Installation and Administration

Universal Agent 6.6.x Installation, Upgrade, and Applying Maintenance

Universal Agent 6.6.x Administration

Universal Agent 6.6.x Installation Requirements and Summary

Universal Agent 6.6.x Installation Quick Start Guides

Messages and Codes

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Utilities+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Certificate+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Control+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Query+6.6.x+Quick+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Installation%2C+Upgrade%2C+and+Applying+Maintenance
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Administration
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Installation+Requirements+and+Summary
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Installation+Quick+Start+Guides

Universal Agent 6.6.x User Guide

 / ua-66x-user23

Universal Agent 6.6.x Messages and Codes

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Messages+and+Codes

Universal Agent 6.6.x User Guide

 / ua-66x-user24

Remote Execution via Universal Command and Universal Data Mover
The information on Remote Execution is provided on the following pages:

Universal Command - Remote Execution
Remote Execution via Universal Command - Primer
Remote Execution via Universal Command - Examples

Universal Data Mover - Remote Execution
Remote Execution via Universal Data Mover - Primer
Remote Execution via Universal Data Mover - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user25

1.
2.

Universal Command - Remote Execution

Overview
Remote Execution Components
Additional Information

Overview

This page provides information on the Remote Execution feature of Universal Agent.

Remote Execution simply refers to the ability of initiating work from one system, referred to as the local system, that executes on another system,
referred to as the remote system. The type of work executed on the remote system consists of most any type of work that the remote system
supports, such as commands and scripts. The component of Universal Agent is used to execute work on the remote system.Universal Command

Remote Execution Components

Remote Execution utilizes primarily two Universal Agent Universal Command (UCMD) components:

Universal Command Manager runs on the local system. The Manager initiates the work on the remote system.
Universal Command Server runs on the remote systems. It executes work on behalf of a Universal Command Manager.

The Manager provides the information to the Server necessary for the Server to execute the work. This includes the command or script that
defines the work as well as the user identifier with which the work should execute. The Server authenticates the user identifier on the remote
server. If the user identifier authenticates successfully, the Server executes the work with the provided user identifier.

Once the work is started, the Manager supplies input files to, and receives output files from, the remote command Server in real-time. All files with
character data are translated to the appropriate code pages for the respective system. The transmitted data, optionally, can be compressed,
encrypted, or authenticated.

The Manager runs as long as the remote work is running. When the remote work ends, the Manager ends. The exit code of the remote work is
used as the exit code of the Manager. With standard out and standard error as well as the exit status of the remote work available from the
manager, there is no need for access to or expertise on the remote operating system.

Any type of program, command, or script file that can be run from the command line interface can be run by Universal Command. As such,
Universal Command interfaces with your platform-specific job scheduling solutions, providing visibility and control throughout your entire
enterprise. This enables you to have an end-to-end view of all workload activity.

Additional Information

The following pages provide additional detailed information for Remote Execution:

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user26

Remote Execution via Universal Command - Primer
Remote Execution via Universal Command - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user27

Remote Execution via Universal Command - Primer

Overview
Remote Execution Primer Examples
Executing Universal Command Manager on z/OS

Components
Executing Universal Command Manager on Windows

Components
Executing Universal Command Manager on UNIX

Components
Executing Universal Command Manager on IBM i

Components
Executing Universal Command Manager on HP NonStop

Components

Overview

This page discusses the basics of how to execute remote work using Universal Agent.

Prior to reading this page, read the of Remote execution, as this page builds upon the material presented in the Overview. The primerOverview
discussions are from the perspective of the initiating system where the Universal Command (UCMD) Manager component is executed.

The primer examples assume the Universal Agent product is installed with default configuration values to help keep the examples consistent and
clear. Universal Agent must be installed both on the local system from which the UCMD Manager is executed as well as the remote system where
UCMD Server is executed.

The primer examples demonstrate how to execute a command on a remote system using the Universal Command Manager component. All
examples use the same set of configuration options (identified in the table below). The actual option names can be different, depending on the
operating system on which the UCMD Manager executes. This difference is due to operating system conventions or standards that UCMD abides
by.

Remote Execution Primer Examples

The following table describes each of the Universal Command Manager configuration options used in the primer examples illustrated on this
page.

Configuration Option Name Command Line Entry Description

COMMAND -cmd Command to be executed on the remote system.

The command used in the examples is the Windows DOS command 'dir \'. If the
remote system is a UNIX system, change the command value to "ls /". If the remote
system is an IBM i system, change the command to "DSPLIB QGPL".

REMOTE_HOST -host Host name or IP address of the remote system on which the command is to be
executed.

The examples use a host name of . To execute the examples in yourdallas
environment, change the host name from to the host name of the remotedallas
system on which the command is to be executed.

USER_ID -userid Remote user ID with which to execute the command. The user ID must be a valid user
ID on the remote system.

The examples use a user ID value of . This will need to be change to a valid userjoe
ID on the remote system identified by the REMOTE_HOST option.

USER_PASSWORD -pwd Password for the user ID on the remote system.

The examples use an arbitrary value of . This will need to be changed to theabcdefg
password for the USER_ID you use to execute the remote command.

Executing Universal Command Manager on z/OS

Universal Command Manager is run as a batch job step on z/OS.

A UCMD Manager JCL procedure is provided with the Universal Agent installation to simplify JCL requirements. The JCL procedure name is

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user28

; it is located in the product library. See the for more information on theUCMDPRC SUNVSAMP Universal Command 6.6.x Reference Guide
UCMDPRC procedure.

The following figure illustrates the JCL to execute UCMD Manager in a step. The input options are specified on the SYSIN ddname.

//S1 EXEC UCMDPRC
//SYSIN DD *
-cmd 'dir \' -host dallas -userid joe -pwd abcdefg
/*

You will need to make the following changes to this example so that it will run in your environment:

Change the host name specified with the -host option to the host name of the remote system on which to execute the command.dallas
Change the user ID to a valid user ID on the remote system.joe
Change the password value to the password for the user ID.abcdefg

When UCMD Manager is executed, it will establish network connections with UCMD Server on the remote system named dallas, and provide the
specified options to the UCMD Server. UCMD Server will execute the specified command 'dir \' as user identifier .joe

The standard output of the remote command is written to the UCMD Manager UNVOUT ddname allocated in the procedure. TheUCMDPRC
standard error of the remote command is written to the UCMD Manager UNVERR ddname allocated in the procedure. The defaultUCMDPRC
allocation for both UNVOUT and UNVERR is to SYSOUT. Similarly, standard input is allocated to the UNVIN ddname in the . UNVINUCMDPRC
is not utilized by the remote command being executed in this example.

The UCMD Manager will execute until the remote command completes and the UCMD Server sends the exit conditions of the remote command
back to the UCMD Manager. The UCMD Manager will then end with the same exit code as the remote command.

Components

Universal Command Manager for z/OS

Executing Universal Command Manager on Windows

Universal Command Manager is run as a command on Windows.

The following command and command line options execute UCMD Manager.

ucmd -cmd 'dir \' -host dallas -userid joe -pwd password

You will need to make the following changes to this example so that it will run in your environment:

Change the host name specified with the -host option to the host name of the remote system on which to execute the command.dallas
Change the user ID to a valid user ID on the remote system.joe
Change the password value to the password for the user ID.abcdefg

When UCMD Manager is executed, it will establish network connections with UCMD Server on the remote system named , and provide thedallas
specified options to the UCMD Server. UCMD Server will execute the specified command 'dir \' as user identifier .joe

The standard output of the remote command is written to the standard output of UCMD Manager, which is allocated to the console window. The
standard error of the remote command is written to the standard error of the UCMD Manager, which is allocated to the console window. Similarly,
standard input of the remote command is read from the standard input of the UCMD Manager, which is allocated to the console windows.
Standard input is not utilized by the remote command being executed in this example.

The UCMD Manager will execute until the remote command completes and the UCMD Server sends the exit conditions of the remote command
back to the UCMD Manager. The UCMD Manager will then end with the same exit code as the remote command.

Components

Universal Command Manager for Windows

Executing Universal Command Manager on UNIX

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user29

Universal Command Manager is run as a shell command on UNIX.

The following command and command line options execute UCMD Manager.

ucmd -cmd 'dir \' -host dallas -userid joe -pwd password

You will need to make the following changes to this example so that it will run in your environment:

Change the host name specified with the -host option to the host name of the remote system on which to execute the command.dallas
Change the user ID to a valid user ID on the remote system.joe
Change the password value to the password for the user ID.abcdefg

The ucmd program is installed by default in directory . This directory should be added to your PATH environment variable so/opt/universal/bin
that the shell can find the ucmd program. Alternatively, you can specify the full path name, ./opt/universal/bin/ucmd

When UCMD Manager is executed, it will establish network connections with UCMD Server on the remote system named dallas, and provide the
specified options to the UCMD Server. UCMD Server will execute the specified command 'dir \' as user identifier .joe

The standard output of the remote command is written to the standard output of UCMD Manager, which is allocated to the terminal. The standard
error of the remote command is written to the standard error of the UCMD Manager, which is allocated to the terminal. Similarly, standard input of
the remote command is read from the standard input of the UCMD Manager, which is allocated to the terminal. Standard input is not utilized by
the remote command being executed in this example.

The UCMD Manager will execute until the remote command completes and the UCMD Server sends the exit conditions of the remote command
back to the UCMD Manager. The UCMD Manager will then end with the same exit code as the remote command.

Components

Universal Command Manager for UNIX

Executing Universal Command Manager on IBM i

Universal Command Manager is run as a CL command on IBM i.

The following CL command and parameters execute UCMD Manager.

STRUCM CMD('dir \') HOST(dallas) USERID(joe) PWD(abcdefg)

You will need to make the following changes to this example so that it will run in your environment:

Change the host name specified with the HOST option to the host name of the remote system on which to execute the command.dallas
Change the user ID to a valid user ID on the remote system.joe
Change the password value to the password for the user ID.abcdefg

When UCMD Manager is executed, it will establish network connections with UCMD Server on the remote system named dallas, and provide the
specified options to the UCMD Server. UCMD Server will execute the specified command 'dir \' as user identifier .joe

The standard output and standard error of the remote command are written to the standard output and standard error, respectively, of UCMD
Manager, which is allocated to the user's terminal for interactive sessions and to the printer file QPRINT for non-interactive jobs. Similarly,
standard input of the remote command is read from the standard input of the UCMD Manager, which is allocated to the user's terminal for
interactive sessions and to the QINLINE file for non-interactive jobs. Standard input is not utilized by the remote command being executed in this
example.

The UCMD Manager will execute until the remote command completes and the UCMD Server sends the exit conditions of the remote command
back to the UCMD Manager. The UCMD Manager will then end with an escape message if the exit condition was other than success.

Components

Universal Command Manager for IBM i

Executing Universal Command Manager on HP NonStop

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user30

Universal Command Manager is run as a TACL command.

The following command and command line options execute UCMD Manager.

run $SYSTEM.UNVBIN.ucmd -cmd 'dir \' -host dallas -userid joe -pwd password

You will need to make the following changes to this example so that it will run in your environment:

Change the host name specified with the -host option to the host name of the remote system on which to execute the command.dallas
Change the user ID to a valid user ID on the remote system.joe
Change the password value to the password for the user ID.abcdefg

When UCMD Manager is executed, it will establish network connections with UCMD Server on the remote system named dallas, and provide the
specified options to the UCMD Server. UCMD Server will execute the specified command 'dir \' as user identifier .joe

The standard output of the remote command is written to the standard output of UCMD Manager, which is allocated to the terminal. The standard
error of the remote command is written to the standard error of the UCMD Manager, which is allocated to the terminal. Similarly, standard input of
the remote command is read from the standard input of the UCMD Manager, which is allocated to the terminal. Standard input is not utilized by
the remote command being executed in this example.

The UCMD Manager will execute until the remote command completes and the UCMD Server sends the exit conditions of the remote command
back to the UCMD Manager. The UCMD Manager will then end with the same exit code as the remote command.

Components

Universal Command Manager for HP NonStop

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop

Universal Agent 6.6.x User Guide

 / ua-66x-user31

Remote Execution via Universal Command - Examples

Introduction
Remote Execution Examples - z/OS
Remote Execution Examples - Windows
Remote Execution Examples - UNIX
Remote Execution Examples - IBM i
Remote Execution Examples - HP NonStop

Introduction

The Remote Execution examples illustrated in these pages are specific to the operating systems supported by Universal Agent.

Links to detailed technical information on appropriate Universal Agent components are provided for each example.

Note
In order to keep the examples as clear as possible, they do not check for error conditions. If any example is adopted for
production use, it is recommended that you add appropriate error processing.

Remote Execution Examples - z/OS

Back up UNIX Directory to z/OS Dataset
Restore UNIX Directory Backup from z/OS Dataset to UNIX Directory
Directory Listing for UNIX Server from z/OS
Directory Listing for Windows Server from z/OS
Provide Network Status of Remote UNIX from z/OS
Use UNIX tee Command to Store stdout to Local Server and z/OS
Use an Encrypted Command File for User ID and Password on z/OS
Override Standard z/OS IO File ddnames
Override z/OS Standard Files with Procedure Symbolic Parameters
Specifying UCMD for z/OS Options with the EXEC PARM
Executing an Existing Windows .bat File from z/OS
Using Manager Fault Tolerance from z/OS
Restarting a Manager Fault Tolerant UCMD Manager on z/OS
Automatically Create a Unique z/OS Command ID Using CA-Driver Variables
Automatically Create a Unique z/OS Command ID Using Zeke Variables
Automatically Create a Unique z/OS Command ID Using OPC Variables
Universal Submit Job from z/OS to IBM i Using Remote Reply Facility
Executing Universal Return Code within a Script via UCMD Manager for z/OS
Executing URC and UMET within a Script via UCMD Manager for z/OS
Using Encrypted Command File on z/OS

Remote Execution Examples - Windows

Back up UNIX Directory to Windows
Restore UNIX Directory Backup from Windows to UNIX
Provide Network Status of Remote UNIX from Windows
Redirect Standard Out and Standard Error to Windows
Start UNIX Background Process from Windows
Redirect Standard Input from Initiating System on Windows
Universal Submit Job from Windows to IBM i
Using Encrypted Command File on Windows

Remote Execution Examples - UNIX

Provide Network Status of Remote Windows from UNIX
Redirect Standard Out and Standard Error to UNIX
Redirect Standard Input from Initiating System to UNIX
Redirect Standard Input in UNIX Background Process
Issue Universal Submit Job from UNIX to IBM i
Using Encrypted Command File on UNIX

Remote Execution Examples - IBM i

Universal Agent 6.6.x User Guide

 / ua-66x-user32

Provide Network Status of Remote Windows from IBM i
Execute Script to Provide Network Status of Remote Windows from IBM i
Display Library with Manager Fault Tolerance Active Using USBMJOB
Universal Submit Job from zOS to IBM i
Using Encrypted Command File on IBM i

Note
These examples reference the IBM i commands by their untagged names. If you are using commands with tagged names to run

, substitute the tagged names for these untagged names. (For information on tagged names, see Universal Command
.)UCHGRLS (Change Release Tag) Program

Remote Execution Examples - HP NonStop

Provide Network Status of Remote Windows from HP NonStop
Execute Script to Provide Network Status of Remote Windows from HP NonStop

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user33

Back up UNIX Directory to zOS Dataset

Back up UNIX Directory to z/OS Dataset
SYSIN Options
Components

Back up UNIX Directory to z/OS Dataset

This example demonstrates using UCMD Manager on z/OS to back up a UNIX directory, using the UNIX and commands, to a z/OStar compress
data set.

The backup script is allocated to the ddname . The script writes the file to its standard out which is transmitted by the UCMDMYSCRIPT tar.Z
Server to the UCMD Manager which writes it to the UNVOUT ddname. The data set allocated to the UNVOUT ddname willhlq.BKUP.TAR.Z
contain the backup file.tar.Z

The data set must be a variable record format data set. Any valid record length or valid block size will work.hlq.BKUP.TAR.Z

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC,
// STDOUT='DISP=SHR,DSN=hlq.BKUP.TAR.Z'
//*
//MYSCRIPT DD *
cd /export/home/username/fnd || exit 8
tar -cvzf - . || exit 8
//SYSIN DD *
-host hostname
-userid username
-pwd password
-script MYSCRIPT
-stdout -mode binary
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-script ddname from which to read the script file. The script file is sent to the remote system by the UCMD
Manager for execution.

-stdout Starts the stdout options. All options read afterwards are applied to the stdout file. The first option not
recognized as a standard file option terminates the stdout option list.

-mode Transfer mode for the stdout file: . Since a backup file is a tar, compressed format contains binarybinary

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user34

data, it should not be translated as text data.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user35

Restore UNIX Directory Backup from zOS Dataset to UNIX Directory

Restore UNIX Directory Backup from z/OS Dataset to UNIX Directory
SYSIN Options
Components

Restore UNIX Directory Backup from z/OS Dataset to UNIX Directory

This example demonstrates using UCMD Manager on z/OS to restore a directory on a UNIX system from a tar.Z backup maintained on the z/OS
system. See to see how the backup data set was created.Back up UNIX Directory to zOS Dataset

The UNIX script uses the command to extract the files to be restored from the backup. The command is directed to read the filetar tar.Z tar tar.Z
from its standard input with the tar command line option , which results in it reading from the UCMD Manager UNVIN ddname. The Manager-f -
UNVIN ddname allocates the backup data set that was created previously.tar.Z

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC,
// STDIN='DISP=SHR,DSN=hlq.BKUP.TAR.Z'
//MYSCRIPT DD *
Check if the directory exists. If it does not, create it.
 if test ! -d /export/home/username/fnd
 then mkdir /export/home/username/fnd || exit 8
 fi
 cd /export/home/username/fnd || exit 8
Note: Not all tar commands recognize the 'B' argument. If you
receive an error message indicating this from the remote
UNIX system, remove the 'B' argument.
The 'B' argument is used to force tar to read multiple
times to fill the block.

tar -xzvBf - || exit 8

//SYSIN DD *
-script myscript
-host hostname
-userid username
-pwd password
-stdin -mode binary
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script ddname from which to read the script file. The script file is sent to the remote system by UCMD Manager
for execution.

-host Host name or IP address of the remote system on which to execute the script

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user36

-stdin Starts the stdin options. All options read afterwards are applied to the stdin file. The first option not
recognized as a standard file option terminates the stdin option list.

-mode Transfer mode for the stdin file: . Since a backup file is a tar, compressed format contains binarybinary
data, it should not be translated as text data.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user37

Directory Listing for UNIX Server from zOS

Directory Listing for UNIX Server from z/OS
SYSIN Options
Components

Directory Listing for UNIX Server from z/OS

This example demonstrates executing a simple UNIX command from z/OS using the COMMAND option, as opposed to the SCRIPT option.

The UNIX command is executed in the example. The command writes the file listing to its standard out, which is redirected to the UCMDls ls
Manager on z/OS. The UCMD Manager writes the standard out to ddname UNVOUT.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SYSIN DD *
-cmd "ls -l /opt/universal/bin"
-host hostname
-userid username
-pwd password
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Command to be executed on the remote system.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user38

Directory Listing for Windows Server from zOS

Directory Listing for Windows Server from z/OS
SYSIN Options
Components

Directory Listing for Windows Server from z/OS

This example demonstrates executing a simple Windows command from z/OS using the COMMAND option, as opposed to the SCRIPT option.

The Windows DIR command is executed in this example. The DIR command writes the file listing to its standard out, which is redirected to the
UCMD Manager on z/OS. The UCMD Manager writes the standard out to ddname UNVOUT.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SYSIN DD *
-cmd 'dir \'
-host hostname
-userid userid
-pwd password
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Command to be executed on the remote system.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user39

Provide Network Status of Remote UNIX from zOS

Provide Network Status of Remote UNIX from z/OS
SYSIN Options
Components

Provide Network Status of Remote UNIX from z/OS

This example demonstrates executing a simple UNIX command from z/OS using the SCRIPT option, as opposed to the COMMAND option.

The UNIX command is executed in the example. The command writes the network status report to its standard out, which isnetstat netstat
redirected to the UCMD Manager on z/OS. The UCMD Manager writes the standard out to ddname UNVOUT.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SCRIPT DD *
netstat
//SYSIN DD *
-host hostname
-userid username
-pwd password
-script SCRIPT
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD Manager for
execution.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user40

Use UNIX tee Command to Store stdout to Local Server and zOS

Use UNIX tee Command to Store stdout to Local Server and z/OS
SYSIN Options
Components

Use UNIX tee Command to Store stdout to Local Server and z/OS

This example demonstrates using the UNIX command to save the standard out of a command to a file on the remote system, as well as sendtee
it back to the UCMD Manager in real time.

The UNIX command is executed in this example. The command writes the file listing to its standard out, which is piped to the command.ls ls tee
The command reads the listing and writes it to both the file and to standard out, which is redirected to the UCMD Manager ontee ls teeout.txt
z/OS. The UCMD Manager writes the standard out to ddname UNVOUT.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SCRIPT DD *
 ls | tee teeout.txt
//SYSIN DD *
-script SCRIPT
-host hostname
-userid username
-pwd password
/*

SYSIN Options

Option Description

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD Manager for
execution

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user41

Use an Encrypted Command File for User ID and Password on zOS

Use an Encrypted Command File for User ID and Password on z/OS
Create an Encrypted Command File

UNVIN Options
Use an Encrypted Command File
SYSIN Options
Components

Use an Encrypted Command File for User ID and Password on z/OS

This example demonstrates using an encrypted command file to hold the user ID and password options used by UCMD Manager for z/OS. The
encrypted command file is created with the Universal Agent (UENCRYPT) utility.Universal Encrypt

Create an Encrypted Command File

The following figure demonstrates how to create a UENCRYPTed command file. The options to be encrypted are specified on the UNVIN ddname
(in this example, and). The encrypted command file is written to ddname UNVOUT, which allocates PDS member .-userid -pwd USR001

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
//STEP1 EXEC UENCRYPT
//STEPLIB DD DISP=SHR,DSN=SBI.UNV.SUNVLOAD
//UNVIN DD *
-userid username
-pwd password
//UNVOUT DD DISP=SHR,DSN=hlq.PROD.DATA(USR001)
//UNVNLS DD DISP=SHR,DSN=SBI.UNV.SUNVNLS
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD DUMMY

UNVIN Options

The UNVIN options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Use an Encrypted Command File

The following figure demonstrates how to use an encrypted command file to execute a remote command using UCMD Manager. The example is
executing a UNIX command on a remote system. The user ID and password to be used to execute the command is specified with the ls

 option. The option specifies a ddname from which to read the encrypted command file created in the first figure.-encryptedfile -encryptedfile

https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user42

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//USER DD DISP=SHR,DSN=hlq.PROD.DATA(USR001)
//SYSIN DD *
-cmd 'ls -la'
-host hostname
-encryptedfile USER
/*

Note
An encrypted command file protects the privacy of the data contained within it. It does not protect it from being used by anyone
with read permission to the encrypted command file data set.

To ensure the encrypted command file is used only by authorized users, proper security access to the data set must be defined
in your security system, such as IBM's RACF.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Command to be executed on the remote system.

-host Host name or IP address of the remote system on which to execute the script.

-encryptedfile ddname from which to read an encrypted command file created with the Universal Agent Universal
 (UENCRYPT) utility.Encrypt

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user43

Override Standard zOS IO File ddnames

Override Standard z/OS I/O File ddnames
SYSIN Options
Components

Override Standard z/OS I/O File ddnames

This example demonstrates how to override the z/OS standard output and standard error ddnames in the UCMDPRC procedure.

The example:

Overrides the UNVOUT ddname in the UCMDPRC procedure with a data set allocation.
Overrides the UNVERR ddname with a SYSOUT class of H.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlq.APP.LIST(OUTPUT)
//* UNIVERSAL COMMAND WILL CREATE THE MEMBER
//UNVERR DD SYSOUT=H
//SYSIN DD *
-host hostname
-userid username
-pwd password
-cmd command
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-cmd Command to be executed on the remote system.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user44

Override zOS Standard Files with Procedure Symbolic Parameters

Override z/OS Standard Files with Procedure Symbolic Parameters
SYSIN Options
Components

Override z/OS Standard Files with Procedure Symbolic Parameters

This example demonstrates how to override the z/OS standard input, output, and error using the UCMDPRC procedure symbolic parameters.

The UCMDPRC procedure provides parameters STDIN, STDOUT, and STDERR for the allocation of the UNVIN, UNVOUT, and UNVERR
ddnames, respectively.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC,
// STDIN='DUMMY',
// STDERR='SYSOUT=H',
// STDOUT='DISP=SHR,DSN=hlq.DATA.LIST(OUT2)'
//SYSIN DD *
-host hostname
-userid username
-pwd password
-cmd command
/*

SYSIN Options

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-cmd Command to execute on the remote system.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user45

Specifying UCMD for zOS Options with the EXEC PARM

Specifying UCMD for z/OS Options with the EXEC PARM
SYSIN Options
Components

Specifying UCMD for z/OS Options with the EXEC PARM

This example demonstrates how to specify UCMD options using the EXEC statement PARM keyword.

UCMD Manager reads its options typically from the SYSIN ddname, but options can be specified on the EXEC statement PARM keyword as well.
Options specified as PARM values override options specified on the SYSIN ddname.

The UCMDPRC JCL procedure provides the symbolic parameter UPARM to specify the options. The example sets the UCMD Manager message
level to a value of using the option.audit -level

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC,UPARM='-level audit'
//SYSIN DD *
-cmd command -host hostname -userid username -pwd password

SYSIN Options

Option Description

-cmd Command to execute on the remote system.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user46

Executing an Existing Windows .bat File from zOS

Execute an Existing Windows .bat file from z/OS
SYSIN Options
Components

Execute an Existing Windows .bat file from z/OS

This example demonstrates calling a Windows batch file (extension) from a script being executed remotely by UCMD Manager. The Windows.bat
 command is used to execute a Windows batch file that already exists on the Windows system.CALL

When UCMD Manager is provided a script with the option to be remotely executed, it sends the script to the remote UCMD Server. The-script
UCMD Server, in turn, will create a temporary Windows batch file (extension) in the file system to hold the UCMD Manager-provided script..bat
The UCMD Server will then execute the saved batch file using the Windows command processor .CMD.EXE

Since the UCMD Manager script is executing as a Windows batch file, if it needs to call another batch file, it must use the Windows CALL
command.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SCRIPTDD DD *
call user.bat
//SYSIN DD *
-script SCRIPTDD -host hostname -userid username -pwd password
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script ddname from which to read the script file. The script file is sent to the remote system by UCMD Manager
for execution.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user47

Using Manager Fault Tolerance from zOS

Using Manager Fault Tolerance from z/OS
SYSIN Options
Components

Using Manager Fault Tolerance from z/OS

This example demonstrates using the Manager Fault Tolerant (MFT) feature of UCMD.

The UCMD Manager will execute until the work being executed remotely ends. If the UCMD Manager would end prematurely (for example, if it
was canceled), the UCMD Server would also end and, in the process, terminate the work it was executing on behalf of the Manager. If MFT is
used, the UCMD Manager can end and the UCMD Server will continue to execute until the work completes.

MFT requires that the UCMD Server is configured to allow for spooling of standard I/O files. The UCMD Server option to use for this configuration
is ALLOW_SPOOLING. Its default value is ; it must be set to .no yes

A UCMD Manager specifies the use of MFT by setting the option (MANAGER_FAULT_TOLERANT) to a value of . Additionally,-managerft yes
MFT requires a command identifier that uniquely identifies the work to be executed on the remote system. The command ID is a text value of your
choosing. An example command ID is or it could be automatically generated for you by UCMD Manager. In either case, ifexample-2010-07-02
the Manager prematurely ends, the command ID will be required to restart the Manager and complete the work executed on the remote system.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SYSIN DD *
-cmd command
-host hostname
-userid username -pwd password
-managerft yes -cmdid example-2010-07-02

See for complete details on the Manager Fault Tolerant feature.Fault Tolerance Implementation

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Command to execute on the remote system.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-managerft Specification for whether or not the Manager Fault Tolerance (MFT) feature is used. A value of yes
specifies that MFT should be used.

-cmdid Unique command ID associated with the remote unit of work.

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user48

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user49

Restarting a Manager Fault Tolerant UCMD Manager on zOS

Restarting a Manager Fault Tolerant UCMD Manager on z/OS
SYSIN Options
Components

Restarting a Manager Fault Tolerant UCMD Manager on z/OS

In , the example demonstrates how to remotely execute work using the Manager Fault Tolerant (MFT)Using Manager Fault Tolerance from zOS
feature.

The following example demonstrates how to restart a UCMD Manager that premature ended when using MFT.

If a UCMD Manager executing with MFT ends prematurely, the UCMD Server and the remote work will continue executing until the remote work
has completed. All standard I/O files are saved on the UCMD Server system, along with the exit conditions of the work. They will remain on the
UCMD Server system until a UCMD Manager is restarted using the same command ID that identifies the work.

A restart can be performed after the remote work has complete or while the remote work is still in executing.

Continuing from , the following example illustrates a UCMD Manager restart for the work identified byUsing Manager Fault Tolerance from zOS
command ID .example-2010-07-02

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//SYSIN DD *
-cmd command -host hostname -userid username -pwd password
-managerft yes -cmdid example-2010-07-02
-restart yes
/*

SYSIN Options

Option Description

-cmd Command to be executed on the remote system.

-host Host name or IP address of the remote system on which to execute the command.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-managerft Specification for whether or not the manager fault tolerant feature is used.

-cmdid Unique command ID associated with the remote unit of work.

-restart Specification for whether or not the manager is requesting restart. A value of indicates the Manager isyes
being restarted.

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user50

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user51

Automatically Create a Unique zOS Command ID Using CA-Driver Variables

Automatically Create a Unique z/OS Command ID Using CA-Driver Variables
Example 1
SYSIN Options
Components

Automatically Create a Unique z/OS Command ID Using CA-Driver Variables

CA provides variable functionality via CA-Driver. (Refer to the CA manuals for instructions on variable usage.)

CA-Driver variables specific to CA-7, such as the following, can be used to create a unique . (Refer to the CA documentation for a completecmdid
list of CA-Driver variables available for CA-7 and CA-Scheduler.)

&C_L2JN is the CA-7 Job Name
&C_L27# is the CA-7 Job Number
&C_L2DOD is the Due Out Date for this Job execution.

One Procedure should be placed in the CA-Driver Procedure library.

The following example illustrates a CA-Driver Procedure using the above system variables to create a unique command ID.

//DRVRUCMD DPROC REMOTEJOBNAME=UCMD
-cmdid '&REMOTEJOBNAME.&C_L2JN.&C_L27#.&C_L2DOD'

Each step that executes UCMD should reference this procedure in order to create the unique UCMD as the first parameter within thecmdid
UCMD SYSIN DD statement. This procedure defaults the to the values defined by one user variable called and 3 CA-7cmdid remotejobname
variables.

(See the following examples.)

Example 1

The following example illustrates how to call the PROC from within the UCMD SYSIN DD statement.DRVRUCMD

The variables set in the PROC are set to the following for this example:DRVRUCMD

&C_L2JN = PRD00001
&C_L27# = 0030001
&C_L2DOD 03265
&REMOTEJOBNAME = UCMD (default value in Driver Procedure)DRVRUCMD

//S1 EXEC UCMDPRC
//SYSIN DD *
//CALL EXEC PROC=DRVRUCMD,REMOTEJOBNAME=
-cmd command -host hostname -userid username -pwd password
-managerft yes -restart auto
/*

Expanded Results:

//S1 EXEC UCMDPRC
//SYSIN DD *
-cmdid UCMDPRD000010030001032625
-cmd command -host hostname -userid username -pwd password
-managerft yes -restart auto
/*

Universal Agent 6.6.x User Guide

 / ua-66x-user52

Note
If the identifier contains spaces, it must be enclosed in either single () or double () quotation marks.cmdid ' "

Example 2

The following example illustrates how to override the variable value for in the step.REMOTEJOBNAME CALL

//S1 EXEC UCMDPRC
//SYSIN DD *
//CALL EXEC PROC=DRVRUCMD,REMOTEJOBNAME=unixpayrolljob1
-cmd command -host hostname -userid username -pwd password
-managerft yes -restart auto
/*

Expanded Results:

//S1 EXEC UCMDPRC
//SYSIN DD *
-cmdid unixpayrolljob1PRD000010030001032625
-cmd command -host hostname -userid username -pwd password
-managerft yes -restart auto
/*

Note
If the identifier contains spaces, it must be enclosed in either single () or double () quotation marks.cmdid ' "

SYSIN Options

The SYSIN options used in these examples are:

Option Description

-cmd Command to be executed on the remote system.

-host Host name or IP address of the remote system on which to execute the command.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-managerft Specification for whether or not the manager fault tolerant feature is used.

-cmdid Unique command ID associated with the remote unit of work.

-restart Specification for whether or not the manager is requesting restart. A value of indicates the Manager isyes
being restarted.

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user53

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user54

Automatically Create a Unique zOS Command ID Using Zeke Variables

Automatically Create a Unique z/OS Command ID for your Universal Agent Process Using Zeke Variables
SYSIN Options
Components

Automatically Create a Unique z/OS Command ID for your Universal Agent Process Using Zeke Variables

Zeke has a set of reserved variables available that get substituted during job submission. The default character is used to identify a Zeke$
variable within the instream JCL. This default character can be changed during installation. Create a variable whose value is set based on the
current schedule date. Use this variable in the UCMD Manager jobs.

(See the ASG Zeke documentation for instructions on variable usage.)

//S1 EXEC UCMDPRC
//LOGONDD DD DISP=SHR,DSN=hlq.encrypted.file
//SCRIPTDD DD *
DIR
//SYSIN DD *
-cmdid 'jobname$SCHDATEunixpayrolljob1' <== Zeke
variable
-script scriptdd -host dallas -encryptedfile logondd -managerft yes -restart auto
/*

Expanded Results:

//S1 EXEC UCMDPRC
//LOGONDD DD DISP=SHR,DSN=hlq.encrypted.file
//SCRIPTDD DD *
dir
//SYSIN DD *
-cmdid 'JOBNAME03254unixpayrolljob1'
-script scriptdd -host dallas -encryptedfile logondd -managerft yes -restart auto
/*

* If the identifier contains spaces, it must be enclosed in either single () or double () quotation marks.cmdid ' "

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmdid Unique command ID associated with the remote unit of work.

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD Manager for
execution.

-host Host name or IP address of the remote system on which to execute the command.

-encryptedfile ddname from which to read an encrypted command file created with the Universal Agent Universal
 (UENCRYPT) utility.Encrypt

-managerft Specification for whether or not the manager fault tolerant feature is used.

https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user55

-restart Specification for whether or not the manager is requesting restart. A value of indicates the Manager isyes
being restarted.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user56

Automatically Create a Unique zOS Command ID Using OPC Variables

Automatically Create a Unique z/OS Command ID for your Universal Agent Process Using OPC Variables
SYSIN Options
Components

Automatically Create a Unique z/OS Command ID for your Universal Agent Process Using OPC Variables

OPC has a set of reserved variables available that get substituted at job submission.

The feature gets switched on by coding the following JCL statements:

//*%OPC SCAN <== set substitution on and off by
//*%OPC NOSCAN <== set substitution off

Any OPC variable found within the instream JCL can be substituted with the current value by OPC. (See the IBM OPC documentation for
instructions on variable usage.)

//S1 EXEC UCMDPRC
//LOGONDD DD DISP=SHR,DSN=hlq.encrypted.file
//SCRIPTDD DD *
DIR
SYSIN DD *
-cmdid payrolljob&CYMD.&CHHMMSSX. <== OPC
variables
-script scriptdd -host dallas -encryptedfile logondd -managerft yes -restart no
/*

Expanded Results:

//S1 EXEC UCMDPRC
//LOGONDD DD DISP=SHR,DSN=hlq.encrypted.file
//SCRIPTDD DD *
dir
//SYSIN DD *
-cmdid payrolljob2003061613315614
-script scriptdd -host dallas -encryptedfile logondd -managerft yes -restart no
/*

* If the identifier contains spaces, it must be enclosed in either single () or double () quotation marks.cmdid ' "

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmdid Unique command ID associated with the remote unit of work.

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD Manager for
execution.

-host Host name or IP address of the remote system on which to execute the command.

-encryptedfile ddname from which to read an encrypted command file created with the Universal Agent Universal
 (UENCRYPT) utility.Encrypt

https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user57

-managerft Specification for whether or not the manager fault tolerant feature is used.

-restart Specification for whether or not the manager is requesting restart. A value of indicates the Manager isyes
being restarted.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user58

Universal Submit Job from zOS to IBM i Using Remote Reply Facility

Universal Submit Job from z/OS to IBM i using the Remote Reply Facility
USBMJOB Options
SYSIN Options
Components

Universal Submit Job from z/OS to IBM i using the Remote Reply Facility

This example demonstrates how to submit an IBM i batch job from z/OS and use the Remote Reply Facility.

Native IBM i SBMJOB parameters can be specified as part of the Universal Submit Job command. The Remote Reply Facility detectsUSBMJOB
messages, issued by the submitted job, that require a reply. The message then will be passed to a remote z/OS system for a reply. When the
reply is received, the reply will be sent to the IBM i message queue that is waiting for the reply.

z/OS issues the message to the z/OS console as a WTOR (Write To Operator with Reply) message. The WTOR message is written to the z/OS
console using the Stonebranch USS command. The reply to the message is sent back to the IBM i system.uwto

//S1 EXEC UCMDPRC
//SCRIPT DD *
ADDLIBLE LIB(UNVPRD510)
UNVPRD510/USBMJOB CMD(dsplib ibmi-username) +
RMTRPY(*YES) +
RMTREFRESH(60) +
RMTMSGPRFX('TESTPRFX') +
RMTHOST(zos-hostname) +
MSGCMDPATH("usrlocaluniversalbinuwto") +
RMTUSER(zos-username) + RMTPWD(zos-password)
//SYSIN DD *
-script SCRIPT -host ibmi-hostname -userid ibmi-username -pwd ibmi-password
/*

This UCMD Manager executes the script on host called . The IBM i user ID and password areibmi-hostname ibmi-username ibmi-password
used for authentication on the IBM i system. The script runs with the authority of user .ibmi-username

The reply message, should there be one, is sent to the host name for a reply. The z/OS USS command runs with user ID zos-hostname uwto
 and password .zos-username zos-password

The first line of the script will add the library to the library concatenation. The second line will execute the command UNVPRD510 dsplib
 with the USBMJOB utility. All output created by the command will be spooled to stdout of the manager job.ibmi-username

The Remote Reply Facility is turned on with the parameter; therefore, USBMJOB will send all messages requiring a reply to the remoteRMTRPY
z/OS console on host , as specified on the parameter. Replies to the inquiry messages are received from the z/OSzos-hostname RMTHOST
console and sent to the IBM i message queue waiting for the reply.

The z/OS USS UWTO command is executed with the authority of the z/OS user and , as specified by the zos-userid zos-password RMTUSER
and parameters, respectively. The z/OS console message is prefixed with , as specified by the parameter.RMTPWD TESTPRFX RMTMSGPRFX

If a response is not received within 60 seconds, the WTOR will be deleted and a new one sent, as specified by the parameter.RMTREFRESH
The UWTO executable is found on the z/OS USS system at , as specified by the parameter. If /usr/local/universal/bin/uwto MSGCMDPATH

 is in the USS system PATH, is not required.uwto MSGCMDPATH

USBMJOB Options

The USBMJOB options used in this example are:

Option Description

CMD Specifies a command that runs in the submitted batch job. The command can be a maximum of 3000
characters.

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+USBMJOB+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user59

RMTRPY Specifies whether USBMJOB will use the Remote Reply Facility.

RMTREFRESH Specifies the number of seconds to refresh the z/OS console message if no reply is received. The previous
message is deleted from the console and a new one is issued.

RMTMSGPRFX Specifies a text string up to 12 characters that will prefix the message written to the z/OS console.

RMTHOST Specifies the host name or IP address of the z/OS system on which the reply message is issued.

MSGCMDPATH Specifies the path name of the z/OS USS program. If the program is in the system PATH, thisuwto uwto
parameter is not required.

RMTUSER Specifies the z/OS user ID with which the program is executed.uwto

RMTPWD Specifies the password for the z/OS user ID specified with the RMTUSR parameter.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD Manager for
execution.

-host Host name or IP address of the remote system on which to execute the script.

-userid Remote user ID with which to execute the command.

-pwd Password for the remote user ID.

Components

Universal Command Manager for z/OS

Universal Submit Job

https://www.stonebranch.com/confluence/display/UA66/USE_REMOTE_REPLY_FACILITY+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_REFRESH_INTERVAL+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_MESSAGE_PREFIX+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_REPLY_HOST+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_REPLY_COMMAND_PATH+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_REPLY_USER_ID+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+USBMJOB+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Submit+Job

Universal Agent 6.6.x User Guide

 / ua-66x-user60

Executing Universal Return Code within a Script via UCMD Manager for zOS

Executing Universal Return Code within a Script via Universal Command Manager for z/OS
SYSIN Options
Components

Executing Universal Return Code within a Script via Universal Command Manager for z/OS

Note
As of Windows 2000, the Universal Return Code command is no longer necessary in Windows batch files. Microsoft added the
ability to specify a script return code as an argument to the EXIT command in Windows 2000 and above.

This example illustrates the use of Universal Return Code to exit the script with a specific return code value.

By default, the return code of the last command within the script sets the return code of the script. Universal Return Code is useful when multiple
commands are executed within one script.

The following example executes a Windows batch file as a script. The script executes the backup.exe program and saves its return code value in
the variable RC. URC is then used to set the value back to the saved RC value before exiting. A user variable called RC is set toERRORLEVEL
the value of the of the previous command.ERRORLEVEL

//S1 EXEC UCMDPRC
//SCRIPTDD DD *
backup.exe > c:\temp\bkup.log
SET RC=%ERRORLEVEL%
UCOPY c:\temp\bkup.log
DEL c:\temp\bkup.log
URC %RC%
/*
//SYSIN DD *
-host dallas
-script SCRIPTDD
-userid joe
-pwd abcdefg
/*

The first command executes a backup script. The next line sets a variable called RC to the value of the return code of the .backup.exe

The command copies the log file to the Universal Command Manager. The next step deletes the log file.UCOPY

The last line of the script then uses the variable as the URC value in order to set the return code of the script equal to the exit code of the RC
 execution, instead of the return code of the command.backup.exe DEL

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-script ddname from which to read the script file. The script file is sent to the remote system by the UCMD
Manager for execution.

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user61

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

Universal Return Code

https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Return+Code

Universal Agent 6.6.x User Guide

 / ua-66x-user62

Executing URC and UMET within a Script via UCMD Manager for zOS

Executing Universal Return Code and Universal Message Translator within a Script via Universal Command Manager for
z/OS

Script Options
SYSIN Options
Components

Executing Universal Return Code and Universal Message Translator within a Script via Universal Command Manager
for z/OS

Note
As of Windows 2000, the Universal Return Code command is no longer necessary in Windows batch files. Microsoft added the
ability to specify a script return code as an argument to the EXIT command in Windows 2000 and above.

The following example builds onto the example by adding a stepExecuting Universal Return Code within a Script via UCMD Manager for zOS
that executes the Universal Message Translator (UMET) utility.

UMET could be used if the first command does not set the return code properly. The example exits with the return code of a command in the
middle of the script with the use of Universal Return Code. A user variable called RC is set to the value of the return code of the UMET execution.
The last line of the script then uses that value as the URC value to set the return code of the script equal to the exit code of the UMET execution.

//S1 EXEC UCMDPRC
//SCRIPTDD DD *
backup.exe > c:\temp\bkup.log
umet -table c:\temp\translate.table -file c:\temp\bkup.log
SET RC=%ERRORLEVEL%
UCOPY c:\temp\bkup.log
DEL c:\temp\bkup.log
URC %RC%
/*
//SYSIN DD *
-host dallas
-script SCRIPTDD
-userid joe
-pwd abcdefg
/*

The first command executes a backup script. The second command executes the UMET program and sets the return code of UMET based on the
table definitions and the file being interrogated. The next line sets a variable called RC to the value of the return code of the UMET execution. The
UCOPY command copies the log file to the Universal Command Manager. The next line deletes the log file. The last line of the script then uses
the variable RC as the URC value in order to set the return code of the script equal to the return code of the UMET execution instead of the return
code of the DEL command.

Script Options

The script options used in this example are:

Option Description

-table Translation table file name.

-file Input message file name.

SYSIN Options

The SYSIN options used in this example are:

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user63

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-script ddname from which to read the script file. The script file is sent to the remote system by the UCMD
Manager for execution.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

Universal Return Code

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Return+Code
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user64

Back up UNIX Directory to Windows

Back up UNIX Directory to Windows
Command Line Options
Components

Back up UNIX Directory to Windows

This example backs up a directory and its subdirectories on a UNIX system to a local file. Instead of executing a command on the remote host, a
local script file is executed.

The following figure illustrates the script in a file named .myscript

cd /usr/man/man1
tar -cv . | compress

The following figure illustrates the command to execute the script in .myscript

ucmd -script myscript -host dallas -userid joe -pwd password -stdout -mode binary > data.tar

The script file changes its current directory to the directory to backup. The command creates an archive file containing all files andtar
subdirectories located in the current directory. This archive file is written to 's standard out, which is piped to the command. Thetar compress
compress command compresses its input and writes to its standard out. The standard out of the compress command is the same standard out of
the script file. The script file's standard out is redirected back to the command running on the local system. The standard out of UCMD isucmd
redirected to the local file .data.tar

Command Line Options

The command line options used in this example are:

Option Description

-script File name of a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Specifies the password for the user ID.

-stdout Starts the stdout option list. All options read afterwards are applied to the stdout file. The first option not
recognized as a standard file option terminates the stdout option list.

-mode Transfer mode for the stdout file: . The data is not translated.binary

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user65

Universal Agent 6.6.x User Guide

 / ua-66x-user66

Restore UNIX Directory Backup from Windows to UNIX

Restore UNIX Directory Backup from Windows to UNIX
Command Line Options
Components

Restore UNIX Directory Backup from Windows to UNIX

This example restores a directory that was backed up (see). The file containing the backup is on the localBack up UNIX Directory to Windows
system.

The script is located in local file .myscript

The following figure illustrates the script to perform the restore.

if test ! -d man1
 then
 mkdir man1
 fi

cd man1
uncompress | tar -xvf -
diff . usrmanman1

The following figure illustrates the command to execute the script file.

ucmd -script myscript -host dallas -userid joe -pwd password -stdin -mode binary < file.tar

The script file creates directory in 's home directory if it does not already exist. It then changes its current directory to . The man1 joe man1
 command reads from the script's standard in file, which is redirected from UCMD's standard in on the local system.uncompress

Notice that UCMD's standard in is redirected from the backup file . The program uncompresses its input and writes it to itsfile.tar uncompress
standard out, which is piped to the command. The command extracts and writes the archive to the current directory. The final command, tar tar

, compares the original directory with the new one. The command returns if no differences are found; otherwise, it returns .diff diff 0 1

Command Line Options

The command line options used in this example are:

Option Description

-script File name of a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user67

-stdin Starts the stdin option list. All options read afterwards are applied to the stdin file. The first option not
recognized as a standard file option terminates the stdin option list.

-mode Transfer mode for the stdout file: . The data is not translated.binary

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user68

Provide Network Status of Remote UNIX from Windows

Provide Network Status of Remote UNIX from Windows
Command Line Options
Components

Provide Network Status of Remote UNIX from Windows

This example produces a report of the system status of a remote UNIX system. Instead of executing a command on the remote host, a local script
file is executed.

The following figure illustrates the script file .myscript

Note
The commands executed in the script file may or may not require modifications depending on the type of UNIX system on which
it executes.

echo "System Status as of `date`"
echo "---"
netstat
echo "---"
df
echo "---"
ps -ax

The following figure illustrates the command to execute the script file.

ucmd -script myscript -host dallas -userid joe -pwd password

The report is written to the standard out of UCMD.

Command Line Options

The command line options used in this example are:

Option Description

-script File name of a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user69

Universal Agent 6.6.x User Guide

 / ua-66x-user70

Redirect Standard Out and Standard Error to Windows

Redirect Standard Out and Standard Error to Windows
Command Line Options
Components

Redirect Standard Out and Standard Error to Windows

The following example illustrates how to redirect the standard output and error of the 'DIR' command to a file on the initiating system.

ucmd -cmd "dir" -host dallas -userid joe -pwd password > output.file 2>&1

The command is sent to a remote system named for execution. The standard output and standard error of the command are writtendir dallas dir
back to the UCMD process and redirected to standard out file . The process will authenticate and run under the authority of userid .output.file joe

If the remote system is a UNIX system, change the command to .dir ls

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user71

Start UNIX Background Process from Windows

Start UNIX Background Process from Windows
Command Line Options
Components

Start UNIX Background Process from Windows

A UCMD Manager job will not end until the remote process ends and all standard files are closed. If the remote process starts a child process,
UCMD Manager also will wait until the child process ends and its standard I/O files are closed.

In order to start the process without waiting for the process to end and close its standard I/O files, start the process in the background using the
 command and redirect standard out and error to .nohup /dev/null

ucmd -cmd "nohup startprocess > /dev/null 2>&1 &'" -host dallas -userid joe -pwd password

The command to start a process is issued with the UNIX parameter. Any output is written to which never is saved to disk ornohup /dev/null
memory. The process will authenticate and run under the authority of userid .joe

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user72

Redirect Standard Input from Initiating System on Windows

Redirect Standard Input from Initiating System on Windows
Command Line Options
Components

Redirect Standard Input from Initiating System on Windows

The command reads from standard input and writes it to the UCMD Server for the remote command to read as its standard input. Theucmd
allocation of standard input can be changed with a shell redirection operator. The redirection operators instruct the shell to change the allocation
of the standard files. To change the allocation of standard input, use the operator.<

ucmd -script myscript -host dallas -userid joe -pwd password < input.file

The command is sent to a remote system named for execution. The output of the script is redirected back to the Universal Commanddallas
process's standard out and standard error. Standard input is read from file on the initiating system. The process will authenticate andinput.file
run under the authority of userid .joe

Command Line Options

The command line options used in this example are:

Option Description

-script File from which to read a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user73

Universal Submit Job from Windows to IBM i

Universal Submit Job from Windows to IBM i
SYSIN Options
Components

Universal Submit Job from Windows to IBM i

The following example illustrates the issuing of a command from Windows to remote IBM i as a parameter of USBMJOB.

ucmd -cmd "usbmjob cmd(dspsyssts)" -host ohio -userid usrid -pwd usrpwd

In this example, USBMJOB is submitted to the server running on the host .ohio

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Universal Command command option ().usbmjob

-host Directs the command to a computer with a host name of .ohio

-userid Remote user ID with which to execute the command.

-pwd Password for the remote user ID.

Components

Universal Command Manager for Windows

Universal Submit Job

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Submit+Job

Universal Agent 6.6.x User Guide

 / ua-66x-user74

Provide Network Status of Remote Windows from UNIX

Provide Network Status of Remote Windows from UNIX
Command Line Options
Components

Provide Network Status of Remote Windows from UNIX

This example produces a report of the network status of a remote Windows system. Instead of executing a command on the remote host, a local
script file is executed.

The following figure illustrates the script file, .myscript

echo System Status
echo --
date /t
time /t
echo --
netstat -se
echo --
netstat -a
echo --

The following figure illustrates the command to execute the script file.

ucmd -script myscript -host dallas -userid joe -pwd password

The report is written to the standard out of UCMD.

Command Line Options

The command line options used in this example are:

Option Description

-script File name of a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user75

Redirect Standard Out and Standard Error to UNIX

Redirect Standard Out and Standard Error to UNIX
Command Line Options
Components

Redirect Standard Out and Standard Error to UNIX

The following example illustrates how to redirect the standard output and error of the DIR command to a file on the initiating system.

ucmd -cmd 'dir' -host dallas -userid joe -pwd password > output.file 2>&1

The command is sent to a remote system named for execution. The standard output and standard error of the command are writtendir dallas dir
back to the UCMD process and redirected to standard out file . The process will authenticate and run under the authority of userid .output.file joe

If the remote system is a UNIX system, change the command to .dir ls

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.ls

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user76

Redirect Standard Input from Initiating System to UNIX

Redirect Standard Input from Initiating System to UNIX
Command Line Options
Components

Redirect Standard Input from Initiating System to UNIX

The command reads from standard input and writes it to the UCMD Server for the remote command to read as its standard input. Theucmd
allocation of standard input can be changed with a shell redirection operator. The redirection operators instruct the shell to change the allocation
of the standard files. To change the allocation of standard input, use the operator.<

ucmd -script myscript -host dallas -userid joe -pwd password < input.file

The command is sent to a remote system named for execution. The output of the script is redirected back to the Universal Commanddallas
process's standard out and standard error. Standard Input is read from file on the initiating system. The process will authenticate andinput.file
run under the authority of userid .joe

Command Line Options

Option Description

-script File from which to read a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user77

Redirect Standard Input in UNIX Background Process

Redirect Standard Input in UNIX Background Process
Command Line Options
Components

Redirect Standard Input in UNIX Background Process

If the command is executed as a background job (using the operator), it will receive the SIGTTIN signal when tries to read fromucmd & ucmd
standard input. Background jobs cannot read their standard input from the terminal since the foreground job (or the shell) has it allocated. The

 job is stopped until it is brought to the foreground.ucmd

To run an job that does not require terminal input in the background, redirect its standard input from .ucmd /dev/null

ucmd -script myscript -host dallas -userid joe -pwd password < /dev/null &

The command is sent to a remote system named for execution. The output of is redirected back to the Universal Commanddallas myscript
process. Standard input is read from . The process will authenticate and run under the authority of userid ./dev/null joe

Command Line Options

The command line options used in this example are:

Option Description

-script File from which to read a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user78

Issue Universal Submit Job from UNIX to IBM i

Issue Universal Submit Job from UNIX to IBM i
SYSIN Options
Components

Issue Universal Submit Job from UNIX to IBM i

The following example illustrates the issuing of a command to the remote IBM i as a parameter of the USBMJOB.

ucmd -cmd "usbmjob cmd(dspsyssts)" -host ohio -userid usrid -pwd usrpwd

In this example, USBMJOB is submitted to the server running on the host .ohio

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Universal Command command option ().usbmjob

-host Directs the command to a computer with a host name of .ohio

-userid Remote user ID with which to execute the command.

-pwd Password for the remote user ID.

Components

Universal Command Manager for UNIX

Universal Submit Job

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Submit+Job

Universal Agent 6.6.x User Guide

 / ua-66x-user79

Provide Network Status of Remote Windows from IBM i

Provide Network Status of Remote Windows from IBM i
Command Line Options
Components

Provide Network Status of Remote Windows from IBM i

This example produces a report of the network status of a remote Windows system. Instead of executing a command on the remote host, a local
script file is executed.

The following figure illustrates the script file, .MYSCRIPT

echo System Status
echo --
date /t
time /t
echo --
netstat -se
echo --
netstat -a
echo --

The following figure illustrates the command to execute the script file.

STRUCM SCRIPT(myscript) HOST(dallas) USERID(joe) PWD(password)

The report is written to the stdout of .STRUCM

Command Line Options

The command line options used in this example are:

Option Description

SCRIPT File name of a script file. The script file is sent to the remote system for execution.

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the command.

PWD Password for the user ID.

Components

Universal Command Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user80

Execute Script to Provide Network Status of Remote Windows from IBM i

Execute Script to Provide Network Status of Remote Windows from IBM i
Command Line Options
Components

Execute Script to Provide Network Status of Remote Windows from IBM i

The following example illustrates the execution of a network status script on a remote Windows server.

STRUCM SCRIPT(myscript) HOST(dallas) USERID(joe) PWD(password)

The command is sent to a remote system named for execution. The standard output and standard error of commandmyscript dallas myscript
are available to the initiating process as file .QPRINT

Command Line Options

Option Description

SCRIPT File name of a script file. The script file is sent to the remote system for execution.

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the command.

PWD Password for the user ID.

Components

Universal Command Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user81

Display Library with Manager Fault Tolerance Active Using USBMJOB

Display Library with Manager Fault Tolerance Active Using USBMJOB
Command Line Options
Components

Display Library with Manager Fault Tolerance Active Using USBMJOB

The following example illustrates the use of an IBM i command on a remote system with spooling enabled.

It assumes that manager fault tolerance is active on the client platform via the UCMD configuration file. The example should execute from either a
UNIX shell or a Windows system environment. The command is submitted via to allow the output data and the job log of the executedUSBMJOB
command to be brought back to the system initiating the command.

Windows System:
ucmd -cmd "USBMJOB CMD(dsplib qgpl)" -userid userId -pwd password -host sysName -cmdid NTSysTest
out400.txt 2>err400.txt

UNIX System:
ucmd -cmd "USBMJOB CMD(dsplib qgpl)" -userid userId -pwd userPW -host sysName -cmdid UNIX00
1>out400.txt 2>err400.txt

For this example, requires no input; however, the user must supply to satisfy Windows operating system requirements. Without USBMJOB <NUL
, the request will hang.<NUL

 outputs data via the standard output file stream (stdout) and outputs job logs and error messages via the standard error file streamUSBMJOB
(stderr). The system takes data sent back to UCMD and stores it in ; it takes any error messages and the job logs and stores them in out400.txt

.err400.txt

With the Universal Command server configuration option set to , a copy of the job log remains on the originating IBM iJOBLOG_COPY_KEEP yes
system.

The command is installed as part of UCMD Server on the IBM i system.USBMJOB

Command Line Options

Option Description

-cmd Remote command to execute on the IBM i.

-host Directs the command to a computer with a host name of .sysName

-userid IBM i user ID with which to execute the command.

-pwd Password for the user ID.

-cmdid UCMD Server (running under UBroker) puts the Command ID in its database to keep track of requests
regarding a specific unit of work.

Include the command option set to , requesting manager fault tolerance, if it is not enabled via the UCMD configuration file.-managerft yes

Components

Universal Command Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/JOBLOG_COPY_KEEP+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user82

Universal Agent 6.6.x User Guide

 / ua-66x-user83

Universal Submit Job from zOS to IBM i

Universal Submit Job from z/OS to IBM i
SYSIN Options
USBMJOB Options
Components

Universal Submit Job from z/OS to IBM i

The following figure illustrates the issuing of a command to the remote IBM i as a parameter of the USBMJOB.

//S1 EXEC UCMDPRC
//UNVOUT DD SYSOUT=*
//UNVERR DD SYSOUT=*
//SCRIPT DD *
 ADDLIBLE lib(UNVPRD510)
 UNVPRD510/USBMJOB CMD(dsplib tuser1)
//SYSIN DD *
 -script SCRIPT
 -host as400 -userid tuser1 -pwd tuser1
/*

This Universal Command Manager executes the script to a host called . UserID of and password of are used foras400 tuser1 tuser1
authentication.

The script runs with the authority of UserID . The first line of the script adds the library to the library concatenation of user tuser1 UNVPRD510
. The second line executes the command with the USBMJOB utility.tuser1 dsplib tuser1

All output created by the command will be spooled to stdout of the manager job.

SYSIN Options

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .as400

-userid Remote user ID with which to execute the command.

-pwd Password for the remote user ID.

USBMJOB Options

The USBMJOB option used in this example is:

Option Description

CMD Command that runs in the submitted batch job. The command can be a maximum of 3000 characters.

Components

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+USBMJOB+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user84

Universal Command Manager for IBM i

Universal Submit Job

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Submit+Job

Universal Agent 6.6.x User Guide

 / ua-66x-user85

Provide Network Status of Remote Windows from HP NonStop

Provide Network Status of Remote Windows from HP NonStop
Command Line Options
Components

Provide Network Status of Remote Windows from HP NonStop

This example produces a report of the network status of a remote Windows system. Instead of executing a command on the remote host, a local
script file is executed.

The following figure illustrates the script file, .myscript

echo System Status
echo --
date /t
time /t
echo --
netstat -se
echo --
netstat -a
echo --

The following figure illustrates the command to execute the script file.

run ucmd -script myscript -host dallas -userid joe -pwd password

The report is written to the standard out of UCMD.

Command Line Options

The command line options used in this example are:

Option Description

-script File name of a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for HP NonStop

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop

Universal Agent 6.6.x User Guide

 / ua-66x-user86

Execute Script to Provide Network Status of Remote Windows from HP NonStop

Execute Script to Provide Network Status of Remote Windows from HP NonStop
Command Line Options
Components

Execute Script to Provide Network Status of Remote Windows from HP NonStop

This example executes a network status script on a remote Windows server.

run $SYSTEM.UNVBIN.ucmd -script myscript -host dallas -userid joe -pwd password

The command is sent to a remote system named for execution. The standard output and standard error of commandmyscript dallas myscript
are available to the standard out of the initiating process. The process will authenticate and run under the authority of userid .joe

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.ucopy file

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for HP NonStop

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop

Universal Agent 6.6.x User Guide

 / ua-66x-user87

1.
2.

Universal Data Mover - Remote Execution

Remote Execution via UDM

Remote execution refers to the ability of initiating work from one system (the local system), which executes on another system (the remote
system). The type of work executed on the remote system consists of most any type of work that the remote system supports, such as commands
and scripts. The component of Universal Agent is used to execute work on the remote system.Universal Command

These pages provide information on the remote execution features and functionality of the Universal Data Mover business solution.

Universal Data Mover provides access to Universal Command remote execution via the command. The Universal Data Mover exec exec
command invokes the Universal Command Manager and provides parameters for passing a subset of the Universal Command Manager options.

The command executes system commands on remote machines if you have Universal Command (UCMD) Manager on the same systemexec
with the UDM Manager.

Remote Execution Components

Universal Data Mover Remote Execution using Universal Command consists primarily of two Universal Agent components:

Universal Command Manager runs on the local system. The Manager initiates the work on the remote system.
Universal Command Server runs on the remote systems. It executes work on behalf of a Universal Command Manager.

The Manager provides the information to the Server necessary for the Server to execute the work. This includes the command or script that
defines the work, as well as the user identifier with which the work should execute. The Server authenticates the user identifier on the remote
server. If the user identifier authenticates successfully, the Server executes the work with the provided user identifier.

Once the work is started, the Manager supplies input files to, and receives output files from, the remote command Server in real-time. All files with
character data are translated to the appropriate code pages for the respective system. The transmitted data, optionally, can be compressed,
encrypted, or authenticated.

The Manager runs as long as the remote work is running. When the remote work ends, the Manager ends. The exit code of the remote work is
used as the exit code of the Manager. With standard out and standard error as well as the exit status of the remote work available from the
manager, there is no need for access to or expertise on the remote operating system.

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user88

Remote Execution via Universal Data Mover - Primer

Overview
Remote Execution Examples - exec Command Parameters
Remote Execution Requirements

Executing the Examples
Remote Execution Requirements for z/OS
Remote Execution Requirements for Windows
Remote Execution Requirements for UNIX
Remote Execution Requirements for IBM i

Overview

This page discusses the basics of how to execute remote work using Universal Data Mover via Universal Data Mover (UDM).

Note
Please read prior to reading this page, which builds upon the material presented inUniversal Data Mover - Remote Execution
the Overview.

The primer discussions are from the perspective of the initiating system where the Universal Command (UCMD) Manager component is executed
via the Universal Data Mover (UDM) command.exec

The primer examples assume that Universal Data Mover is installed with default configuration values to help keep the examples consistent and
clear. UCMD components must be installed both on the local system from which the UCMD Manager is executed as well as the remote system
where UCMD Server is executed.

The demonstrate how to execute a command on a remote system using the UDMD Manager component via the UDM Managerprimer examples
component using the UDM command. All examples use the same set of parameters.exec

Remote Execution Examples - exec Command Parameters

The following table describes each of the parameters used in the primer examples.

Parameter Description

cmd Command to be executed on the remote system.

user Remote user ID with which to execute the command. The user ID must be a valid user ID on the remote system. The examples
use a user ID value of . This will need to be changed to a valid user ID on the remote system on which Universal Commandjoe
Server runs.

pwd Password for the user ID on the remote system. The examples use an arbitrary value of . This will need to be changed toabcdefg
the password for the USER_ID you use to execute the remote command.

Remote Execution Requirements

This page illustrates the minimum set of parameters required to execute a remote process via the Universal Data Mover (UDM) commandexec
using UDM scripting language syntax.

The platform-independent nature of the UDM scripting language means that the format of is the same regardless of the UDM Manager's hostexec
platform. See the for platform-specific information on executing UDM Manager, using UDM scriptUniversal Data Mover 6.6.x Reference Guide
files, and invoking .exec

exec instructs UDM to spawn a Universal Command (UCMD) Manager process. The containsUniversal Command 6.6.x Reference Guide
platform-specific information for invoking UCMD Manager. A UCMD Server installed on the remote system receives the command specified by

's parameter and executes it.exec cmd

If security is enabled in the remote UCMD Server's configuration, must provide user account information. To establish a secure executionexec
environment, the UCMD Server requires a user account ID, which specifies via the user parameter. The UCMD Server may also require aexec
password () to authenticate the user account, depending on the remote operating system and Universal Agent configuration.pwd

For information on securing access to Universal Agent components, see .Universal Agent Security

Executing the Examples

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Security

Universal Agent 6.6.x User Guide

 / ua-66x-user89

To execute the following examples in your environment, simply make these changes to the values specified in the command's parameters:

Change the host name or IP address 192.168.10.111 to a host name or IP address that exists in your environment.dallas
Change the cmd parameter to a valid system command or installed application on the remote system.
Change the user ID to the name of a valid user account on the remote system.joe
Change the password value to the user account's password.abcdefg

In each of these examples, the UCMD Manager establishes a network connection to the UCMD Server installed on the remote system ().dallas
The UCMD Manager passes parameters to the UCMD Server over this connection. UCMD Server then executes the command as local userexec
named .joe

The UCMD Manager and Server also establish network connections to forward the command's output (that is, everything it writes to standard
output and standard error) to the UDM Manager. UDM Manager writes this output to its local standard output (stdout) and standard error (stderr)
devices.

When the remote command completes, the UCMD Server retrieves the process' exit code and status and forwards them to the local UCMD
Manager, which exits with that same value. The UDM Manager stores this exit code in its built-in variable._execrc

Remote Execution Requirements for z/OS

These examples illustrate how to execute a process on a remote z/OS system using the UDM command. Each example lists the contents ofexec
the directory in the z/OS UNIX file system./u/joe

If no DNS entry is available for the remote host, use a statement like the one shown in ; otherwise,Remote z/OS Execution Using an IP Address
use something similar to .Remote z/OS Execution Using a Host Name

To execute a command on a remote system using an active UDM transfer session, follow the example shown in Remote z/OS Execution Using a
.UDM Logical Session Name

The command initiates UCMD Manager using the JCL procedure installed in the library.exec UCMDPRC SUNVSAMP

Remote z/OS Execution Using an IP Address

 192.168.10.111 cmd="ls -al /u/joe" user=joe pwd=abcdefgexec

Remote z/OS Execution Using a Host Name

 dallas cmd="ls -al /u/joe " user=joe pwd=abcdefgexec

Remote z/OS Execution Using a UDM Logical Session Name

 rmtsys=dallas user=joe pwd= abcdefgopen
 rmtsys cmd="ls -al /u/joe "exec

Remote Execution Requirements for Windows

These examples illustrate how to execute a process on a remote Windows system using the UDM command. Each example lists theexec
contents of the directory on the drive.root c:

If no DNS entry is available for the remote host, use a statement similar to the one shown in ;Remote Windows Execution Using an IP Address
otherwise, use something similar to .Remote Windows Execution Using a Host Name

To execute a command on a remote system using an active UDM transfer session, follow the example shown in Remote Windows Execution
.Using a UDM Logical Session Name

Remote Windows Execution Using an IP Address

 192.168.10.111 cmd="dir c:\" user=joe pwd=abcdefgexec

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/_execrc+-+UDM+Built-in+Variable
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user90

Remote Windows Execution Using a Host Name

 dallas cmd="dir c:\" user=joe pwd=abcdefgexec

Remote Windows Execution Using a UDM Logical Session Name

 rmtsys=dallas user=joe pwd= abcdefgopen
 rmtsys cmd="dir c:\"exec

Remote Execution Requirements for UNIX

These examples illustrate how to execute a process on a remote UNIX system using the UDM command. Each example lists the contents ofexec
the home directory for the user account named .joe

If no DNS entry is available for the remote host, use a statement like the one shown in ; otherwise,Remote UNIX Execution Using an IP Address
use something similar to .Remote UNIX Execution Using a Host Name

To execute a command on a remote system using an active UDM transfer session, follow the example shown in Remote UNIX Execution Using a
.UDM Logical Session Name

Remote UNIX Execution Using an IP Address

 192.168.10.111 cmd="ls -al /home/joe" user=joe pwd=abcdefgexec

Remote UNIX Execution Using a Host Name

 dallas cmd="ls -al /home/joe" user=joe pwd=abcdefgexec

Remote UNIX Execution Using a UDM Logical Session Name

 rmtsys=dallas user=joe pwd= abcdefgopen
 rmtsys cmd="ls -al /home/joe"exec

Remote Execution Requirements for IBM i

These examples illustrate how to execute a process on a remote IBM i system using the UDM command. Each example lists the contents ofexec
the library .joelib

If no DNS entry is available for the remote host, use a statement like the one shown in ; otherwise,Remote IBM i Execution Using an IP Address
use something similar to .Remote IBM i Execution Using a Host Name

To execute a command on a remote system using an active UDM transfer session, follow the example shown in Remote IBM i Execution Using a
.UDM Logical Session Name

The command initiates UCMD Manager via runtime linkage on IBM i. Stonebranch only supports runtime linkage to the UCMD Managerexec
using the exec command.

The operating system sends the output for the remote IBM i job to . Use the Universal Submit Job utility (USBMJOB) to bring the outputQPRINT
back to the local host via the UCMD Manager.

Remote IBM i Execution Using an IP Address

 192.168.10.111 cmd="dsplib joelib" user=joe pwd=abcdefgexec

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user91

Remote IBM i Execution Using a Host Name

 dallas cmd="dsplib joelib" user=joe pwd=abcdefgexec

Remote IBM i Execution Using a UDM Logical Session Name

 rmtsys=dallas user=joe pwd= abcdefgopen
 rmtsys cmd=" dsplib joelib"exec

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user92

Remote Execution via Universal Data Mover - Examples

Remote Execution Examples

Windows Directory Listing Using a Batch File - Default Directory
Windows Directory Listing Using a Batch File - Returned File
UNIX - Listing Using a Shell Script
UNIX - Integrating UDM with FTP Using a Shell Script
UNIX - Integrating UDM with FTP Using a Command Reference
IBM i from Windows, UNIX, or IBM i - exec Command Return Codes

In order to keep these examples as clear as possible, they do not check for error conditions. If any example is adopted for production
use, it is recommended that you add appropriate error processing.

Universal Agent 6.6.x User Guide

 / ua-66x-user93

Windows Directory Listing Using a Batch File - Default Directory

Windows Directory Listing Using a Batch File - Default Directory
UDM exec Command Parameters
Components

Windows Directory Listing Using a Batch File - Default Directory

This example demonstrates using UCMD Manager via the UDM Manager command to provide a directory listing using a batch file.exec

The output from the batch file is redirected to the file . If this is not done, the output from the listing is output via UDM along with thestdout.txt
Transaction Log. UDM creates the file in UDM's default directory, .stdout.txt Files\Universal\UCmdHome\joe

Note
The last directory in the path corresponds to the user ID under which the command is executed. No open state is used, and the
remote host on the command is specified using the IP address.exec

 echo=yesset
 192.168.20.47 cmd="C:\wrk\xmp\win\winxmp.bat > stdout.txt" user=joe pwd=abcdefgexec
 quit

The batch file simply does a command against the directory in which the batch file resides.winxmp.bat dir

 "C:\wrk\xmp\win"dir

Output sent to .stdout.txt

C:\Program Files\Universal\UCmdHome\mamos>dir "C:\wrk\xmp\win"
 Volume in drive C has no label.
 Volume Serial Number is 3030-176B

 Directory of C:\wrk\xmp\win

07/27/2011 03:27 PM <DIR> .
07/27/2011 03:27 PM <DIR> ..
07/27/2011 10:08 AM 20 winxmp.bat
07/27/2011 03:46 PM 106 winxmpbat.udm
 2 File(s) 126 bytes
 2 Dir(s) 13,453,979,648 bytes free

The transaction log is shown in this first example for those not used to seeing output from UDM.

2011.07.27 16.06.47.541 UNV2800I Universal Data Mover 5.1.0 Level 1 Release Build 105 started.
2011.07.27 16.06.47.556 Processing script: winxmpbat.udm
2011.07.27 16.06.47.556 exec 192.168.20.47 cmd="C:\wrk\xmp\win\winxmp.bat > stdout.txt" user=joe
pwd=*
2011.07.27 16.06.48.431 quit
2011.07.27 16.06.48.447 Finished processing script: winxmpbat.udm
2011.07.27 16.06.49.447 UNV2801I Universal Data Mover 5.1.0 Level 1 Release Build 105 ended
successfully.

UDM exec Command Parameters

The command parameters used in this example are:exec

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/dir+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/dir+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user94

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

Components

Universal Data Mover Manager for Windows

Universal Command Server for Windows

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user95

1.

2.

3.
4.

5.
6.
7.
8.
9.

10.

Windows Directory Listing Using a Batch File - Returned File

Windows Directory Listing Using a Batch File - Returned File
UDM exec Command Parameters
Components

Windows Directory Listing Using a Batch File - Returned File

This example builds on the example illustrated in .Windows Directory Listing Using a Batch File - Default Directory

Keep in mind that both the batch file and the file created by the redirected output reside on the remote system.

1 echo=noset
2 outdir=C:\tmp\joeset
3 r=dallas user=joe pwd=abcdefgopen
4 r cmd="C:\wrk\xmp\win\winxmp.bat $(outdir)\stdout.txt" user=joe pwd=abcdefgexec
5 r=$(outdir)cd
6 local=C:\tmp\tmpcd
7 local createop=replaceattrib
8 r=stdout.txtcopy
9 local cmd="type C:\tmp\tmp\stdout.txt" user=joe pwd=abcdefgexec
10 quit

Due to the complexity of this example, each line (numbered for your convenience) is explained, below.

Echo is turned off to minimize the amount of information in the transaction log due to its size. You are encouraged to set up the example
and work through the transaction log.
Set a variable, , for later use. Instead of setting the variable inside of the UDM script, the variable and its associated value couldoutdir
have been provided externally via a script option.
Open the UDM connection for a two-party transfer. The manager will act as the primary server and is known as .local
Execute the remote command passing the full path to the file for the redirected output. Note the use of the variable inside of the double
quotations; this is a UDM feature.
Change the directory for the remote system to the directory in which resides.stdout.txt
Change the directory for the local system to the location in which you want to reside.stdout.txt
Set the attribute for the local system to allow replacement of the incoming file.
Perform the file copy.
Execute a command on the local system to display the contents of the received file. UCMD server runs on the local system just as it
would on the remote system to execute the command.
Quit and exit the UCMD Manager.

The batch file now echoes the received parameter. This puts output into the transaction log so that you can see what was passed towinxmp.bat
the remote system. The second line performs the command and redirects output to .dir stdout.txt

 %1echo
 "C:\wrk\xmp\win" > %1dir

Output sent to .stdout.txt

C:\Program Files\Universal\UCmdHome\joe>dir "C:\wrk\xmp\win"
 Volume in drive C has no label.
 Volume Serial Number is 3030-176B

 Directory of C:\wrk\xmp\win

07/27/2011 03:27 PM <DIR> .
07/27/2011 03:27 PM <DIR> ..
07/27/2011 10:08 AM 20 winxmp.bat
07/27/2011 03:46 PM 106 winxmpbat.udm
 2 File(s) 126 bytes
 2 Dir(s) 13,453,979,648 bytes free

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/dir+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/echo+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/dir+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user96

UDM exec Command Parameters

The command parameters used in this example are:exec

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

Components

Universal Data Mover Manager for Windows

Universal Command Server for Windows

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user97

1.
2.

3.

4.

UNIX - Listing Using a Shell Script

UNIX Listing Using a Shell Script
UDM Script Explanation
UDM exec Command Parameters
Components

UNIX Listing Using a Shell Script

In this example, the command runs on a UNIX system via UCMD Manager and executes the command to a remote UNIX system usingexec sh
UCMD Server. With a shell interpreter, such as Cygwin, installed under Windows, the same example would also apply to a Windows system. The
example was tested using Linux as both the local and remote platforms.

Both the shell script and the file created by the shell script reside on the remote system. If you are walking through all the examples in order,
notice that in this example the shell script redirects stdout to the file, whereas in the Windows example the command initiated by thestdout.txt
remote UCMD server redirected stdout to the file.stdout.txt

Due to this difference, in this example is created in the current directory as set by the shell script and in the Windows example it isstdout.txt
created in the UCMD server working directory.

1. echo=yesset
2. r=houston user=joe pwd=abcdefg port=7887open
3. r cmd="sh /home/joe/wrk/xmp/ls/ls.sh" user=joe pwd=abcdefg port=7887exec
4. quit

UDM Script Explanation

Turns echo on to put the commands into the transaction log.
Open a connection to the remote UDM server using remote port 7887. This is the default port and can be changed by setting the port
number in the Universal Broker configuration file on the remote system. When the port number is changed, Universal Broker on the
remote system on which the configuration file change was made must be stopped and then started.
Execute the shell script on the remote system. The port must be specified on the command if it is set to a value other than the default
value.
Quit command stops UDM script execution and the UDM script completes.

The shell script changes the current directory, generates the listing via the shell command, redirects the output of the command to the ls ls
 file and then uses the shell command to output the contents of to the stdout stream.stdout.txt cat stdout.txt

The stdout stream is returned by the UDM Server to the UDM Manager and is output to the transaction log.

cd /home/joe/wrk/xmp/ls
ls > stdout.txt
cat stdout.txt

Output sent to .stdout.txt

ls.sh
stdout.txt

Output sent to the UDM transaction log via stdout from the UDM Manager.

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user98

2011.07.28 10.13.06.845 UNV2800I Universal Data Mover 6.3.0 Level 0 Release Build 104 started.
2011.07.28 10.13.06.845 Processing script: ls.udm
2011.07.28 10.13.06.847 r=houston user=joe pwd=* port=7887open
2011.07.28 10.13.07.114 Data session established using cipher: NULL-MD5
2011.07.28 10.13.07.159 Two party session established with r (component 1278600806)
2011.07.28 10.13.07.161 Transfer mode settings:
2011.07.28 10.13.07.198 type=binary
2011.07.28 10.13.07.198 trim=no
2011.07.28 10.13.07.198 Session options:
2011.07.28 10.13.07.198 Keep Alive Interval: 120
2011.07.28 10.13.07.198 Network Fault Tolerant: yes
2011.07.28 10.13.07.198 r cmd="sh /home/joe/wrk/xmp/ls/ls.sh" user=joe pwd=* port=7887exec
ls.sh
stdout.txt

2011.07.28 10.13.08.072 quit
2011.07.28 10.13.08.074 Session closed
2011.07.28 10.13.08.074 Finished processing script: ls.udm
2011.07.28 10.13.10.074 UNV2801I Universal Data Mover 6.3.0 Level 0 Release Build 104 ended
successfully.

UDM exec Command Parameters

The command parameters used in this example are:exec

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited from the UDM Manager's configuration
file unless explicitly overridden in the call to the exec command.

Components

Universal Data Mover Manager for UNIX

Universal Command Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user99

UNIX - Integrating UDM with FTP Using a Shell Script

UNIX - Integrating UDM with FTP Using a Shell Script
UDM exec Command Parameters
Components

UNIX - Integrating UDM with FTP Using a Shell Script

Remote process may require coordination with UDM. The command provides a method for this coordination.exec

In this example, a file is transferred into a secure area behind a firewall and then is forwarded to a second system using FTP. In actual practice,
the same file could be forwarded to multiple systems using FTP, and then the command used to send notices to those same systems.exec

For simplicity, the file is "pulled" to the local system using UDM and then "pushed" to the remote system inside of the firewall using FTP. UDM's
three-party transfer capability allows transferring a file from one remote system to another and initiating processes on either of those remote
systems, the local system, or any other system running a UCMD Server.

The example was tested using a Windows system as the remote system from which the file is initially pulled. The example would work without
change if the remote system were a UNIX system. The local test system on which the UDM Manager runs is Linux and the test system to which
the file is sent using FTP is also Linux.

1. echo=yesset
2. rmt=192.168.20.47 user=joe pwd=abcdefg port=7887open
3. type=textmode
4. local createop=replaceattrib
5. rmt=C:\tmp\tmpcd
6. local=/home/joe/wrk/xmp/dmzFtpcd
7. rmt=file.txt.org local=file.txtcopy
8. local cmd="sh /home/joe/wrk/xmp/dmzFtp/ftp.sh" user=joe pwd=abcdefg port=7887exec
9. dev-linux24 cmd="ls /home/joe/tmp" user=joe pwd=abcdefg port=7887exec
10. quit

The shell script sets up and executes FTP commands.

ftp -ipnv houston <

UDM exec Command Parameters

The command parameters used in this example are:exec

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited from the UDM Manager's
configuration file unless explicitly overridden in the call to the exec command.

Components

Universal Data Mover Manager for UNIX

Universal Command Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user100

UNIX - Integrating UDM with FTP Using a Command Reference

UNIX - Integrating UDM with FTP Using a Command Reference
UDM Script Explanation
UDM exec Command Parameters

UNIX - Integrating UDM with FTP Using a Command Reference

This example demonstrates the use of Command Reference files. Command References provides a very secure environment in which to store
and from which to execute commands and scripts for use with UCMD Manager.

Note
This example is based on the example in . Understanding that example isUNIX - Integrating UDM with FTP Using a Shell Script
a prerequisite to using this one. Also, the test environment in the previous example is the same as in this example.

If you are not familiar with Command References, please read .Command References

UDM Script Explanation

Other than Line 8, this UDM script is identical to the previous example. The command in line 8 uses the UCMD server running on the localexec
system to execute the shell script contained in the Command Reference file . One option, the remote system name, is passed to the scriptftp.cref
via the Command Reference.

Command Reference files must reside in the directory specified by the UCMD Server configuration option. OnCMD_REFERENCE_DIRECTORY
UNIX systems this directory defaults to ./var/opt/universal/cmdref

1. echo=yesset
2. rmt=192.168.20.47 user=joe pwd=abcdefg port=7887open
3. type=textmode
4. local createop=replaceattrib
5. rmt=C:\tmp\tmpcd
6. local=/home/joe/wrk/xmp/dmzFtpcd
7. rmt=file.txt.org local=file.txtcopy
8. local cmdref="ftp.cref houston" user=joe pwd=abcdefg port=7887exec
9. houston cmd="ls /home/joe/tmp" user=joe pwd=abcdefg port=7887exec
10. quit

The Command Reference file contains the shell script used to FTP the file to the remote system behind the firewall. The allow_optionsftp.cref
option is changed to to allow the server address to be passed to the script. By default, no options are passed.yes

The format option is changed from cmd to script; otherwise, the script will not be generated.

Command reference to read a file.
#
-format script
-type shell
-allow_options yes

ftp -ipnv $1 <

UDM exec Command Parameters

The command parameters used in this example are:exec

Parameter Description

cmdref Command Reference file name and, optionally, options to be passed to the command or script.

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX+-+Commands#UniversalCommandServerforUNIX-Commands-CommandReferences
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/CMD_REFERENCE_DIRECTORY+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user101

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited from the UDM Manager's configuration
file unless explicitly overridden in the call to the exec command.

Universal Agent 6.6.x User Guide

 / ua-66x-user102

1.
2.
3.
4.
5.
6.
7.

IBM i from Windows, UNIX, or IBM i - exec Command Return Codes

IBM i from Windows, UNIX, or IBM i - exec Command Return Codes
UDM Script Explanation
Operating System-Specific Information
UDM exec Command Parameters
Components

IBM i from Windows, UNIX, or IBM i - exec Command Return Codes

This example demonstrates using the built-in variable._execrc

For IBM i, the UCMD Server checks the error severity for each CL command issued. If the severity of the error exceeds the value set via the
UCMD Server option, the value is returned via . A UCMD Server error may also result in being set. If no errorEND_SEVERITY _execrc _execrc
occurs, is zero._execrc

Generally, UCMD Server return codes for IBM i are 200 or greater. Therefore, return codes associated with and with the UCMDEND_SEVERITY
Server do not conflict.

The parameter passes options to the UCMD Server. These options override both the defaults and the options contained in the UCMDsvropt
Server configuration file. The value prevents the job log from being returned to the transaction log via stdout. (Do not include -joblog never

 if you want the job log.) The spaces before and after the double quotation marks are significant. can also be overridden.svropt END_SEVERITY

The commands are both broken into two lines. The and characters are line continuation characters. Using trims all leading blanks fromexec - + -
the beginning of the next line; using retains the blanks. In the example script, only one blank remains to separate the text on the two lines after+
they are concatenated.

This UDM example script was tested on three different platforms: Linux, Windows XP, and IBM i.

1. echo=yesset
2. atlanta cmd="SAVLIB LIB(NONAME) DEV(*SAVF) SAVF(QGPL/ABC)" user=joe -exec
 pwd=abcdefg port=27887 svropt=" \-joblog never "
3. "rc = " $(_execrc)echo
4. $(_execrc) GE 30if
5. atlanta cmd="SNDMSG MSG('The command, SAVLIB LIB(NONAME) DEV(*SAVF) -exec
 SAVF(QGPL/ABC), failed') TOUSR(*SYSOPR)" user=joe pwd=abcdefg port=27887 svropt=" \-joblog
never "
6. end
7. quit

UDM Script Explanation

The script issues an IBM i command that fails and, based on the failure, issues an IBM i command to notify the system operator.

Turns echo on.
Issues a SAVLIB command to system atlanta which fails with end severity 40.
Echoes the value returned to the UDM Manager from the system via the UCMD Server.
Checks for the error.
Issues the SNDMSG command to notify the system operator.
Closes the if statement.
Cleans up and exits the UDM script.

Operating System-Specific Information

Although the same script works equally well on Windows, UNIX, and IBM i, the syntax for submitting the script differs.

Windows and UNIX The syntax is . udm -s script-path
To run the example, change the current directory to the location of the script and issue , where udm -s xmp0.udm

 is the name of the file containing the script.xmp0.udm

IBM i The syntax is . STRUDM qualified-file-name file-member-name
To run the example, enter . The file and member names are positional parameters. STRUDM joe/qscrsrc xmp0_udm

 is also valid.STRUDM SCRFILE(JOE/QSCRSRC) SCRMBR(XMP0_UDM)

https://www.stonebranch.com/confluence/display/UA66/_execrc+-+UDM+Built-in+Variable
https://www.stonebranch.com/confluence/display/UA66/END_SEVERITY+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/_execrc+-+UDM+Built-in+Variable
https://www.stonebranch.com/confluence/display/UA66/_execrc+-+UDM+Built-in+Variable
https://www.stonebranch.com/confluence/display/UA66/_execrc+-+UDM+Built-in+Variable
https://www.stonebranch.com/confluence/display/UA66/END_SEVERITY+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/END_SEVERITY+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/echo+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+if+Statement
https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user103

UDM exec Command Parameters

The command parameters used in this example are:exec

Parameter Description

cmd Command Reference file name and,
optionally, options to be passed to the
command or script.

user Remote user ID with which to authenticate and execute the command on the remote system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited
from the UDM Manager's configuration file unless explicitly overridden in the call to the exec
command.

svropt Server option to pass to the UCMD server.

Components

Universal Data Mover Manager for IBM i

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

Universal Command Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/exec+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UCMD510/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user104

Remote Execution for SAP Systems

Overview
Work Requests

Detailed Information

Overview

These pages provide information on the Remote Processing for SAP Systems feature of Universal Agent.

Remote Execution for SAP Systems refers to the initiation of work within an SAP system from some location outside of the SAP system. The type
of work initiated within the SAP system is primarily centered on job control. Job control refers to the scheduling, running, monitoring, and
managing of jobs and job data.

The component of Universal Agent is used to execute this work on the remote SAP system.Universal Connector for SAP

Universal Connector for SAP operates as a single Universal Agent component on the local system. It accepts work requests on the local system
and communicates directly with the SAP system to carry out those requests (no Universal Agent components are required on the SAP system).

Each work request requires a user identifier. The supplied user identifier is authenticated on the SAP system before the work can begin. If
authentication is successful, the work will be performed on the SAP system under the context of the authenticated user. If authentication fails, no
work is performed and the request fails.

Universal Connector for SAP communicates with SAP systems using SAP's RFC communication protocol. Work requests within the SAP system
are made through external interfaces exposed by the SAP system. The primary SAP interface used by Universal Connector for SAP is XBP
(eXternal Background Processing).

Work Requests

The following list identifies general work requests that can be performed on the SAP system using Universal Agent:

Define/submit SAP jobs
Modify SAP jobs
Start SAP jobs
Monitor SAP jobs
Cancel running SAP jobs
Retrieve the job log of SAP jobs
Retrieve the spool lists of SAP jobs
Delete SAP jobs and their associated output
Query jobs in the SAP system
Define/create SAP variants
Modify SAP variants
Query variants in the SAP system
Raise SAP events
Process/monitor Batch Input sessions
Initiate/monitor Mass Activities
Retrieve the SAP system log
Retrieve output device information

Detailed Information

The following pages provide detailed information for Remote Execution for SAP Systems:

Mass Activities Support in Universal Connector
Mass Activities Support Example for zOS
Batch Input Monitoring in Universal Connector
Batch Input Monitoring Example for zOS
Remote Execution for SAP Systems - Examples

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user105

Remote Execution for SAP Systems - Examples

The following Remote Execution for SAP are specific to the operating systems supported by Universal Agent. The examples demonstrate the use
of Universal Connector to define SAP jobs.

Links to detailed technical information on appropriate Universal Agent components are provided for each example.

Remote Execution for SAP Systems Examples - z/OS and UNIX

Define Job, Run Job, Get Output, and Purge Job

Remote Execution for SAP Systems Examples - z/OS

Submitting Job to SAP Using SAP Job as Template
Submitting Job to SAP Using Job Definition File
Running Job on SAP Using SAP Job
Running Job on SAP Using Job Definition File
Running an SAP Job on a Specific SAP Server
Variant Substitution
Creating a Variant Substitution Using GENERATE VARDEF Command
Creating a Job Definition Using GENERATE JOBDEF Command

Remote Execution for SAP Systems Examples - UNIX

Submitting an SAP Job Using SAP Job as Template
Submitting an SAP Job Using Job Definition File
Running an SAP Job Using SAP Job as Template
Running an SAP Job Using a Job Definition File
Running an SAP Job on a Specific SAP Server
Variant Substitution
Creating a Variant Definition Using GENERATE VARDEF Command
Creating Job Definition Using GENERATE JOBDEF Command

Universal Agent 6.6.x User Guide

 / ua-66x-user106

Define Job, Run Job, Get Output, and Purge Job

Define Job, Run Job, Get Output, and Purge Job
Command Options
Components

Define Job, Run Job, Get Output, and Purge Job

This example uses an existing job in an SAP system as a model and creates a copy.

The newly created job then is started. Universal Connector waits for the job to finish, and then writes the joblog to standard error and the
spoollists to standard out.

Finally, the job and its output are purged from the SAP system.

usap -sub -j SAMPLE1 -b 10080901 -start -wait -purge -userid sapuser -pwd sappwd -dest BIN_HS0092
-client 800

Command Options

The command options used are:

Command Options Description

-sub Submit command which defines a job to an SAP system. The lack of a job definition file indicates that the
definition will use an existing job as a model. That job will be identified by -jobname and -jobid.

-start Specification that the job should be started.

-wait Causes Universal Connector to wait for the job to complete.

-purge Specification that the job and its associated output are to be purged from the SAP system.

-userid External SAP user ID with which the command is executed.

-pwd Password for the user ID.

-dest Destination name in the file.saprfc.ini

-client SAP client number.

Components

Universal Connector for z/OS

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PURGE_JOB+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user107

Universal Agent 6.6.x User Guide

 / ua-66x-user108

Submitting Job to SAP Using SAP Job as Template - zOS

Submitting a Job to an SAP System Using a Pre-existing SAP Job as a Template - z/OS
SYSIN Options
Components

Submitting a Job to an SAP System Using a Pre-existing SAP Job as a Template - z/OS

This example illustrates submitting a job to an SAP system using a pre-existing SAP job as a template for the submitted job.

//USPSUB1 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample will submit a new job to an SAP system using a
//* pre-existing SAP job as a template.
//*
//* NOTE: This job assumes (and requires) that a job already
//* exists on an the SAP system with:
//* Job Name: USPSUB1
//* Job ID: 12345678
//*
//* After running this job, a new SAP job will be created on the
//* SAP system. The new job will have the same name as the
//* pre-existing job that was used as a template. However, the
//* SAP system will assign a new job ID.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub
 -jobname USPSUB1
 -jobid 12345678
/*

The JCL procedure USPPRC is used to execute the Universal Connector command. Universal Connector connects to the SAP system and
performs the requested work. In this case, a new job is created on the SAP system that is identical to the template job with the exception of job ID.

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user109

-sub Specification that Universal Connector will issue the SUBMIT command.

-jobname Job name of the SAP job that will be used as a template.

-jobid Job ID of the SAP job that will be used as a template.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user110

Submitting Job to SAP Using Job Definition File - zOS

Submitting a Job to an SAP System Using a Universal Connector Job Definition File - z/OS
SYSIN Options
Components

Submitting a Job to an SAP System Using a Universal Connector Job Definition File - z/OS

This example illustrates submitting a job to an SAP system using Universal Connector job definition file.

//USPSUB2 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample will submit a new job to an SAP system.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//JOBDEF DD *
 /* Job Header statement. */
 JOBNAME = "USPSUB2";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "BTCSPOOL";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub JOBDEF
/*

The JCL procedure USPPRC is used to execute the Universal Connector command. Universal Connector connects to the SAP system and
performs the requested work. In this case, a new job is created on the SAP system based on a definition that was provided in a Universal
Connector definition file.

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

Components

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user111

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user112

Running Job on SAP Using SAP Job - zOS

Running a Job on an SAP System Using a Pre-existing SAP Job - z/OS
SYSIN Options

Components

Running a Job on an SAP System Using a Pre-existing SAP Job - z/OS

This example illustrates running a job on an SAP system using a pre-existing SAP job.

//USPRUN1 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample will:
//* 1. Submit a new job to an SAP system using a pre-existing SAP
//* job as a template.
//* 2. Start the newly created job.
//* 3. Wait for the job to complete.
//* 4. Return the job log.
//* 5. Return the spool list.
//* 6. The SAP job completion status will be mapped to an exit
//* code. USAP will exit with the mapped exit code.
//*
//* NOTE: This job assumes (and requires) that a job already
//* exists on the SAP system with:
//* Job Name: USPRUN1
//* Job ID: 12345678
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub
 -jobname USPRUN1
 -jobid 12345678
 -start
 -wait
 -joblog yes
 -spoollist yes
/*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user113

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-jobname Job name of the SAP job that will be used as a template.

-jobid Job ID of the SAP job that will be used as a template.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user114

Running Job on SAP Using Job Definition File - zOS

Running a Job on an SAP System Using a Universal Connector Job Definition File - z/OS
SYSIN Options
Components

Running a Job on an SAP System Using a Universal Connector Job Definition File - z/OS

This example illustrates running a job on an SAP system using a Universal Connector job definition file.

//USPRUN2 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample will:
//* 1. Submit a new job to an SAP system.
//* 2. Start the job.
//* 3. Wait for the job to complete.
//* 4. Return the job log.
//* 5. Return the spool list.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//JOBDEF DD *
 /* Job Header statement. */
 JOBNAME = "USPRUN";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "BTCSPOOL";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub JOBDEF
 -start
 -wait
 -joblog yes
 -spoollist yes
/*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user115

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user116

Running an SAP Job on a Specific SAP Server - zOS

Running an SAP Job on a Specific SAP Server - z/OS
SYSIN Options
Components

Running an SAP Job on a Specific SAP Server - z/OS

This example illustrates running an SAP job on a specific SAP Server.

//USPRUN3 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample demonstrates how to specify a specific SAP server
//* for the SAP job to run on.
//*
//* This sample will:
//* 1. Submit a new job to an SAP system.
//* 2. Start the job on a specific SAP server.
//* 3. Wait for the job to complete.
//* 4. Return the job log.
//* 5. Return the spool list.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//JOBDEF DD *
 /* Job Header statement. */
 JOBNAME = "USPRUN3";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "BTCSPOOL";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub JOBDEF
 -start
 -targetserver pwdf2643
 -wait
 -joblog yes
 -spoollist yes
 /*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user117

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-targetserver Target server for the SAP job to run on.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TARGET_SERVER+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user118

Variant Substitution - zOS

Variant Substitution - z/OS
SYSIN Options
Components

Variant Substitution - z/OS

This example demonstrates the use of variant substitution.

When Universal Connector is using pre-defined SAP jobs as template jobs (rather than Universal Connector job definition files), it may be
necessary or desirable to replace the variants specified in the template job with variants more appropriate for the current job run. In this case,
Universal Connector's target_variant option can be used to accomplish the variant substitution.

//USPVARSB JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample demonstrates the use of USAP's target_variant
//* option to perform variant substitution when using pre-defined
//* SAP jobs as templates.
//*
//* NOTE: This job assumes (and requires) that a job already
//* exists on an the SAP system with:
//* Job Name: VARSBST1
//* Job ID: 12345678
//*
//* This sample will:
//* 1. Modify variants SBT1 and SBT2 with values required for this
//* job run.
//* 2. Submit a new job to the SAP system using a pre-existing SAP
//* job as a template.
//* 3. Perform variant substitution on the newly created job. The
//* newly created job will now use variants SBT1 and SBT2 for
//* steps 1 and 2 respectively (regardless of what variants
//* were defined in the template job).
//* 4. Wait for the job to complete.
//* 5. Return the job log.
//* 6. Return the spool list.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//***
//* Modify variant 'SBT1' for ABAP program RSUSR002
//***
//STEP1 EXEC USPPRC
//VARDEF DD *
 /* Variant Header statement. */
 VARIANT_NAME = "SBT1"
 REPORT = "RSUSR002";
 /* User */
 SELNAME = "USER"
 KIND = "S"
 SIGN = "I"
 OPTION = "CP"
 LOW = "STONEBRANCH"
 HIGH = "";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -modify VARDEF
/*
//***
//* Modify variant 'SBT2' for ABAP program RSUSR002
//***
//STEP2 EXEC USPPRC
//VARDEF DD *
 /* Variant Header statement. */
 VARIANT_NAME = "SBT2"

Universal Agent 6.6.x User Guide

 / ua-66x-user119

 REPORT = "RSUSR002";
 /* User */
 SELNAME = "USER"
 KIND = "S"
 SIGN = "I"
 OPTION = "CP"
 LOW = "STONEBRANCH1"
 HIGH = "";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -modify VARDEF
/*
//***
//* Run SAP job using a pre-defined SAP job as a template and
//* perform variant substitution.
//*
//* NOTE: This job assumes (and requires) that a job already
//* exists on an the SAP system with:
//* Job Name: VARSBST1
//* Job ID: 12345678
//*
//* The pre-defined job must have ABAP program RSUSR002 defined in
//* step one and step two.
//***
//STEP3 EXEC USPPRC
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -run
 -jobname VARSBST1
 -jobid 12345678

Universal Agent 6.6.x User Guide

 / ua-66x-user120

 -target_variant 1,SBT1;2,SBT2
/*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-targetserver Target server for the SAP job to run on.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TARGET_SERVER+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user121

Creating a Variant Substitution Using GENERATE VARDEF Command - zOS

Creating a Universal Connector Variant Definition Using the GENERATE VARDEF Command - z/OS
SYSIN Options
Components

Creating a Universal Connector Variant Definition Using the GENERATE VARDEF Command - z/OS

SAP variants often have many parameters. Manually creating Universal Connector variant definitions can be tedious and time consuming.

Universal Connector offers a function that generates a complete variant definition based on a pre-existing template variant on the SAP system.
The generated variant definition then can be used with a Universal Connector SUBMIT or MODIFY command to prepare a variant for a job run.

The following example demonstrates the use of the GENERATE VARDEF command.

//USPGEN1 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample generates a USAP variant definition based on a
//* pre-existing template variant on an SAP system.
//*
//* NOTE: This job assumes (and requires) that a variant named SBT1
//* exists for ABAP program RSBDCSUB.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -generate vardef
 -abapname RSBDCSUB
 -variant SBT1
/*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-generate Instructs Universal Connector to generate the specified variant definition.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/GENERATE+VARIANT+DEFINITION+FILE+-+USAP+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user122

-abapname Name of the ABAP program that the template variant belongs to.

-variant Name of the variant that Universal Connector will use as a template for generation.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/ABAP_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/VARIANT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user123

Creating a Job Definition Using GENERATE JOBDEF Command - zOS

Creating a Universal Connector Job Definition Using the GENERATE JOBDEF Command - z/OS
SYSIN Options
Components

Creating a Universal Connector Job Definition Using the GENERATE JOBDEF Command - z/OS

SAP jobs offer many configuration options. Manually creating Universal Connector job definitions that utilize many configuration options can be
tedious and time consuming.

Universal Connector offers a function that generates a complete job definition based on a pre-existing template job on the SAP system. The
generated job definition can then be modified, if needed.

The following example demonstrates the use of the generate jobdef command.

//USPGEN2 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample generates a USAP job definition based on a
//* pre-existing template job on an SAP system.
//*
//* NOTE: This job assumes (and requires) that a job already
//* exists on an the SAP system with:
//* Job Name: USP_TEMPLATE_1
//* Job ID: 12345678
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//SYSIN DD *
-dest CF5
-client 800
-userid sapuid
-pwd sappwd
-generate jobdef
-jobname USP_TEMPLATE_1
-jobid 12345678
/*

SYSIN Options

SYSIN options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-jobname Name of the SAP job that will be used as a template for generation.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user124

-jobid Job ID of the SAP job that will be used as a template for generation.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user125

Submitting an SAP Job Using SAP Job as Template - UNIX

Submitting a Job to an SAP System Using a Pre-existing SAP Job as a Template - UNIX
Command Line Options
Components

Submitting a Job to an SAP System Using a Pre-existing SAP Job as a Template - UNIX

This example illustrates submitting a job to an SAP system using a pre-existing SAP job as a template for the submitted job.

Note
This job assumes (and requires) that a job already exists on an the SAP system with:

Job Name: USPSUB1
Job ID: 12345678

After running this job, a new SAP job will be created on the SAP system. The new job will be identical to the template job with the exception of job
ID. The SAP system will assign a new job ID.

The following figure illustrates the command to submit the job.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd -sub
-jobname USPSUB1 -jobid 12345678

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-jobname Job name of the SAP job that will be used as a template.

-jobid Job ID of the SAP job that will be used as a template.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user126

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user127

Submitting an SAP Job Using Job Definition File - UNIX

Submitting a Job to an SAP System Using a Universal Connector Job Definition File - UNIX
Command Line Options
Components

Submitting a Job to an SAP System Using a Universal Connector Job Definition File - UNIX

This example illustrates submitting a job to an SAP system using Universal Connector job definition file.

The following figure illustrates the job definition file.

/* Job Header statement. */
 JOBNAME = "USPSUB2";

/* ABAP Step statement. */
ABAP_STEP = "STEP 1"
ABAP_PROGRAM_NAME = "BTCSPOOL";

The following figure illustrates the command to submit the job.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -sub jobdefFile

After running this job, a new SAP job will be created on the SAP system with job name . The job will contain one step that runs ABAPUSPSUB2
program .BTCSPOOL

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user128

Universal Agent 6.6.x User Guide

 / ua-66x-user129

Running an SAP Job Using SAP Job as Template - UNIX

Running a Job on an SAP System Using a Pre-existing SAP Job - UNIX
Command Line Options
Components

Running a Job on an SAP System Using a Pre-existing SAP Job - UNIX

This example illustrates running a job on an SAP system using a pre-existing SAP job.

1 Submit a new job to an SAP system using a pre-existing SAP job as a template.

2 Start the newly created job.

3 Wait for the job to complete.

4 Return the job log.

5 Return the spool list.

6 The SAP job completion status will be mapped to an exit code and Universal Connector will exit with the mapped exit code.

Note
This job assumes (and requires) that a job already exists on an the SAP system with:

Job Name: USPRUN1
Job ID: 12345678

The following figure illustrates the command to run the job.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -sub -jobname USPRUN1 -jobid 12345678 -start -wait
 -joblog yes -spoollist yes

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user130

-sub Specification that Universal Connector will issue the SUBMIT command.

-jobname Job name of the SAP job that will be used as a template.

-jobid Job ID of the SAP job that will be used as a template.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user131

Running an SAP Job Using a Job Definition File - UNIX

Running a Job on an SAP System Using a Universal Connector Job Definition File - UNIX
Command Line Options
Components

Running a Job on an SAP System Using a Universal Connector Job Definition File - UNIX

This example illustrates running a job on an SAP system using a Universal Connector job definition file.

Executing this sample will:

1 Submit a new job to an SAP system.

2 Start the job.

3 Wait for the job to complete.

4 Return the job log.

5 Return the spool list.

The following figure illustrates the job definition file.

/* Job Header statement. */
 JOBNAME = "USPRUN";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "BTCSPOOL";

The following figure illustrates the command to run the job.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -sub JOBDEF -start -wait -joblog yes -spoollist yes

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user132

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user133

Running an SAP Job on a Specific SAP Server - UNIX

Running a Job on an SAP System on a Specific SAP Server - UNIX
Command Line Options
Components

Running a Job on an SAP System on a Specific SAP Server - UNIX

This example illustrates running a job on an SAP system on a specific SAP Server.

Executing this example will:

1 Submit a new job to an SAP system.

2 Start the job on a specific SAP server.

3 Wait for the job to complete.

4 Return the job log.

5 Return the spool list.

The following figure illustrates the job definition file.

/* Job Header statement. */
 JOBNAME = "USPRUN3";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "BTCSPOOL";

The following figure illustrates the command to run the job.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -sub jobdefFile -start -targetserver pwdf2643 -wait
 -joblog yes -spoollist yes

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user134

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-targetserver Target server for the SAP job to run on.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TARGET_SERVER+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user135

1.
2.
3.

1.
2.
3.

4.
5.
6.

Variant Substitution - UNIX

Variant Substitution - UNIX
Step One
Step Two
Step Three
Command Line Options
Components

Variant Substitution - UNIX

This example demonstrates the use of variant substitution.

When Universal Connector is using pre-defined SAP jobs as template jobs (rather than USAP job definition files), it may be necessary or
desirable to replace the variants specified in the template job with variants more appropriate for the current job run. In this case, Universal
Connector's TARGET_VARIANT option can be used to accomplish the variant substitution.

This example is comprised of three steps:

Step one modifies SAP variant SBT1.
Step two modifies SAP variant SBT2.
Step three runs a new SAP job that is created using a pre-existing SAP job as a template.

Variant substitution is performed on the newly created job. As a result, the newly created job will run using the variants that were modified in steps
one and two.

Executing this example will:

Modify variants SBT1 and SBT2 with values required for this job run.
Submit a new job to the SAP system using a pre-existing SAP job as a template.
Perform variant substitution on the newly created job. The newly created job will now use variants SBT1 and SBT2 for steps 1 and 2,
respectively (regardless of what variants were defined in the template job).
Wait for the job to complete.
Return the job log.
Return the spool list.

Note
This job assumes (and requires) that a job already exists on an the SAP system with:

Job Name: VARSBST1
Job ID: 12345678

Step One

This step modifies SAP variant .SBT1

The following figure illustrates the variant definition file for variant .SBT1

 /* Variant Header statement. */
 VARIANT_NAME = "SBT1"
 REPORT = "RSUSR002";

 /* User */
 SELNAME = "USER"
 KIND = "S"
 SIGN = "I"
 OPTION = "CP"
 LOW = "STONEBRANCH"
 HIGH = "";

The following figure illustrates the command line to modify variant .SBT1

Universal Agent 6.6.x User Guide

 / ua-66x-user136

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -modify vardefFile1

Step Two

This step modifies SAP variant .SBT2

The following figure illustrates the variant definition file for variant .SBT2

 /* Variant Header statement. */
 VARIANT_NAME = "SBT2"
 REPORT = "RSUSR002";

 /* User */
 SELNAME = "USER"
 KIND = "S"
 SIGN = "I"
 OPTION = "CP"
 LOW = " STONEBRANCH1"
 HIGH = "";

The following figure illustrates the command line to modify variant .SBT2

 Usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -modify vardefFile2

Step Three

This step submits, starts, and monitors a new job - using variant substitution.

Note
The pre-defined job must have ABAP program defined in Step One and Step Two.RSUSR002

The following figure illustrates the variant definition file for variant .SBT2

 usap -dest CF5 -client 800 -userid sapuid -pwd sappwd
 -run -jobname VARSBST1 -jobid 12345678
 -target_variant 1,SBT1;2,SBT2

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user137

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

-targetserver Target server for the SAP job to run on.

-wait Specification that Universal Connector will monitor the started job until it completes.

-joblog Specification that Universal Connector will return the SAP log for the started job.

-spoollist Specification that Universal Connector will return any spool lists created by the started job.

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TARGET_SERVER+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user138

Creating a Variant Definition Using GENERATE VARDEF Command - UNIX

Creating a USAP Variant Definition Using the USAP GENERATE VARDEF Command - UNIX
Command Line Options
Components

Creating a USAP Variant Definition Using the USAP GENERATE VARDEF Command - UNIX

SAP variants often have many parameters. This can make it tedious and time-consuming to create Universal Connector variant definitions by
hand.

Fortunately, Universal Connector offers a function that will generate a complete variant definition based on a pre-existing template variant on the
SAP system. The generated variant definition can then be used with the Universal Connector sub or modify command to prepare a variant for a
job run.

The following example demonstrates the use of the generate vardef command. It will generate a complete Universal Connector variant definition
based on the pre-existing variant of ABAP program . The generated variant definition will contain all the information required toSBT1 RSBDSUB
reproduce the original template variant.

Note
This example assumes (and requires) that a variant named exists for ABAP program .SBT1 RSBDCSUB

The following figure illustrates the command used to generate a Universal Connector variant definition.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd -generate vardef
 -abapname RSBDCSUB -variant SBT1

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-abapname Name of the ABAP program that the template variant belongs to.

-variant Name of the variant that Universal Connector will use as a template for generation.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ABAP_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/VARIANT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user139

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user140

Creating Job Definition Using GENERATE JOBDEF Command - UNIX

Creating a Universal Connector Job Definition Using the GENERATE JOBDEF Command - UNIX
Command Line Options
Components

Creating a Universal Connector Job Definition Using the GENERATE JOBDEF Command - UNIX

SAP jobs offer many configuration options. Manually creating Universal Connector job definitions that utilize many configuration options can be
tedious and time consuming.

Fortunately, Universal Connector offers a function that will generate a complete job definition based on a pre-existing template job on the SAP
system. The generated job definition can then be modified, if needed.

The following example demonstrates the use of the generate jobdef command. It will generate a complete Universal Connector job definition
based on the pre-existing job with job id . The generated job definition will contain all the information required toUSP_TEMPLATE_1 12345678
create a new SAP job definition equivalent to the template job.

Note
This job assumes (and requires) that a job already exists on the SAP system with:

Job Name: USP_TEMPLATE_1
Job ID: 12345678

The following figure illustrates the command used to generate a Universal Connector job definition.

usap -dest CF5 -client 800 -userid sapuid -pwd sappwd -generate jobdef
 -jobname USP_TEMPLATE_1 -jobid 12345678

Command Line Options

Command line options used in this example are:

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system.

The "destinations" are stored in file , which must be in the current directory, or its full path mustsaprfc.ini
be specified in environment variable .RFC_INI

-client SAP client number that the USAP will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-jobname Name of the SAP job that will be used as a template for generation.

-jobid Job ID of the SAP job that will be used as a template for generation.

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user141

Components

Universal Connector for SAP for UNIX

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user142

1.
2.

3.

4.

Mass Activities Support Example for zOS

Universal Connector Mass Activity Support Example
SYSIN Options for USPVRMS JCL
SYSIN Options for USPJRMS JCL
Components

Universal Connector Mass Activity Support Example

This example uses the Create Account Statements application to demonstrate the process of setting up a mass activity for automation with
Universal Connector .for Use with SAP® ERP

Step 1 Via SAP GUI, create a template parameter set for a mass run:

In the SAP Front end GUI, enter transaction to bring up a dialog for the Create Account Statements application.FPCC0002
In the Run Identification section, enter values for Date ID and Identification. These values will be used to uniquely identify the
parameter set that you create in this step.
For example:

Date ID: 13.07.2010
Identification: SBX1

Set up the rest of the application run parameters to meet your needs. These additional settings are not important to the
concepts of this example.
Select Program Run->Save (or <Ctrl+S>) to save the parameter set.

Step 2 Create a variant for ABAP program RFKK_MA_SCHEDULER that will use the parameter set created in . This can beStep 1
accomplished by running the sample job (USPVRMS) illustrated in the following figure. (The procedure for executing this JCL
(USPJRMS) is illustrated in .)Step 3

USPVRMS - JCL

Universal Agent 6.6.x User Guide

 / ua-66x-user143

//USPVRMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample creates a new variant named "SBX1" for ABAB program
//* RFKK_MA_SCHEDULER.
//*
//* The new variant will be set up to target Mass Activity Type
//* 0002 (Create Account Statements) using a parameter set with run
//* identification:
//* Date ID: 2010.07.15
//* Identification: SBX1
//*
// JCLLIB ORDER=\#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//VARDEF DD *
 /* Variant Header statement. */
 VARIANT_NAME = "SBX1"
 REPORT = "RFKK_MA_SCHEDULER";

 /* Variant text statement. */
 VARIANT_TEXT = "SBX1"
 LANGUAGE = "EN";

 /* Mass activity type */
 SELNAME = "P_AKTYP"
 KIND = "P"
 LOW = "0002";

 /* Date ID */
 SELNAME = "P_COPYD"
 KIND = "P"
 LOW = "20100715";

 /* Identification */
 SELNAME = "P_COPYI"
 KIND = "P"
 LOW = "SBX1";

 /* Date of Dunning Proposal Run */
 SELNAME = "P_MAHND"
 KIND = "P"
 LOW = "00000000";

 /* ID of Dunning Proposal Run */
 SELNAME = "P_MAHNI"
 KIND = "P"
 LOW = "";

 /* Status for Error Messages */
 SELNAME = "P_STATUS"
 KIND = "P"
 LOW = "W";

 /* WF_OKEY */
 SELNAME = "WF_OKEY"
 KIND = "P"
 LOW = "";

 /* WF_WITEM */
;
 SELNAME = "WF_WITEM"
 KIND = "P"
 LOW = "";

 /* WF_WLIST */
 SELNAME = "WF_WLIST"
 KIND = "P"
 LOW = "";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub VARDEF
/*

Universal Agent 6.6.x User Guide

 / ua-66x-user144

See , below, for a description of the configuration options used in this JCL.SYSIN Options for USPVRMS JCL

Step 3 Via Universal Connector, run ABAP program ; submit a Universal Connector job to initiate, monitor, andRFKK_MA_SCHEDULER
return output from the mass activity. The sample job illustrated in the following figure will accomplish this using the variant created in

. , shown below this JCL, is the procedure used to execute the JCL.Step 2 USPPRC - JCL Procedure

USPJRMS - JCL

//USPVRMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample will:
//* 1. Initiate a mass activity (via ABAP RFKK_MA_SCHEDULER).
//* 2. Monitor the mass activity (including interval jobs) to
//* completion.
//* 3. Return output from the initiator job and all interval jobs.
//*
//* The parameter set used for the mass activity is specified in
//* the variant passed to RFKK_MA_SCHEDULER. In this case, we are
//* using variant SBX1.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC USPPRC
//JOBDEF DD *
 /* Job Header statement. */
 JOBNAME = "RFKK_MA_SCHEDULER_SBX1";

 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "RFKK_MA_SCHEDULER"
 VARIANT_NAME = "SBX1";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub VARDEF
 -start
 -mawait
/*

See , below, for a description of the configuration options used in this JCL. SYSIN Options for USPJRMS JCL

USPPRC - JCL Procedure

//USPPRC PROC UPARM=, -- USAP options
// SAPRFC=USPRFC00, -- SAP RFC member
// USAPPRE=#SHLQ.UNV,
// USAPPRD=#PHLQ.UNV
//*
//PS1 EXEC PGM=USAP,PARM='ENVAR(TZ=EST5EDT)/&UPARM'
//STEPLIB DD DISP=SHR,DSN=&USAPPRE..SUNVLOAD
//*
//UNVNLS DD DISP=SHR,DSN=&USAPPRE..SUNVNLS
//UNVRFC DD DISP=SHR,DSN=&USAPPRD..UNVCONF(&SAPRFC)
//UNVTRACE DD SYSOUT=*
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

SYSIN Options for USPVRMS JCL

The SYSIN options used in the USPVRMS JCL example are:

Universal Agent 6.6.x User Guide

 / ua-66x-user145

Option Description

-dest Name of a destination defined in the saprfc.ini file.

-client SAP client number.

-userid SAP user ID with which to logon to the SAP system.

-pwd Password for the SAP user ID.

-sub Definition of the job to the SAP system.

SYSIN Options for USPJRMS JCL

The SYSIN options used in the USPJRMS JCL example are:

Option Description

-dest Name of a destination defined in the saprfc.ini file.

-client SAP client number.

-userid SAP user ID with which to logon to the SAP system.

-pwd Password for the SAP user ID.

-sub Definition of the job to the SAP system.

-start Starts the newly defined job.

-mawait Causes USAP to wait for the SAP mass activity jobs to complete processing.

Components

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MASS_ACTIVITY_WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user146

Batch Input Monitoring Example for zOS

Batch Input Processing Example

This example illustrates batch input processing for z/OS.

Universal Agent 6.6.x User Guide

 / ua-66x-user147

//USPBDC1 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample demonstrates the use of USAP's Batch Input
//* Monitoring.
//*
//* NOTE: This job requires that variant SBX1 exists for ABAP
//* program RSBDCSUB.
//*
//* This sample will:
//* 1. Modify variant SBX1 with values required for this
//* job run (specifies the batch input session to be processed).
//* 2. Submit a new job to the SAP system.
//* 3. Start the job.
//* 4. Monitor the submitted job and all session processing jobs
//* to completion.
//* 5. Return the job logs.
//* 6. Return the spool list.
//* 7. Prints a brief report indicating the status of all batch
//* input sessions processed
//*
// JCLLIB ORDER=\#SHLQ.UNV.SUNVSAMP
//*
//***
//* Modify variant 'SBX1' for ABAP program RSBDCSUB
//***
//STEP1 EXEC USPPRC
//VARDEF DD *
 /* Variant Header statement. */
 VARIANT_NAME = "SBX1"
 REPORT = "RSBDCSUB";
 /* Session */
 SELNAME = "MAPPE"
 KIND = "P"
 SIGN = ""
 OPTION = ""
 LOW = "SBX20100720"
 HIGH = "";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -modify VARDEF
/*
//***
//* Run ABAP program RSBDCSUB to perform Batch Input processing
//* using the variant that was modified in step 1.
//*
//* NOTE: This job requires that a variant SBX1 exists for ABAP
//* program RSBDCSUB.
//*
//***
//STEP2 EXEC USPPRC
//JOBDEF DD *
 /* Job Header statement. */
 JOBNAME = "RSBDCSUB";
 /* ABAP Step statement. */
 ABAP_STEP = "STEP 1"
 ABAP_PROGRAM_NAME = "RSBDCSUB_SBX1"
 VARIANT_NAME = "SBX1";
//SYSIN DD *
 -dest CF5
 -client 800
 -userid sapuid
 -pwd sappwd
 -sub JOBDEF
 -start
 -bdcwait
/*

SYSIN Options

SYSIN options used in this example are:

Universal Agent 6.6.x User Guide

 / ua-66x-user148

Command Options Description

-dest Named set of connection parameters (destination) 'CF5'. These connection parameters are used for
communications with the SAP system. The default file for destination parameters is #HLQ.UNV.USPRFC00
.

-client SAP client number that the Universal Connector will communicate with.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-sub Specification that Universal Connector will issue the SUBMIT command.

-start Specification that Universal Connector will instruct the SAP system to start the submitted job.

Components

Universal Connector for SAP for zOS

https://www.stonebranch.com/confluence/display/UA66/DESTINATION+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CLIENT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user149

1.
2.
3.
4.

1.
2.

Mass Activities Support in Universal Connector

Mass Activities Support in Universal Connector
Mass Activities Process Flow

Initiating Mass Activities
Monitoring Mass Activities
Working with Parameter Records

Mass Activities Support in Universal Connector

Universal Connector supports the submission, starting, and monitoring of mass activities on the SAP system.for Use with SAP® ERP

To work with mass activities on the SAP system, Universal Connector utilizes the following SAP ABAP programs:

FKJO_SCHEDULE
RFKK_MA_SCHEDULER
RFKK_MASS_ACT_PARAMETER

Mass Activities Process Flow

The basic process flow in working with mass activities is:

Create a template parameter record for the mass activity.
Copy the template parameter record and assign a Date ID and Run ID.
Schedule and start the mass activity.
Monitor the mass activity to completion.

The original template parameter records must be created on the SAP system using the dialogs for the given mass activity type. However, after a
set of template parameter records have been created, Universal Connector can use the ABAP programs mentioned above to initiate and control
the characteristics of mass activity work.

Initiating Mass Activities

Mass activities are initiated from Universal Connector by submitting and starting ABAP program or FKJO_SCHEDULE RFKK_MA_SCHEDULER
. This can be accomplished by following the same procedure that would be used to submit and start any other ABAP program with Universal
Connector.

For more information on submitting and starting jobs with Universal Connector, see the .SUBMIT, START, and RUN commands

Both and can be used to initiate mass activities. Each program has a different approach (andFKJO_SCHEDULE RFKK_MA_SCHEDULER
different requirements) for preparing a mass activity on the SAP system. The decision of which one to use must be made by understanding the
capabilities and requirements of each program and matching those to the requirements of the situation.

A discussion of the details of and is beyond the scope of this document. For more information,FKJO_SCHEDULE RFKK_MA_SCHEDULER
please refer to the SAP documentation for these two programs.

The behavior of both and are controlled by a set of parameters, called a variant, that apply to aFKJO_SCHEDULE RFKK_MA_SCHEDULER
specific ABAP program. Variants reside on the SAP system.

To achieve the desired results on a mass activity run, it may be necessary to modify the values of the variant used by the initiator program. In this
case, initiating a mass activity becomes a two-step process:

Universal Connector is used to create or modify an existing variant on the SAP system.
Universal Connector is used to submit and start the initiator program that uses the variant.

For additional information on working with variants, see the and commands.SUBMIT VARIANT MODIFY VARIANT

Monitoring Mass Activities

Regardless of which program is used to initiate a mass activity, Universal Connector follows the same procedure for monitoring the process to
completion. The MASS_ACTIVITY_WAIT command is used to instruct Universal Connector that it should perform this monitoring function (see the

 option.MASS_ACTIVITY_WAIT

Specifying the option will cause Universal Connector to monitor the status of the submitted / started job. In addition, asMASS_ACTIVITY_WAIT
the jobs that make up the mass activity are created on the SAP system, Universal Connector detects them as child jobs of the initiator job and will

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+Commands
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+VARIANT+-+USAP+Command
https://www.stonebranch.com/confluence/display/UA66/MODIFY+VARIANT+-+USAP+Command
https://www.stonebranch.com/confluence/display/UA66/MASS_ACTIVITY_WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MASS_ACTIVITY_WAIT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user150

begin to monitor their status as well. Universal Connector will continue to monitor the status of parent and child jobs until all jobs have completed.

Upon detecting the completion of a job, Universal Connector will optionally return the following information:

Job log: see option.RETURN_JOB_LOG
Application log (if one exists): see option.RETURN_APPLICATION_LOG
Application return codes (if they were set): see option.RETURN_APPLICATION_RC
Spooled output created by the job: see option.RETURN_SPOOL_LIST

In addition, Universal Connector will record the application return codes (if they are set) and merge them into its exit code mapping process that
takes place upon program completion. Universal Connector will exit with the highest value used in the exit code processing.

Working with Parameter Records

With each mass activity run, there may be the need for parameter set adjustment.

In some cases, the ABAP program used to initiate the mass activity can perform the necessary parameter adjustments. When more detailed
parameter adjustments are required, the ABAP program can be used. In this case, Universal Connector canRFKK_MASS_ACT_PARAMETER
be used to run by following the same procedures that would be used to run any other ABAP program on theRFKK_MASS_ACT_PARAMETER
SAP system.

For more information, see the .SUBMIT, START, RUN, and WAIT commands

The information that controls how will adjust the mass activity parameter set is contained in a variant thatRFKK_MASS_ACT_PARAMETER
resides on the SAP system. In many cases, it may be necessary to create or modify the contents of a variant with information that pertains to a
specific mass activity. In this case, Universal Connector can be used to create or modify the variants as needed.

For additional information on working with variants, see the and commands.SUBMIT VARIANT MODIFY VARIANT

https://www.stonebranch.com/confluence/display/UA66/RETURN_JOB_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_APPLICATION_LOG+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_APPLICATION_RC+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETURN_SPOOL_LIST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+Commands
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+VARIANT+-+USAP+Command
https://www.stonebranch.com/confluence/display/UA66/MODIFY+VARIANT+-+USAP+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user151

Batch Input Monitoring in Universal Connector

Overview
Batch Input Monitoring Process
Batch Input Monitoring Requirements

SAP System
SAP Batch Input Sessions
Universal Connector

Batch Input Monitoring Parameters

Overview

Universal Connector supports the monitoring of batch input session processing. This support is currently limited to SAPfor Use with SAP® ERP
4.6C and above. To perform batch input monitoring, Universal Connector utilizes the functionality of SAP's ABAP program .RSBDCSUB

 selects batch input sessions for processing based on the criteria specified in its variant. The batch input sessions selected to beRSBDCSUB
processed by are transferred to the SAP system's background processing. completes independent of the sessionRSBDCSUB RSBDCSUB
processing jobs it starts.

The spoollist produced by contains the information required to identify the session processing jobs created, and relate them to theirRSBDCSUB
respective batch input sessions. This information consists of a job name (same as session name), job id, and queue id. The job name / job id
combination uniquely identifies the session processing job. The queue id uniquely identifies the queue that contains the batch input session data
and status.

Batch Input Monitoring Process

The following steps illustrate the basic overview of the Universal Connector batch input monitoring process:

Step 1 Universal Connector starts a single step job that executes ABAP program , or USAP connects to a previously startedRSBDCSUB
single step job executing ABAP program .RSBDCSUB

Step 2 Universal Connector waits for the job to complete.RSBDCSUB

Step 3 If the job terminates, Universal Connector exits with the Universal Connector 'Terminated' job status code. Otherwise,RSBDCSUB
Universal Connector retrieves the spoollist generated by and extracts the session processing information. ThisRSBDCSUB
information consists of the session processing jobs that were kicked off by , and the corresponding queues that containRSBDCSUB
the sessions.

Step 4 Universal Connector begins to monitor all session processing jobs that were kicked off by . When Universal ConnectorRSBDCSUB
detects that a session processing job has completed, it retrieves the state of the corresponding queue and converts the queue state to
a Universal Connector queue state exit code. Universal Connector continues this monitoring process until all session processing jobs
have completed.

Step 5 When all session processing jobs have completed, Universal Connector exits with the highest queue state exit code retrieved from all
sessions that were processed by .RSBDCSUB

Batch Input Monitoring Requirements

SAP System

Universal Connector only supports batch input monitoring on SAP 4.6 systems. This restriction is based on the ABAP program . RSBDCSUB
 initiates session processing jobs and completes independent of the session processing jobs.RSBDCSUB

Only the SAP 4.6 version of produces a spoollist that contains all the information needed to monitor the session processing jobs andRSBDCSUB
the states of the sessions they process. This information consists of the job name and job id of the session processing jobs that get initiated, and
the queue id of the session that is being processed.

SAP Batch Input Sessions

All batch input sessions that will be monitored by Universal Connector must have the flag checked. This is required because thekeep session
queue that contains the batch input session must exist in the SAP system after the session processing job completes in order for Universal
Connector to retrieve the state of the queue.

Universal Agent 6.6.x User Guide

 / ua-66x-user152

Universal Connector

To perform batch input monitoring with Universal Connector, a single step SAP job must be started that executes ABAP program .RSBDCSUB
Universal Connector can start the job or can connect to a job that was previously started.

Universal Connector uses the spoollist generated by to extract session processing information. The format of this report depends onRSBDCSUB
the language of the job step. There are three Universal Connector parameters that must be set up for the language being used (see the

 command). By default, these parameters are set up to work with the English language.BDCWAIT

The print parameters for the job step executing must specify enough columns to allow the full width of the report to be generatedRSBDCSUB
without truncation. A value of 132 is sufficient. In addition, the number of lines per page must allow the entire report to be generated on a single
page. This is due to limitations in the report generation capability.RSBDCSUB

The Universal Connector command line parameter is used to initiate the batch input monitoring process. For details on this parameter,-bdcwait
see .BDCWAIT

Batch Input Monitoring Parameters

The set of Universal Connector configuration parameters that are specific to the batch input monitoring support are:

BDC Wait
BDC Job Name Pattern
BDC Job ID Pattern
BDC Queue ID Pattern
Queue exit code mappingto be created
Queue exit code mappingunprocessed
Queue exit code mappingin background
Queue exit code mappingfinished
Queue exit code mappingerror

See for details concerning the use of these parameters.BDCWAIT

https://www.stonebranch.com/confluence/display/UA66/BDCWAIT+-+USAP+Command
https://www.stonebranch.com/confluence/display/UA66/BDCWAIT+-+USAP+Command
https://www.stonebranch.com/confluence/display/UA66/BDCWAIT+-+USAP+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user153

Universal Data Mover - Remote Execution for SAP Systems

Remote Execution for SAP Systems via UDM

These pages provides information on the Remote Execution for SAP feature and functionality of the Universal Data Mover business solution.

With Universal Data Mover, Remote Execution for SAP systems is performed indirectly. Universal Data Mover provides the ability to raise events
within the remote SAP system. These events can be used by the SAP scheduling system to trigger job runs. This allows the automated
coordination of work on the SAP system from within a Universal Data Mover process.

Universal Data Mover provides access to remote execution via the command. The Universal Connector Universal Data Mover (UDM) execsap
 command invokes Universal Connector and executes SAP events on remote machines if you have Universal Connector on the sameexecsap

system with the Universal Data Mover Manager.

Remote Execution for SAP Examples

The remote execution for SAP illustrated in these pages are specific to the operating systems supported by Universal Agent for theexamples
Remote Execution for SAP feature of Universal Data Mover. The examples demonstrate the use of Universal Connector for Use with SAP® ERP
to define SAP jobs.

Links to detailed technical information on appropriate Universal Managed File Transfer components are provided for each example.

https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user154

Remote Execution for SAP Systems via UDM - Examples

Remote Execution for SAP Systems Examples

Raising an SAP Event for z/OS Example
Raising an SAP Event for UNIX Example

These examples illustrate the Remote Execution of SAP feature of Universal Data Mover using the Universal Data Mover execsap
command.

Universal Agent 6.6.x User Guide

 / ua-66x-user155

Raising an SAP Event for zOS Example

Raising an SAP Event for z/OS Example
Raising an SAP Event for z/OS JCL
Components

Raising an SAP Event for z/OS Example

The following example demonstrates raising events in a remote SAP system using the Universal Data Mover (UDM) command.execsap

In this example, we assume the following scenario:

The job scheduler on SAP system CF5 has been set up with three jobs that are triggered by SAP event UDM_TRANSFER_COMPLETE.
Additionally, each job is looking for a different event parameter (, , and) corresponding with the Input file it iscars.dat trucks.dat boats.dat
intended to process.

UDM is being run on a z/OS system to transfer three data files (, , and) from remote system to remote system cars.dat trucks.dat boats.dat sol9
. The data files are to be used by the SAP system for Batch Input Processing. Therefore, after each file transfer, the command isSAP001 execsap

issued to raise an appropriate event in the SAP system. These events are picked up by the SAP job scheduler which, in turn, kicks off the jobs
that were scheduled for those events.

Raising an SAP Event for z/OS JCL

https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user156

//UDMEXSAP JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* Description
//* -----------
//* This sample opens a three-party transfer session between hosts
//* sol9 and SAP001. Three files are transferred from sol9 to
//* SAP001. After each file is transferred, is called toexecsap
//* raise an SAP event in the specified SAP system.
//*
//* Presumably, there are jobs in the SAP scheduling system that
//* are waiting to be triggered by the events fired from this job.
//*
// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC UDMPRC
//UNVSCR DD *
#
Transfer vehicle data to SAP server for batch input processing.
#

 src=sol9 dest=SAP001 xfile=xuser1open

 dest createop=replaceattrib
 src=/opt/app/datacd
 dest=/inputcd

#**
#* Copy the car data to SAP system for batch input processing.
#**

 src=cars.dat dest=cars.datcopy

Raise SAP event to trigger processing job.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="cars.dat"

#**
#* Copy the truck data to SAP system for batch input processing.
#**

 src=trucks.dat dest=trucks.datcopy

Raise SAP event to trigger processing job.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="trucks.dat"

#**
#* Copy the boat data to SAP system for batch input processing.
#**

 src=boats.dat dest=boats.datcopy

Raise SAP event to trigger processing job.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="boats.dat"

 close
/*

Components

Universal Data Mover Manager for z/OS

Universal Data Mover Server for UNIX

Universal Connector for z/OS

https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/close+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user157

Raising an SAP Event for UNIX Example

Raising an SAP Event for UNIX Example
Raising an SAP Event for UNIX - UDM Script File: BIVehicle001
Components

Raising an SAP Event for UNIX Example

The following example demonstrates raising events in a remote SAP system using the Universal Data Mover (UDM) command.execsap

In this example, we assume the following scenario:

The job scheduler on SAP system CF5 has been set up with three jobs that are triggered by SAP event UDM_TRANSFER_COMPLETE.
Additionally, each job is looking for a different event parameter (, , and) corresponding with the Input file it iscars.dat trucks.dat boats.dat
intended to process.

UDM is being run on a UNIX system to transfer three data files (, , and) from remote system to remote system cars.dat trucks.dat boats.dat sol9
. The data files are to be used by the SAP system for Batch Input Processing. Therefore, after each file transfer, the command isSAP001 execsap

issued to raise an appropriate event in the SAP system. These events are picked up by the SAP job scheduler which, in turn, kicks off the jobs
that were scheduled for those events.

Raising an SAP Event for UNIX - UDM Script File: BIVehicle001

#**
Description

This sample opens a three-party transfer session between hosts
sol9 and SAP001. Three files are transferred from sol9 to
SAP001. After each file is transferred, is called toexecsap
raise an SAP event in the specified SAP system.
#
Presumably, there are jobs in the SAP scheduling system that
are waiting to be triggered by the events fired from this job.
#

 src=sol9 dest=SAP001 xfile=xuser1open
 dest createop=replaceattrib

 src=/opt/app/datacd
 dest=/inputcd

#**
#* Copy the car data to SAP system for batch input processing.
#**

 src=cars.dat dest=cars.datcopy

Raise SAP event to inform the system that the input file is ready.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="cars.dat"

#**
#* Copy the truck data to SAP system for batch input processing.
#**

 src=trucks.dat dest=trucks.datcopy

Raise SAP event to inform the system that the input file is ready.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="trucks.dat"

#**
#* Copy the boat data to SAP system for batch input processing.
#**

 src=boats.dat dest=boats.datcopy

Raise SAP event to inform the system that the input file is ready.
 CF5 client=800 xfile=xsapuser1 type=event -execsap

 eventid=UDM_TRANSFER_COMPLETE parm="boats.dat"

close

https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/execsap+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user158

Components

Universal Data Mover Manager for UNIX

Universal Data Mover Server for zOS

Universal Connector for SAP for zOS

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Server+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user159

1.
2.
3.
4.

Web Services Execution

Introduction
Outbound Implementation
Inbound Implementation
Detailed Information

Introduction

The Web Services Execution feature of Universal Agent enables you to extend its remote execution functionality to Internet and message-based
workload and create file-based events from inbound Internet and message-based application messages.

Outbound Implementation

The outbound implementation of Universal Agent's web services execution - - provides the ability to extendUniversal Command Agent for SOA
Universal Agent's workload execution and management features to Internet and message-based workload.

The Internet and message-based protocols are supported by the HTTP Connector, the SOAP Connector, the JMS Connector, and the MQ
Connector. In addition, you can execute or batch workload in the WebSphere XD environment using the XD Connector.

Universal Command Agent for SOA gets its payload input from through STDIN. When the parameters and data are passedUniversal Command
in, the workload execution request is processed and any return data is passed back to Universal Command.

It can be initiated from a variety of sources, regardless of platform, such as one or more job scheduling systems, workflow engines, or EAI tools,
as well as from business applications and end users.

Universal Agent enables you to:

Consolidate your Internet and message-based workload within your current Enterprise Scheduling environment.
Use your existing scheduler, or other workload management applications, along with your new or existing Universal Agent components.
Use your existing development, test, and production business processes.
Use a single point of workload execution that is not tied to specific vendor hardware or software platforms.

(See , below.)Examples

Inbound Implementation

The inbound implementation of Universal Agent's web services execution - - provides the ability to createUniversal Event Monitor for SOA
file-based events from inbound Internet and message-based messages, and write the events to file.

This allows for the integration of Internet and message-based applications with systems management functions such as:

Alerting and notification
Incident and problem management
Job scheduling
Data movement

Universal Event Monitor monitors one or more local or remote system events. It also can execute a system command or script based on the
outcome of the events that it is monitoring.

(See , below.)Examples

Detailed Information

The following pages provide detailed information for Web Services Execution:

Universal Agent - Web Services Examples

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user160

Universal Agent - Web Services Examples

Web Services Outbound Examples - Windows and UNIX
Web Services Outbound Examples - z/OS
Web Services Inbound Examples - Windows and UNIX

Web Services Outbound Examples - Windows and UNIX

Using Universal Agent to Publish to a SOA Workload - Windows and UNIX
Message Payload for SOAP - Windows and UNIX
Logging Configuration - Windows and UNIX
UAC HTTP Form - Windows and UNIX

Web Services Outbound Examples - z/OS

Outbound SOAP Implementation - z/OS

Web Services Inbound Examples - Windows and UNIX

Inbound JMS Implementation - Windows and UNIX
Inbound SOAP Implementation - Windows and UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user161

Using Universal Agent to Publish to a SOA Workload - Windows and UNIX

Basic Structure of Using Universal Agent to Publish to a SOA Workload
Command Line Options
Components

Example Workloads
JMS ActiveMQ Workload
JMS Websphere Workload
XD Workload
MQ Series Workload

Basic Structure of Using Universal Agent to Publish to a SOA Workload

The following figure illustrates the basic structure of using Universal Agent to publish to a SOA workload.

ucmd -script options.txt -script_type SERVICE -host [hostname or IP Address] -userid username -pwd
password -stdin
 -localfile payload_file.txt

Command Line Options

The command line options used in this example are:

Option Description

-script File containing the options that instruct the container what type of workload publish

-script_type Type of script specified by -script.

-host hostname or IP Address of the UAC Container.

-userid Valid username.

-pwd Valid password for userid.

-stdin Start of stdin options.

-localfile Redirect the standard file from or to <filename>

The contents of the file define the type of workload being published to (see).options.txt Example Workloads

Components

Universal Command

Universal Command Agent for SOA

Example Workloads

The following examples illustrate various workloads.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_TYPE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user162

JMS ActiveMQ Workload

-jmsdestination dynamicQueues/Soatest2TestQueue1
-jmsconnectionfactoryname ConnectionFactory
-protocol JMS
-serviceurl tcp://soatest2:61616
-timeoutsec 120
-jmscontextfactoryname org.apache.activemq.jndi.ActiveMQInitialContextFactory
-mep Publish

Command Options

The command options used in this example are:

Option Description

-jmsdestination Name of the target JMS destination queue or topic for the JMS message.

-jmsconnectionfactoryname Connection factory to be used to establish a connection to a JMS provider.

-protocol Message protocol to be used for the current operation.

-serviceurl URL (internet, network, or file-based) of the target workload.

-timeoutsec Length of time to wait for the request to complete.

-jmscontextfactoryname Java class name of the JMS providers initial context factory.

-mep Message exchange pattern to be used for the current operation.

JMS Websphere Workload

-jmsdestination jms/Soatest2TestQueue1
-jmsconnectionfactoryname jms/SBSConnectionFactory
-protocol JMS
-serviceurl iiop://soatest2:2809
-timeoutsec 120
-jmscontextfactoryname com.ibm.websphere.naming.WsnInitialContextFactory
-jmspropertiesfile websphere_only.properties.xml
-mep Publish

Command Options

The command options used in this example are:

Option Description

-jmsdestination Name of the target JMS destination queue or topic for the JMS message.

https://www.stonebranch.com/confluence/display/UA66/JMS_DESTINATION+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/JMS_CONNECTION_FACTORY_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_URL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/JMS_CONTEXT_FACTORY_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/JMS_DESTINATION+-+UCA+for+SOA+command+option

Universal Agent 6.6.x User Guide

 / ua-66x-user163

-jmsconnectionfactoryname Connection factory to be used to establish a connection to a JMS provider.

-protocol Message protocol to be used for the current operation.

-serviceurl URL (internet, network, or file-based) of the target workload.

-timeoutsec Length of time to wait for the request to complete.

-jmscontextfactoryname Java class name of the JMS providers initial context factory.

-jmspropertiesfile Name and location of an XML document containing the JMS properties to be included in the JMS
message.

-mep Message exchange pattern to be used for the current operation.

Note
The preceding example utilizes a properties file that is located on the UAC server. The following illustrates the contents of the
listed properties file:

<?xml version="1.0" encoding="UTF-8"?>
<sb:JMSProperties xmlns:sb="http://com.stonebranch/UAI/JMSProperties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAC/JMSProperties
JMSProperties.xsd ">
 <sb:Property>
<sb:Name>jms.initialcontext.com.ibm.CORBA.ORBInit</sb:Name>
 <sb:Value>com.ibm.ws.sib.client.ORB</sb:Value>
 </sb:Property>
</sb:JMSProperties>

XD Workload

-xdcmd SUBMIT
-xdcmdid XDJOB1
-servicepassword xdservicepass
-protocol XDSOAP
-serviceurl http://soatest2:9080/LongRunningJobSchedulerWebSvcRouter/services/JobScheduler
-serviceusername xdusername
-timeoutsec 120
-mep REQUEST

Command Options

The command options used in this example are:

Option Description

-xdcmd Operation to submit to the WebSphere XD environment.

https://www.stonebranch.com/confluence/display/UA66/JMS_CONNECTION_FACTORY_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_URL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/JMS_CONTEXT_FACTORY_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/JMS_PROPERTIES_FILE+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/XD_CMD+-+UCA+for+SOA+command+option

Universal Agent 6.6.x User Guide

 / ua-66x-user164

-xdcmdid Used to correlate jobs.

-servicepassword Password to be passed to the target workload for authentication.

-protocol Message protocol to be used for the current operation.

-serviceurl URL (internet, network, or file-based) of the target workload.

-serviceusername User name to be passed to the target workload for authentication.

-timeoutsec Length of time to wait for the request to complete.

-mep Message exchange pattern to be used for the current operation.

MQ Series Workload

-mqqueuemanagername MyQueueManager
-mqqueuename UpsQaQueue
-mqhost soatest2
-mqchannel UpsQaChannel
-protocol mq
-timeoutsec 120
-mep publish

Command Options

The command options used in this example are:

Option Description

-mqqueuemanagername Name of the MQ QUEUE Manager.

-mqqueuename Name of the MQ Queue to use.

-mqhost Name of the server running MQSeries.

-mqchannel Name of the MQ Queue to use.

-protocol Message protocol to be used for the current operation.

-timeoutsec Length of time to wait for the request to complete.

-mep Message exchange pattern to be used for the current operation.

https://www.stonebranch.com/confluence/display/UA66/XD_CMD_ID+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_PASSWORD+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_URL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_USER_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MQ_QUEUE_MANAGER_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MQ_QUEUE_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MQ_HOST+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MQ_CHANNEL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option

Universal Agent 6.6.x User Guide

 / ua-66x-user165

Universal Agent 6.6.x User Guide

 / ua-66x-user166

Message Payload for SOAP - Windows and UNIX

Message Payload for SOAP
SOAP Response
Components

Message Payload for SOAP

The following figure illustrates an example of a basic message payload for SOAP.

<tns:ValidateZip xmlns:tns="http://webservicemart.com/ws/">
 <tns:ZipCode>30004</tns:ZipCode>
</tns:ValidateZip>

The first line contains:

Name of the operation (in this case,)ValidateZip
Location of the web service providing the operation (in this case,).http://webservicemart.com/ws/

The second line contains:

Tag for the value .ZipCode
Actual value, , that the web service needs to operate.30004

The third line is the closing tag for the operation named in the first line (in this case,).ValidateZip

The other items, such as and , are namespace identifiers. In most cases, the application developers will provide you with the messagetns xmlns
payload.

SOAP Response

The following figure illustrates the SOAP response that the ValidateZip operation returns.

<string>
<result code="200"><item zip="30004" state="GA" latitude="34.11917"
 longitude="-84.30292"/></result>
<string>

The first line indicates the type of data being returned (in this case, string data).

The second line contains the response from the ValidateZip web service operation. It includes:

result - root element and indicates the start of the response data
code - success or error code from the HTTP transaction. A value of indicates success."200"
item - Element that defines the attributes returned in response to the value submitted.ZipCode
zip - ZIP code that was submitted as part of the request.
state - State in which the ZIP code is located.
latitude - Latitude of the ZIP code submitted.
longitude - Longitude of the ZIP code submitted.

The third line is the closing tag for the response message.

Components

Universal Command Agent for SOA

http://webservicemart.com/ws/
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user167

Logging Configuration - Windows and UNIX

Logging Configuration
Components
uac_log4jConfiguration.xml Example
uai_log4jConfiguration.xml Example

Logging Configuration

The following examples illustrate how to check the logs for information regarding the operation of Universal Command Agent for SOA.

Configuration of the logging operations is done via the following files:

uac_log4jConfiguration.xml file for Universal Application Container (UAC).
uai_log4jConfiguration.xml file for Universal Application Interface (UAI).

The logging levels supported by the logging implementation are:

TRACE
DEBUG
INFO
WARN
ERROR (default)
FATAL

Note
The logging level should be changed only at the request of Stonebranch, Inc. Customer Support, as it can have a huge impact
on performance.

Components

Universal Command Agent for SOA

uac_log4jConfiguration.xml Example

Note
Lines starting with begins a commented string. These comments end with .<!-- -->

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user168

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="false" threshold="all">
 <appender name="RollingFileAppender"
 class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="/var/opt/universal/log/uac/uac.log"/>
 <param name="MaxFileSize" value="1000KB"/>
 <param name="MaxBackupIndex" value="4"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p %-17c{2} (%30F:%L) %3x -
 %m%n"/>
 </layout>
 </appender>
 <appender name="LF5Appender" class="org.apache.log4j.lf5.LF5Appender">
 <param name="MaxNumberOfRecords" value="1000"/>
 </appender>
 <appender name="NTEventLogAppender" class="org.apache.log4j.nt.NTEventLogAppender">
 <param name="Source" value="UAC"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%c{1} %M - %m%n"/>
 </layout>
 </appender>
 <appender name="ConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <param name="Target" value="System.err"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p %-17c{2} (%30F:%L) %3x -
 %m%n"/>
 </layout>
 </appender>
 <logger name="com.stonebranch" additivity="true">
 <level value="error"/>
 </logger>
 <root>
 <priority value="error"/>
 <!--<appender-ref ref="LF5Appender"/>-->
 <appender-ref ref="RollingFileAppender"/>
 <!--<appender-ref ref="ConsoleAppender"/>-->
 <!--appender-ref ref="NTEventLogAppender"/--->
 </root>
</log4j:configuration>

uai_log4jConfiguration.xml Example

Note
Lines starting with begins a commented string. These comments end with .<!-- -->

Universal Agent 6.6.x User Guide

 / ua-66x-user169

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" threshold="null" debug="null">
 <appender name="RollingFileAppender"
 class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="/var/opt/universal/log/uai/uai.log"/>
 <param name="MaxFileSize" value="1000KB"/>
 <param name="MaxBackupIndex" value="4"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p %-17c{2} (%30F:%L) %3x -
 %m%n"/>
 </layout>
 </appender>
 <appender name="LF5Appender" class="org.apache.log4j.lf5.LF5Appender">
 <param name="MaxNumberOfRecords" value="1000"/>
 </appender>
 <appender name="ConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <param name="Target" value="System.err"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p %-17c{2} (%30F:%L) %3x -
 %m%n"/>
 </layout>
 </appender>
 <logger name="com.stonebranch" additivity="true">
 <level value="error"/>
 </logger>
 <root>
 <priority value="error"/>
 <!--appender-ref ref="LF5Appender" / -->
 <!--<appender-ref ref="RollingFileAppender"/>-->
 <appender-ref ref="ConsoleAppender"/>
 </root>
</log4j:configuration>

Universal Agent 6.6.x User Guide

 / ua-66x-user170

UAC HTTP Form - Windows and UNIX

Example of Universal Command HTTP POST with Form Data
Universal Command Options
Components
Service Options
Form Data

Example of Universal Command HTTP POST with Form Data

The following is an example of Universal Command Manager executing a Universal Command Agent for SOA HTTP POST request with form
data. The service request is specified in the script file, , and the HTTP form data is provided as standard input file options.txt

.form-data.xml

ucmd -script options.txt -script_type service -host dallas -userid username -pwd password <
form-data.xml

Universal Command Options

The Universal Command Manager command line options used in this example are:

Option Description

-script File containing the options that define the service request to be executed.

-script_type Type of script specified by -script, which is a service request in this example.

-host Host name or IP Address of the Universal Broker where a Universal Application Container (UAC) is
executing. The service request is ultimately executed by the UAC component on behalf of the Universal
Command Manager.

-userid Valid user name on the host specified by the -host option.

-pwd Valid password for the user name specified by the -userid option.

Components

Universal Command

Universal Command Agent for SOA

Service Options

The service request is specified with Universal Command Agent for SOA options in the Universal Command script file referred to by the -script
option. The example above specifies script file on the -script option. The contents of specifies the following HTTPoptions.txt options.txt
POST request to be executed.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_TYPE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user171

-protocol http
-httpmethod post
-httpformdata true
-mep request
-serviceurl http://www.acme.com/cgi-bin/comment-form.cgi
-timeoutsec 60

Each of the Universal Command Agent for SOA options are described below.

Option Description

-protocol Protocol used for the service request.

-httpmethod HTTP method, such as GET or POST.

-httpformdata Specification for whether or not form data is included in the service request.

-mep Message exchange pattern. HTTP POST always use a Request pattern.

-serviceurl URL identifying the location of the HTTP request.

-timeoutsec Number of seconds to wait for a response from the HTTP server.

Form Data

The example HTTP POST request provides the form data as standard input file . The form data is formatted as an XMLform-data.xml
document. The following file is an example that provides two name-value pairs that will be part of the HTTP POST request:form-data.xml

<?xml version="1.0" encoding="UTF-8"?>
<p:HTTPFormData xmlns:p="http://com.stonebranch/UAI/HTTPFormData"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAI/HTTPFormData HTTPFormData.xsd ">
 <p:Property>
 <p:Name>Comments</p:Name>
 <p:Value>You only live once, but if you work it right, once is enough.</p:Value>
 </p:Property>
 <p:Property>
 <p:Name>box</p:Name>
 <p:Value>yes</p:Value>
 </p:Property>
</p:HTTPFormData>

See the option for a description of the XML Schema Definition (XSD) for providing form data key-value pairs.HTTP_FORM_DATA

https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/HTTP_METHOD+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/HTTP_FORM_DATA+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_URL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/HTTP_FORM_DATA+-+UCA+for+SOA+command+option

Universal Agent 6.6.x User Guide

 / ua-66x-user172

1.
2.
3.

Outbound SOAP Implementation - zOS

Outbound SOAP Implementation
JCL
DD Statements
Components

Outbound SOAP Implementation

Outbound SOAP requests are made via a submitted batch job. The batch job utilizes Universal Command to initiate Universal Command Agent
for SOA on a Linux server.

The SOAP method used is request / acknowledge, which means that the batch job completes once it has received an acknowledgement from the
application that the delivered SOAP message has been received. At this point, Universal Agent is not aware of the status of any application
processes initiated by the delivered SOAP message.

The outbound SOAP message delivered to the application contains the following three parameters:

Run Date: Current date in the format YYYY-MM-DD.
Request Identifier: Provided by the application.
Run Type: Currently, is the only valid value.START

JCL

The following JCL will initiate the outbound SOAP request.

//TZE025R2 JOB (TEST,CC0KG1500000),'WINDOWS', JOB08030
// CLASS=S,
// MSGCLASS=R
//*
// JCLLIB ORDER=TEST.SYS5.UNV.SUNVSAMP
//* **
//* * Sample SOA Communication for R1
//* * **
//* * STEPS - FUNCTION
//* * ----- ---
//* * SYSIN - Target destination for process / LINUX
//* * INPUT - Universal Command Options to execute SOAP
//* * UNVIN - PAYLOAD being passed to server
//* **
//STEP1 EXEC UCMDPRC
//LOGIN DD DISP=SHR,DSN=ZE025.PROD.INDESCA(IDNPSWD)
//SYSIN DD DISP=SHR,DSN=ABC.CONTROL.UPARMLIB(HOSTPARM)
//INPUT DD DISP=SHR,DSN=ABC.CONTROL.UPARMLIB(SOAPCALL)
//UNVIN DD DISP=SHR,DSN=ABC.CC030210.PMS002.STGXML.START

This JCL executes the Universal Command JCL procedure.

DD Statements

The DD Statements contain the following:

LOGIN DD

Encrypted password for the Linux Server running Universal Command Agent for SOA. The encrypted file is created with the Universal Encrypt
utility.

SYSIN DD

Universal Command runtime parameters:

-host
DNS name or IP address of the Linux Server running Universal Command Agent for SOA.
-encryptedfile
Specified the DD name that will contain the encrypted password file.
-script
Specifies the DD name that will contain the Universal Command Agent for SOA runtime parameters that are passed to the Universal

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user173

Command for Agent SOA.
-script_type
The value tells Universal Command that this is a SOA process.SERVICE

Outbound SOAP Request - SYSIN DD Contents

-host deveis01
-encryptedfile LOGIN
-script INPUT
-script_type SERVICE

INPUT DD

Universal Command Agent for SOA runtime parameters:

-protocol
Indicates which of the supported SOA protocols to use for this request.
-mep
The value tells the Universal Command Agent for SOA that this request is synchronous (two-way and blocked until a reply isREQUEST
sent by the target workload).
-serviceurl
Specifies the URL address (internet, network, or file-based) of the target workload.
-serviceusername
Specifies the user name to be passed to the target workload for authentication.
-servicepassword
Specifies the password to be passed to the target workload for authentication.
-timeoutsec
Specifies the length of time - in seconds - to wait for the request to complete.

Outbound SOAP Request - SYSIN DD Contents

-protocol SOAP
-mep request
-serviceurl http://asmws2/rbs_ws/services/BatchCtrlSvcWS
-serviceusername dummy
-servicepassword dummy
-timeoutsec 120

UNVIN DD

Universal Command for SOA payload. Contains the values for Run Date, Request Identifier and Request Type.

Outbound SOAP Request - SYSIN DD Contents

<est:processBatchCtrlSvcTxn
 xmlns:est="http://abcinsurance.com//services/establish-task-facade/">
 <batchctrlsvcReq>
 <ReqHeader>
 <ReqId>AUT4510021710113870000200</ReqId>
 <CmdType>request</CmdType>
 <CmdMode>alwaysRespond</CmdMode>
 <UserId></UserId>
 <Passwd></Passwd>
 </ReqHeader>
 <BatchCtrlSvc_ReqRecord>
 <Action>START</Action>
 <EODDt>2010-02-17</EODDt>
 </BatchCtrlSvc_ReqRecord>
 </batchctrlsvcReq>
 </est:processBatchCtrlSvcTxn>

Components

Universal Command

Universal Command Agent for SOA

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_TYPE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PROTOCOL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/MEP+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_URL+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_USER_NAME+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/SERVICE_PASSWORD+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_SEC+-+UCA+for+SOA+command+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user174

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user175

Inbound SOAP Implementation - Windows and UNIX

Inbound SOAP Implementation
Inbound SOAP Request UAC.xml
Inbound SOAP Request - Message Payload Written to Fileprocess_%Seq%.xml
Inbound SOAP Request - Universal Event Monitor Event Definition
Loading the Event Definition
Changing the Event Definition
Inbound SOAP Request - Universal Event Monitor Handler Definition
Outbound SOAP Request - abc.rexx
Outbound SOAP Request - Event and Handler to purge abc.log
Components

Inbound SOAP Implementation

Inbound SOAP requests are handled via Universal Event Monitor for SOA.

When Universal Event Monitor for SOA detects an inbound SOAP message, it writes the message payload to a file. Universal Event Monitor
detects the file and initiates an action.

The SOAP message payload is parsed to extract information that is used to build a z/OS console message. Universal Command delivers the
message from the Linux server to the z/OS mainframe.

Universal Event Monitor for SOA is configured via the file./etc/universal/UAC.xml

Inbound SOAP Request UAC.xml

<?xml version="1.0" encoding="UTF-8"?>
<sb:UAC xmlns:sb="http://com.stonebranch/UAC/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAC/ UAC.xsd"/
 <!-- Id -->
 <sb:SOAPConnection>
 <sb:URI>/axis2/services/UACInbound</sb:URI>
 <sb:Listeners>
 <sb:SOAPListener>
 <sb:Operation>process</sb:Operation>
 <sb:Actions>
 <sb:SOAPFileWriter>
<sb:Directory>/export/home/control/indesca/soap_listener/</sb:Directory>
 <sb:FilenamePattern>process_%Seq%.xml</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteEnvelope>true</sb:WriteEnvelope>
 </sb:SOAPFileWriter>
 </sb:Actions>
 </sb:SOAPListener>
 </sb:Listeners>
 </sb:SOAPConnection>
</sb:UAC>

If required, additional SOAP connections can be defined to the .UAC.xml

Universal Event Monitor for SOA writes the payload of the inbound SOAP message to the following directory / file mask:

/export/home/control/indesca/soap_listener/process_%Seq%.xml

The variable is resolved to a sequence number generated by Universal Event Monitor. The sequence number is incremented by one for%Seq%
each file created and is reset to each time Universal Event Monitor for SOA is started.1

Inbound SOAP Request - Message Payload Written to Fileprocess_%Seq%.xml

The following shows an example of the inbound message payload written to the file.process_%Seq%.xml

Universal Agent 6.6.x User Guide

 / ua-66x-user176

<?xml version='1.0' encoding='utf\-8'?><soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soapenv:Body><NS1:process
xmlns:NS1="http://inbound.uac.stonebranch.com">
<NS1:identitySourceApplicationId>RBS</NS1:identitySourceApplicationId><NS1:identitySourceUserId />
<NS1:identitySourcePassword /><NS1:identitySourceToken />
<NS1:activityRequestId>AUT4210021109265970293000</NS1:activityRequestId>
<NS1:activityStatus>PROCESS CLOSE ACCOUNTING YYYY MM</NS1:activityStatus>
<NS1:activityState>ACCOUNTING MONTH CLOSING INPROGRESS</NS1:activityState>
<NS1:activityStateReason>INFO</NS1:activityStateReason>
<NS1:activityAction>ODPT0001</NS1:activityAction>
<NS1:activityStartDate>2010-02-24</NS1:activityStartDate>
<NS1:activityStartTime>08:35:42.397382</NS1:activityStartTime></NS1:process></soapenv:Body></soapenv:Envelope>

The following fields in the file are used to create the z/OS console message:process_%Seq%.xml

<NS1:identitySourceApplicationId>RBS</NS1:identitySourceApplicationId>
<NS1:activityRequestId>AUT4210021109265970293000</NS1:activityRequestId>
<NS1:activityAction>ODPT0001</NS1:activityAction>

Inbound SOAP Request - Universal Event Monitor Event Definition

The following figure illustrates the event definition that Universal Event Monitor uses to detect the file created by Universal Event Monitor for SOA.

BEGIN_EVENT
 EVENT_ID "ABC SOA EVENT"
 EVENT_TYPE FILE
 COMP_NAME UEMS
 STATE ENABLE
 TRACKING_INT 10
 TRIGGERED_ID "ABC SOA HANDLER"

 FILESPEC "/export/home/ control/indesca/soap_listener/*.*"
 MIN_FILE_SIZE 0
 RENAME_FILE YES
 RENAME_FILESPEC "/export/home/ control/indesca/soap_listener/$(origname).$(origext)"

END_EVENT

Event Definition Options

The Event Definition options used in this example are:

Option Description

EVENT_ID Identifier that uniquely identifies an event definition record.

EVENT_TYPE Type of system event represented by the event definition record.

COMP_NAME Event-driven UEM Server responsible for monitoring the event.

STATE Event definitions that should be processed or ignored by UEM.

TRACKING_INT Event definitions that should be processed or ignored by UEM.

TRIGGERED_ID ID of an event handler record that UEM will execute when an event occurrence is triggered.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user177

FILESPEC Name of a file to monitor.

MIN_FILE_SIZE Size a file must be in order to be considered complete by UEM.

RENAME_FILE Specifies whether or not UEM should rename a monitored file when an event occurrence is triggered.

RENAME_FILESPEC Specifies how a file should be renamed when an event occurrence is triggered.

Loading the Event Definition

The event definition is loaded to Universal Event Monitor using the following command issued on the Linux server running Universal Command
Agent for SOA.

/opt/universal/bin/uemload -add -deffile event_definition.txt

Command Line Options

The Event Definition options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-deffile Name of a file that contains event definition and/or event handler parameters.

Changing the Event Definition

Alternatively, changes to the event definition can be effected using the following command:

/opt/universal/bin/uemload -update -deffile event_definition.txt

Command Line Options

The Event Definition options used in this example are:

Option Description

-update Changes one or more existing event definition and/or event handler records.

-deffile Name of a file that contains event definition and/or event handler parameters.

Inbound SOAP Request - Universal Event Monitor Handler Definition

The event definition 'moves' each file to a staging directory and invokes a SOA HANDLER.Process_%Seq$.xml

The following Universal Event Monitor handler definition processes each file.Process_%Seq%.xml

https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user178

BEGIN_HANDLER
 HANDLER_ID "ABC SOA HANDLER"
 ACTION_TYPE CMD
 MAXRC 0
 USERID "control"
 PWD "UACL"
 BEGIN_SCRIPT
 STMT "#!/usr/bin/ksh"
 STMT "exec > /export/home/control/indesca/abc.log 2>&1"
 STMT "set -xv"

 STMT "/opt/universal/bin/ucmd -script /export/home/control/indesca/abc.rexx \"
 STMT "< $UEMRENAMEDFILE \"
 STMT "-HOST mvstcp5 -USERID CTLMNT -PWD UACL "
 STMT ">> /export/home/control/indesca/abc.log \"
 STMT "2>&1"
 STMT "if [$? -gt 0]"
 STMT " then"
 STMT " mv $UEMRENAMEDFILE $UEMORIGFILE"
 STMT " else"
 STMT " rm $UEMRENAMEDFILE"
 STMT "fi"
 STMT "exit $rc"
 END_SCRIPT
END_HANDLER

The Event Handler executes under the authority of the USERID control. To allow this userid to authenticate without a password, the following
UACL definitions were made to :/etc/universal/uacl.conf

uem_handler control,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see).Configuration Refresh

The Event Handler invokes Universal Command to:

1 Connect to the z/OS mainframe.

2 Execute a REXX script to parse the required information from the file.process_%Seq%.xml

3 Execute the Universal Write-to-Operator utility to write the required console message.

The Event Handler appends logging information to the following file: ./export/home/control/indesca/abc.log

If the Event Handler does not complete successfully, the file is moved back its original location so that processing can beprocess_%Seq%.xml
retried. Otherwise, this file is deleted.

Outbound SOAP Request - abc.rexx

The REXX script executed by the Event Handler is stored on the Linux server running Universal Command Agent for SOA.

/* REXX */
TRACE R
 ABC.XML = LINEIN()

parse value ABC.XML with "<NS1:activityAction>" ABC.ACTN "</NS1:activityAction>"

parse value ABC.XML with "<NS1:identitySourceApplicationId>" ABC.APID
"</NS1:identitySourceApplicationId>"

parse value ABC.XML with "<NS1:activityRequestId>" ABC.RQID "</NS1:activityRequestId>"

ABC.UWTO = "EIEOSRAT "ABC.ACTN ABC.APID ABC.RQID

'/usr/lpp/universal/bin/uwto -msg "'ABC.UWTO'"'
ABC.RC = RC

EXIT ABC.RC

The REXX script is executed under the z/OS USS environment under the authority of the USERID . To allow this userid to authenticateCTLMNT
without a password, the following UACL definitions were made to :TEST.SYS5.UNV.UNVCONF(ACLCFG00)

Universal Agent 6.6.x User Guide

 / ua-66x-user179

ucmd_access ALL,*,CTLMNT,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see).Configuration Refresh

The REXX script executes the Universal Write-to-Operator utility in order to write the required message to the z/OS console.

The file is appended to each time a is processed. This file is useful as an audit trail and for problem diagnosis.abc.log process_%Seq%.xml

Outbound SOAP Request - Event and Handler to purge abc.log

In order to ensure that this file does not grow to an unreasonable size, additional Universal Event Monitor Event and Handler have been
implemented to purge this file when it reaches 10mb in size.

BEGIN_EVENT
 EVENT_ID "ABC LOG FILE CLEANUP"
 EVENT_TYPE FILE
 COMP_NAME UEMS
 STATE ENABLE
 TRACKING_INT 10
 TRIGGERED_ID "ABC LOG FILE CLEANUP"
 FILESPEC "/export/home/control/indesca/abc.log"
 MIN_FILE_SIZE 10M
END_EVENT

BEGIN_HANDLER
 HANDLER_ID "ABC LOG FILE CLEANUP"
 HANDLER_TYPE CMD
 MAXRC 0
 USERID "control"
 PWD "UACL"
 CMD "rm /export/home/control/indesca/abc.log"
END_HANDLER

Event Options

The Event options used in this example are:

Option Description

EVENT_ID Identifier that uniquely identifies an event definition record.

EVENT_TYPE Type of system event represented by the event definition record.

COMP_NAME Event-driven UEM Server responsible for monitoring the event.

STATE Event definitions that should be processed or ignored by UEM.

TRACKING_INT Event definitions that should be processed or ignored by UEM.

TRIGGERED_ID ID of an event handler record that UEM will execute when an event occurrence is triggered.

FILESPEC Name of a file to monitor.

MIN_FILE_SIZE Size a file must be in order to be considered complete by UEM.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user180

HANDLER_ID Identifier that uniquely identifies an event handler record.

HANDLER_TYPE Type of process executed for the event handler.

MAXRC Highest value with which a handler can exit to still be considered as having executed successfully.

USERID ID of a user account in whose security context the handler process will be executed.

PWD Password for the user account specified by .userid

CMD Command to execute on behalf of the event handler.

Components

Universal Event Monitor

UEMLoad

Universal Event Monitor for SOA

Universal Broker

Universal Write-to-Operator

https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Write-to-Operator

Universal Agent 6.6.x User Guide

 / ua-66x-user181

Inbound JMS Implementation - Windows and UNIX

Inbound JMS Implementation
ActiveMQ Topic

MQ Series Queue
Triggering an Event
Components

Inbound JMS Implementation

Inbound implementations take the form of modifying the file with a definition. The container will read this file to construct the connectionUAC.xml
to the target defined by the value of the Property .java.naming.provider

The following figure illustrates an example of this construction.

<sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>tcp://soatest2:61616</sb:Value>
</sb:Property>

In the following examples:

Messages consumed from the topic or queue are written to the file system defined by the tag.<sb:Directory>
<sb:Filename> tag denotes the filename that is be written to the filesystem.
%Seq% defines an increment so that subsequent messages consumed from the topic do not collide with already existing filenames.

ActiveMQ Topic

The following figure illustrates an attachment to an Apache ActiveMQ dynamic topic.

<sb:JMSConnection>
 <sb:Name>JMS ActiveMQ Topic Listener - soatest2/</sb:Name>
 <sb:InitialContextProperties>
 <sb:Property>
 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>org.apache.activemq.jndi.ActiveMQInitialContextFactory</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>tcp://soatest2:61616</sb:Value>
 </sb:Property>
 </sb:InitialContextProperties>
 <sb:ConnectionFactory>ConnectionFactory</sb:ConnectionFactory>
 <sb:Listeners>
 <sb:JMSListener>

<sb:Destination>dynamicTopics/UemsoaStartTopicA</sb:Destination>
 <sb:Actions>
 <sb:JMSFileWriter>
 <sb:Directory>filesystem</sb:Directory>
<sb:FilenamePattern>ActiveMQ_Topic_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:JMSFileWriter>
 </sb:Actions>
 </sb:JMSListener>
 </sb:Listeners>
 </sb:JMSConnection>
</pre>

Websphere Queue

The following figure illustrates an attachment to an IBM Websphere queue.

Universal Agent 6.6.x User Guide

 / ua-66x-user182

<sb:JMSConnection>
 <sb:Name>JMS WebSphere Queue Listener - soatest2</sb:Name>
 <sb:InitialContextProperties>
 <sb:Property>
 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>com.ibm.websphere.naming.WsnInitialContextFactory</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>iiop://soatest2:2809</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>com.ibm.CORBA.ORBInit</sb:Name>
 <sb:Value>com.ibm.ws.sib.client.ORB</sb:Value>
 </sb:Property>
 </sb:InitialContextProperties>
 <sb:ConnectionFactory>jms/SBSConnectionFactory</sb:ConnectionFactory>
 <sb:Listeners>
 <sb:JMSListener>
 <sb:Destination>jms/Soatest2TestQueue3</sb:Destination>
 <sb:Actions>
 <sb:JMSFileWriter>
 <sb:Directory>filesystem<sb:Directory>
 <sb:FilenamePattern>Websphere_Queue_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:JMSFileWriter>
 </sb:Actions>
 </sb:JMSListener>
 </sb:Listeners>
</sb:JMSConnection>

MQ Series Queue

The following figure illustrates an attachment to an IBM MQ Series Queue.

<sb:MQConnection>
 <sb:Name>MQ Series Listener - soatest2</sb:Name>
 <sb:Host>soatest2</sb:Host>
 <sb:QueueManagerName>MyQueueManager</sb:QueueManagerName>
 <sb:Channel>UpsQaChannel</sb:Channel>
 <sb:Port>1414</sb:Port>
 <sb:Listeners>
 <sb:MQListener>
 <sb:QueueName>UpsQaQueue</sb:QueueName>
 <sb:Actions>
 <sb:MQFileWriter>
 <sb:Directory>filesystem</sb:Directory>
 <sb:FilenamePattern>MQSeries_Queue_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>0</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:MQFileWriter>
 </sb:Actions>
 </sb:MQListener>
 </sb:Listeners>
 </sb:MQConnection>

Triggering an Event

Once a file has been written to the file system, UEM could be used to trigger an event, as shown in the following figure.

This event, which would be loaded by UEMLoad, looks for files with an extension of . When it sees a file with that extension, UEM renames thetxt
file to the original name with an extension. It then executes the handler, which runs a system command to move the file.xml

Universal Agent 6.6.x User Guide

 / ua-66x-user183

begin_event
 event_id "JMS_MESSAGE_TRIGGER"
 event_type FILE
 comp_name uems
 state enable
 tracking_int 10
 triggered_id "JMS_MESSAGE_HANDLER"
 filespec "filesystem/*.txt"
 min_file_size 0
 rename_file yes
 rename_filespec "filesystem/$(origname).xml"
end_event

begin_handler
 handler_id "JMS_MESSAGE_HANDLER"
 handler_type CMD
 maxrc 0
 userid username
 pwd user_password
 cmd "move $(origname).xml $(origname).found"
end_handler

Event Options

The Event options used in this example are:

Option Description

event_id Identifier that uniquely identifies an event definition record.

event_type Type of system event represented by the event definition record.

comp_name Event-driven UEM Server responsible for monitoring the event.

state Event definitions that should be processed or ignored by UEM.

tracking_int Event definitions that should be processed or ignored by UEM.

triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

filespec Name of a file to monitor.

min_file_size Size a file must be in order to be considered complete by UEM.

rename_file Specifies whether or not UEM should rename a monitored file when an event occurrence is triggered.

rename_filespec Specifies how a file should be renamed when an event occurrence is triggered.

handler_id Identifier that uniquely identifies an event handler record.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user184

handler_type Type of process executed for the event handler.

maxrc Highest value with which a handler can exit to still be considered as having executed successfully.

userid ID of a user account in whose security context the handler process will be executed.

pwd Password for the user account specified by .userid

cmd Command to execute on behalf of the event handler.

Components

Universal Event Monitor

UEMLoad

Universal Event Monitor for SOA

https://www.stonebranch.com/confluence/display/UA66/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user185

Universal Data Mover - Web Services Execution

Web Services Execution (Inbound Implementation)

The inbound implementation of Universal Agent's web services execution – – provides Universal Data MoverUniversal Event Monitor for SOA
with the ability to create file-based events from inbound Internet and message-based messages, and write the events to file.

This allows for the integration of Internet and message-based messages, and write the events to file. As such it integrates Internet and
message-based applications with systems management functions such as:

Alerting and notification
Incident and problem management
Job scheduling
Data movement

Universal Event Monitor (UEM) monitors one or more local or remote system events. It also can execute a system command or script based on
the outcome of the events that it is monitoring.

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user186

Web Services Execution (Inbound Implementation) - Examples

Web Services Execution Examples

Inbound Implementation - JMS
Inbound Implementation - SOAP

Universal Agent 6.6.x User Guide

 / ua-66x-user187

Inbound Implementation - JMS

Inbound Implementation - JMS
ActiveMQ Topic
Websphere Queue
MQ Series Queue
Triggering an Event
Components

Inbound Implementation - JMS

Inbound implementations take the form of modifying the file with a definition. The container will read this file to construct the connectionUAC.xml
to the target defined by the value of the Property .java.naming.provider

The following figure illustrates an example of this construction.

<sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>tcp://soatest2:61616</sb:Value>
</sb:Property>

In the following examples:

Messages consumed from the topic or queue are written to the file system defined by the tag.<sb:Directory>
<sb:Filename> tag denotes the filename that is be written to the filesystem.
%Seq% defines an increment so that subsequent messages consumed from the topic do not collide with already existing filenames.

ActiveMQ Topic

The following figure illustrates an attachment to an Apache ActiveMQ dynamic topic.

<sb:JMSConnection>
 <sb:Name>JMS ActiveMQ Topic Listener - soatest2/</sb:Name>
 <sb:InitialContextProperties>
 <sb:Property>
 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>org.apache.activemq.jndi.ActiveMQInitialContextFactory</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>tcp://soatest2:61616</sb:Value>
 </sb:Property>
 </sb:InitialContextProperties>
 <sb:ConnectionFactory>ConnectionFactory</sb:ConnectionFactory>
 <sb:Listeners>
 <sb:JMSListener>

<sb:Destination>dynamicTopics/UemsoaStartTopicA</sb:Destination>
 <sb:Actions>
 <sb:JMSFileWriter>
 <sb:Directory>filesystem</sb:Directory>
<sb:FilenamePattern>ActiveMQ_Topic_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:JMSFileWriter>
 </sb:Actions>
 </sb:JMSListener>
 </sb:Listeners>
 </sb:JMSConnection>
</pre>

Websphere Queue

The following figure illustrates an attachment to an IBM Websphere queue.

Universal Agent 6.6.x User Guide

 / ua-66x-user188

<sb:JMSConnection>
 <sb:Name>JMS WebSphere Queue Listener - soatest2</sb:Name>
 <sb:InitialContextProperties>
 <sb:Property>
 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>com.ibm.websphere.naming.WsnInitialContextFactory</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>java.naming.provider.url</sb:Name>
 <sb:Value>iiop://soatest2:2809</sb:Value>
 </sb:Property>
 <sb:Property>
 <sb:Name>com.ibm.CORBA.ORBInit</sb:Name>
 <sb:Value>com.ibm.ws.sib.client.ORB</sb:Value>
 </sb:Property>
 </sb:InitialContextProperties>
 <sb:ConnectionFactory>jms/SBSConnectionFactory</sb:ConnectionFactory>
 <sb:Listeners>
 <sb:JMSListener>
 <sb:Destination>jms/Soatest2TestQueue3</sb:Destination>
 <sb:Actions>
 <sb:JMSFileWriter>
 <sb:Directory>filesystem<sb:Directory>
 <sb:FilenamePattern>Websphere_Queue_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:JMSFileWriter>
 </sb:Actions>
 </sb:JMSListener>
 </sb:Listeners>
</sb:JMSConnection>

MQ Series Queue

The following figure illustrates an attachment to an IBM MQ Series Queue.

<sb:MQConnection>
 <sb:Name>MQ Series Listener - soatest2</sb:Name>
 <sb:Host>soatest2</sb:Host>
 <sb:QueueManagerName>MyQueueManager</sb:QueueManagerName>
 <sb:Channel>UpsQaChannel</sb:Channel>
 <sb:Port>1414</sb:Port>
 <sb:Listeners>
 <sb:MQListener>
 <sb:QueueName>UpsQaQueue</sb:QueueName>
 <sb:Actions>
 <sb:MQFileWriter>
 <sb:Directory>filesystem</sb:Directory>
 <sb:FilenamePattern>MQSeries_Queue_%Seq%.txt</sb:FilenamePattern>
 <sb:StartSequenceNumber>0</sb:StartSequenceNumber>
 <sb:WriteProperties>false</sb:WriteProperties>
 </sb:MQFileWriter>
 </sb:Actions>
 </sb:MQListener>
 </sb:Listeners>
 </sb:MQConnection>

Triggering an Event

Once a file has been written to the file system, UEM could be used to trigger an event, as shown in the following figure.

This event, which would be loaded by UEMLoad, looks for files with an extension of . When it sees a file with that extension, UEM renames thetxt
file to the original name with an extension. It then executes the handler, which runs a system command to move the file.xml

The UDM script looks for all files that begin with a 2 and end with .xml on the local server. These file are then transferred to the destination server,
overwriting any existing files on the destination server, and the session is closed.

Universal Agent 6.6.x User Guide

 / ua-66x-user189

begin_event
 event_id "JMS_MESSAGE_TRIGGER"
 event_type FILE
 comp_name uems
 state enable
 tracking_int 10
 triggered_id "JMS_MESSAGE_HANDLER"
 filespec "filesystem/*.txt"
 min_file_size 0
 rename_file yes
 rename_filespec "filesystem/$(origname).xml"
end_event

begin_handler
 handler_id "JMS_MESSAGE_HANDLER"
 handler_type CMD
 maxrc 0
 userid username
 pwd user_password
 cmd "udm -s udm.script"
end_handler

Event Options

The Event options used in this example are:

Option Description

event_id Identifier that uniquely identifies an event definition record.

event_type Type of system event represented by the event definition record.

comp_name Event-driven UEM Server responsible for monitoring the event.

state Event definitions that should be processed or ignored by UEM.

tracking_int Event definitions that should be processed or ignored by UEM.

triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

filespec Name of a file to monitor.

min_file_size Size a file must be in order to be considered complete by UEM.

rename_file Specifies whether or not UEM should rename a monitored file when an event occurrence is triggered.

rename_filespec Specifies how a file should be renamed when an event occurrence is triggered.

handler_id Identifier that uniquely identifies an event handler record.

https://www.stonebranch.com/confluence/display/UEM510/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/HANDLER_ID+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user190

handler_type Type of process executed for the event handler.

maxrc Highest value with which a handler can exit to still be considered as having executed successfully.

userid ID of a user account in whose security context the handler process will be executed.

pwd Password for the user account specified by .userid

cmd Command to execute on behalf of the event handler.

Contents of File udm.script

 dest_server=192.168.1.1 user=qatest pwd=qatestopen
 dest_server createop=replaceattrib

 local=2*.xmlforfiles
 local=$(_file)copy
end

 close

Components

Universal Event Monitor

UEMLoad

Universal Event Monitor for SOA

https://www.stonebranch.com/confluence/display/UEM510/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/USER_PASSWORD+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UEM510/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+forfiles+Statement
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/close+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user191

Inbound Implementation - SOAP

Inbound Implementation - SOAP
Inbound SOAP Request UAC.xml (UNIX)
Inbound SOAP Request UAC.xml (Windows)
Inbound SOAP Request - Message Payload Written to Fileprocess_%Seq%.xml
Inbound SOAP Request - Universal Event Monitor Event Definition
Loading the Event Definition
Changing the Event Definition
Inbound SOAP Request - Universal Event Monitor Handler Definition
Outbound SOAP Request - abc.rexx
Outbound SOAP Request - Event and Handler to purge abc.log
Components

Inbound Implementation - SOAP

Inbound SOAP requests are handled via Universal Event Monitor for SOA.

When Universal Event Monitor for SOA detects an inbound SOAP message, it writes the message payload to a file. Universal Event Monitor
detects the file and initiates an action.

The SOAP message payload is parsed to extract information that is used to build a z/OS console message. Universal Command delivers the
message from the Linux server to the z/OS mainframe.

Universal Event Monitor for SOA is configured via the file./etc/universal/UAC.xml

Inbound SOAP Request UAC.xml (UNIX)

<?xml version="1.0" encoding="UTF-8"?>
<sb:UAC xmlns:sb="http://com.stonebranch/UAC/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAC/ UAC.xsd">
 <sb:SOAPConnection>
 <sb:URI>/axis2/services/UACInbound</sb:URI>
 <sb:Listeners>
 <sb:SOAPListener>
 <sb:Operation>process</sb:Operation>
 <sb:Actions>
 <sb:SOAPFileWriter>
 <sb:Directory>/export/home/control/indesca/soap_listener/</sb:Directory>
 <sb:FilenamePattern>process_%Seq%.xml</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteEnvelope>false</sb:WriteEnvelope>
 </sb:SOAPFileWriter>
 </sb:Actions>
 </sb:SOAPListener>
 </sb:Listeners>
 </sb:SOAPConnection>
</sb:UAC>

If required, additional SOAP connections can be defined to the .UAC.xml

Universal Event Monitor for SOA writes the payload of the inbound SOAP message to the following directory / file mask:

/export/home/control/indesca/soap_listener/process_%Seq%.xml

The variable is resolved to a sequence number generated by Universal Event Monitor. The sequence number is incremented by one for%Seq%
each file created and is reset to each time Universal Event Monitor for SOA is started.1

Inbound SOAP Request UAC.xml (Windows)

Universal Agent 6.6.x User Guide

 / ua-66x-user192

<?xml version="1.0" encoding="UTF-8"?>
<sb:UAC xmlns:sb="http://com.stonebranch/UAC/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAC/ UAC.xsd">
 <sb:SOAPConnection>
 <sb:URI>/axis2/services/UACInbound</sb:URI>
 <sb:Listeners>
 <sb:SOAPListener>
 <sb:Operation>process</sb:Operation>
 <sb:Actions>
 <sb:SOAPFileWriter>
 <sb:Directory>c:\tmp\</sb:Directory>
 <sb:FilenamePattern>process_%Seq%.xml</sb:FilenamePattern>
 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>
 <sb:WriteEnvelope>false</sb:WriteEnvelope>
 </sb:SOAPFileWriter>
 </sb:Actions>
 </sb:SOAPListener>
 </sb:Listeners>
 </sb:SOAPConnection>
</sb:UAC>

If required, additional SOAP connections can be defined to the .UAC.xml

Universal Event Monitor for SOA writes the payload of the inbound SOAP message to the following directory / file mask:

c:\tmp\process_%Seq%.xml

The variable is resolved to a sequence number generated by Universal Event Monitor. The sequence number is incremented by one for%Seq%
each file created and is reset to each time Universal Event Monitor for SOA is started.1

Inbound SOAP Request - Message Payload Written to Fileprocess_%Seq%.xml

The following shows an example of the inbound message payload written to the file.process_%Seq%.xml

<?xml version='1.0' encoding='utf\-8'?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soapenv:Body>
<NS1:process xmlns:NS1="http://inbound.uac.stonebranch.com">
<NS1:identitySourceApplicationId>RBS</NS1:identitySourceApplicationId><NS1:identitySourceUserId />
<NS1:identitySourcePassword /><NS1:identitySourceToken />
<NS1:activityRequestId>AUT4210021109265970293000</NS1:activityRequestId>
<NS1:activityStatus>PROCESS CLOSE ACCOUNTING YYYY MM</NS1:activityStatus>
<NS1:activityState>ACCOUNTING MONTH CLOSING INPROGRESS</NS1:activityState>
<NS1:activityStateReason>INFO</NS1:activityStateReason>
<NS1:activityAction>ODPT0001</NS1:activityAction>
<NS1:activityStartDate>2010-02-24</NS1:activityStartDate>
<NS1:activityStartTime>08:35:42.397382</NS1:activityStartTime>
</NS1:process>
</soapenv:Body>
</soapenv:Envelope>

The following fields in the file are used to create the z/OS console message:process_%Seq%.xml

<NS1:identitySourceApplicationId>RBS</NS1:identitySourceApplicationId>
<NS1:activityRequestId>AUT4210021109265970293000</NS1:activityRequestId>
<NS1:activityAction>ODPT0001</NS1:activityAction>

Inbound SOAP Request - Universal Event Monitor Event Definition

The following figure illustrates the event definition that Universal Event Monitor uses to detect the file created by Universal Event Monitor for SOA.

Universal Agent 6.6.x User Guide

 / ua-66x-user193

BEGIN_EVENT
 EVENT_ID "ABC SOA EVENT"
 EVENT_TYPE FILE
 COMP_NAME UEMS
 STATE ENABLE
 TRACKING_INT 10
 TRIGGERED_ID "ABC SOA HANDLER"

 FILESPEC "/export/home/ control/indesca/soap_listener/*.*"
 MIN_FILE_SIZE 0
 RENAME_FILE YES
 RENAME_FILESPEC "/export/home/ control/indesca/soap_listener/$(origname).$(origext)"

END_EVENT

Event Definition Options

The Event Definition options used in this example are:

Option Description

EVENT_ID Identifier that uniquely identifies an event definition record.

EVENT_TYPE Type of system event represented by the event definition record.

COMP_NAME Event-driven UEM Server responsible for monitoring the event.

STATE Event definitions that should be processed or ignored by UEM.

TRACKING_INT Event definitions that should be processed or ignored by UEM.

TRIGGERED_ID ID of an event handler record that UEM will execute when an event occurrence is triggered.

FILESPEC Name of a file to monitor.

MIN_FILE_SIZE Size a file must be in order to be considered complete by UEM.

RENAME_FILE Specifies whether or not UEM should rename a monitored file when an event occurrence is triggered.

RENAME_FILESPEC Specifies how a file should be renamed when an event occurrence is triggered.

Loading the Event Definition

The event definition is loaded to Universal Event Monitor using the following command issued on the Linux server running Universal Command
Agent for SOA.

/opt/universal/bin/uemload -add -deffile event_definition.txt

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user194

Command Line Options

The Event Definition options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-deffile Name of a file that contains event definition and/or event handler parameters.

Changing the Event Definition

Alternatively, changes to the event definition can be effected using the following command:

/opt/universal/bin/uemload -update -deffile event_definition.txt

Command Line Options

The Event Definition options used in this example are:

Option Description

-update Changes one or more existing event definition and/or event handler records.

-deffile Name of a file that contains event definition and/or event handler parameters.

Inbound SOAP Request - Universal Event Monitor Handler Definition

The event definition 'moves' each file to a staging directory and invokes a SOA HANDLER.Process_%Seq$.xml

The following Universal Event Monitor handler definition processes each file.Process_%Seq%.xml

BEGIN_HANDLER
 HANDLER_ID "ABC SOA HANDLER"
 ACTION_TYPE CMD
 MAXRC 0
 USERID "control"
 PWD "UACL"
 BEGIN_SCRIPT
 STMT "#!/usr/bin/ksh"
 STMT "exec > /export/home/control/indesca/abc.log 2>&1"
 STMT "set -xv"

 STMT "/opt/universal/bin/ucmd -script /export/home/control/indesca/abc.rexx \"
 STMT "< $UEMRENAMEDFILE \"
 STMT "-HOST mvstcp5 -USERID CTLMNT -PWD UACL "
 STMT ">> /export/home/control/indesca/abc.log \"
 STMT "2>&1"
 STMT "if [$? -gt 0]"
 STMT " then"
 STMT " mv $UEMRENAMEDFILE $UEMORIGFILE"
 STMT " else"
 STMT " rm $UEMRENAMEDFILE"
 STMT "fi"
 STMT "exit $rc"
 END_SCRIPT
END_HANDLER

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user195

1.
2.
3.

The Event Handler executes under the authority of the USERID control. To allow this userid to authenticate without a password, the following
UACL definitions were made to :/etc/universal/uacl.conf

uem_handler control,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see).Configuration Refresh

The Event Handler invokes Universal Command to:

Connect to the z/OS mainframe.
Execute a REXX script to parse the required information from the file.process_%Seq%.xml
Execute the Universal Write-to-Operator utility to write the required console message.

The Event Handler appends logging information to the following file: ./export/home/control/indesca/abc.log

If the Event Handler does not complete successfully, the file is moved back its original location so that processing can beprocess_%Seq%.xml
retried. Otherwise, this file is deleted.

Outbound SOAP Request - abc.rexx

The REXX script executed by the Event Handler is stored on the Linux server running Universal Command Agent for SOA.

/* REXX */
TRACE R
 ABC.XML = LINEIN()

parse value ABC.XML with "<NS1:activityAction>" ABC.ACTN "</NS1:activityAction>"

parse value ABC.XML with "<NS1:identitySourceApplicationId>" ABC.APID
"</NS1:identitySourceApplicationId>"

parse value ABC.XML with "<NS1:activityRequestId>" ABC.RQID "</NS1:activityRequestId>"

ABC.UWTO = "EIEOSRAT "ABC.ACTN ABC.APID ABC.RQID

'/usr/lpp/universal/bin/uwto -msg "'ABC.UWTO'"'
ABC.RC = RC

EXIT ABC.RC

The REXX script is executed under the z/OS USS environment under the authority of the USERID . To allow this userid to authenticateCTLMNT
without a password, the following UACL definitions were made to :TEST.SYS5.UNV.UNVCONF(ACLCFG00)

ucmd_access ALL,*,CTLMNT,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see).Configuration Refresh

The REXX script executes the Universal Write-to-Operator utility in order to write the required message to the z/OS console.

The file is appended to each time a is processed. This file is useful as an audit trail and for problem diagnosis.abc.log process_%Seq%.xml

Outbound SOAP Request - Event and Handler to purge abc.log

In order to ensure that this file does not grow to an unreasonable size, additional Universal Event Monitor Event and Handler have been
implemented to purge this file when it reaches 10mb in size.

Universal Agent 6.6.x User Guide

 / ua-66x-user196

BEGIN_EVENT
 EVENT_ID "ABC LOG FILE CLEANUP"
 EVENT_TYPE FILE
 COMP_NAME UEMS
 STATE ENABLE
 TRACKING_INT 10
 TRIGGERED_ID "ABC LOG FILE CLEANUP"
 FILESPEC "/export/home/control/indesca/abc.log"
 MIN_FILE_SIZE 10M
END_EVENT

BEGIN_HANDLER
 HANDLER_ID "ABC LOG FILE CLEANUP"
 HANDLER_TYPE CMD
 MAXRC 0
 USERID "control"
 PWD "UACL"
 CMD "rm /export/home/control/indesca/abc.log"
END_HANDLER

Event Options

The Event options used in this example are:

Option Description

EVENT_ID Identifier that uniquely identifies an event definition record.

EVENT_TYPE Type of system event represented by the event definition record.

COMP_NAME Event-driven UEM Server responsible for monitoring the event.

STATE Event definitions that should be processed or ignored by UEM.

TRACKING_INT Event definitions that should be processed or ignored by UEM.

TRIGGERED_ID ID of an event handler record that UEM will execute when an event occurrence is triggered.

FILESPEC Name of a file to monitor.

MIN_FILE_SIZE Size a file must be in order to be considered complete by UEM.

HANDLER_ID Identifier that uniquely identifies an event handler record.

HANDLER_TYPE Type of process executed for the event handler.

MAXRC Highest value with which a handler can exit to still be considered as having executed successfully.

USERID ID of a user account in whose security context the handler process will be executed.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACKING_INTERVAL+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MINIMUM_FILE_SIZE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user197

PWD Password for the user account specified by .userid

CMD Command to execute on behalf of the event handler.

Components

Universal Event Monitor

UEMLoad

Universal Event Monitor for SOA

Universal Broker

Universal Write-to-Operator

https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+for+SOA+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Write-to-Operator

Universal Agent 6.6.x User Guide

 / ua-66x-user198

Copying Files to and from Remote Systems

Introduction
Copying Files Examples - z/OS
Copying Files Examples - Windows
Copying Files Examples - UNIX
Copying Files Examples - IBM i
Copying Files Examples - HP NonStop

Introduction

Universal Agent provides for the copying of files to and from remote systems via its Universal Copy utility.

The following examples illustrate file copying for all supported platforms.

Copying Files Examples - z/OS

Copy from Local z/OS to Remote Windows
Copy from Remote Windows to Local z/OS
Copy from Local z/OS to Remote UNIX
Copy from Remote UNIX to Local z/OS
Copy from Local z/OS to Remote IBM i
Copy from Remote IBM i to Local z/OS
Copy from Local z/OS to Remote HP NonStop
Copy from Remote HP NonStop to Local z/OS
Third-Party Copy via Local z/OS, from Windows to UNIX
Third-Party Copy via Local z/OS, from UNIX to Windows
Third-Party Copy via Local z/OS, from Windows to Windows
Third-Party Copy via Local z/OS, from UNIX to UNIX
Copy from Local z/OS to Remote System (in Binary)
Copy from Remote System to Local zOS (in Binary)
Copy from Local z/OS to Remote z/OS
Copy from Remote z/OS to Local z/OS
Copy from Local z/OS to Remote Windows (with Windows Date Variables)
Copy from Local z/OS to Remote UNIX (with UNIX Date Variables)
Copy from Remote UNIX to Local z/OS Using cat Command

Copying Files Examples - Windows

Copy from Remote UNIX to Local Windows
Copy From Local Windows to Remote UNIX
Copy from Remote UNIX to Local Windows Using the UNIX cat Command

Copying Files Examples - UNIX

Copy from Local UNIX to Remote Windows
Copy Encrypted File from Local UNIX to Remote Windows
Copy from Remote Windows to Local UNIX
Copy Encrypted File from Remote Windows to Local UNIX

Copying Files Examples - IBM i

Copy from Remote Windows to Local IBM i via UCMD Manager
Copy from Remote IBM i to Local Windows via UCMD Manager
Copy from Local Windows to Remote IBM i via UCMD Manager
Copy from Local IBM i to Remote Windows via UCMD Manager

Universal Agent 6.6.x User Guide

 / ua-66x-user199

Note
These examples reference the IBM i commands by their untagged names. If you are using commands with tagged names to run

, substitute the tagged names for these untagged names. (For information on tagged names, see Universal Copy UCHGRLS
.)(Change Release Tag) Program

Copying Files Examples - HP NonStop

Copy from Remote Windows to Local HP NonStop via UCOPY
Copy from Local HP NonStop to Remote Windows via UCOPY
Copy from Remote Windows to Local HP NonStop (using STDOUT) - 1
Copy from Remote Windows to Local HP NonStop (using STDOUT) - 2
Copy from Local HP NonStop to Remote Windows (using STDIN) - 1
Copy from Local HP NonStop to Remote Windows (using STDIN) - 2

https://www.stonebranch.com/confluence/display/UA66/Universal+Copy
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user200

Copy from Local zOS to Remote Windows

Copy from Local z/OS to Remote Windows via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote Windows via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote Windows system.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
@echo off
ucopy -mode text -output C:\OUTPUT.FILE
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution.UCMDPRC dallas

The option (value) is used with the command to force end-of-line character interpretation. The option is used with the -mode text ucopy -output
 command to direct the standard out to a local data set on the remote server.ucopy

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OUTPUT+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user201

Copy from Remote Windows to Local zOS

Copy from Remote Windows to Local z/OS via Universal Copy
SYSIN Options
Components

Copy from Remote Windows to Local z/OS via Universal Copy

The following figure illustrates the copying of a file from a remote Windows system to a local z/OS system.

//S1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlg.output.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
@echo off
ucopy -mode text C:\INPUT.FILE
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure UCMDPRC is used to execute the command. The command is sent to a remote system named for execution. The dallas
 DD specifies a local data set to use for the standard output of the remote command. The option (value) is used with the UNVOUT -mode text

 command to force end-of-line character interpretation.ucopy

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user202

Copy from Local zOS to Remote UNIX

Copy from Local z/OS to Remote UNIX via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote UNIX via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote UNIX system.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
/opt/universal/bin/ucopy -mode text \
-output /usr/output.file
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 option is used with the command to direct the standard out to a local data set on the remote server. The path to the binary-output ucopy ucopy

must be specified if the directory is not defined in the user's path environmental variable. The option (value) is used with the -mode text ucopy
command to force end-of-line character interpretation.

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/OUTPUT+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user203

Copy from Remote UNIX to Local zOS

Copy from Remote UNIX to Local z/OS via Universal Copy
SYSIN Options
Components

Copy from Remote UNIX to Local z/OS via Universal Copy

The following figure illustrates the copying of a file from a remote UNIX system to a local z/OS system.

//S1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlq.output.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
/opt/universal/bin/ucopy -mode text \
/usr/input.file
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 DD specifies a local data set to use for the standard output of the remote command. The option (value) is used with the UNVOUT -mode text

 command to force end-of-line character interpretation.ucopy

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user204

Copy from Local zOS to Remote IBM i

Copy from Local z/OS to Remote IBM i via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote IBM i via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote IBM i system.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
STRUCP TOFILE(LIBRARY/OUTPUTFILE)TOMBR(MEMBER)
CPYMODE(*TEXT)
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 option is used with the command to direct the standard out to a local data set on the remote server. The option isTOFILE STRUCP CPYMODE

used to force end-of-line character interpretation.

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/TOFILE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CPY_MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user205

Copy from Remote IBM i to Local zOS

Copy from Remote IBM i to Local z/OS via Universal Copy
SYSIN Options
Components

Copy from Remote IBM i to Local z/OS via Universal Copy

The following figure illustrates the copying of a file from a remote IBM i system to a local z/OS system.

//S1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlq.output.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
STRUCP FRMFILE(LIBRARY/INPUTFILE)FRMMBR(MEMBER)
CPYMODE(*TEXT)
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 DD specifies a local data set to use for the standard output of the remote command. The option is used to force end-of-lineUNVOUT CPYMODE

character interpretation.

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/CPY_MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user206

Copy from Local zOS to Remote HP NonStop

Copy from Local z/OS to Remote HP NonStop via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote HP NonStop via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote HP NonStop system.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
ucopy -output outputfile -mode text
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-server " -script_type OSS"
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 option is used with the command to direct the standard out to a local data set on the remote server. The option (value)-output ucopy -mode text

is used with the command to generate an EDIT file with a file code of 101. A value of binary (default) will generate a C file with a file codeucopy
of 180.

Additional options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-server The value is specified to notify the UCMD Server that it is to execute an OSS process,-script_type OSS
since Universal Copy is a native OSS program.

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/OUTPUT+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_OPTIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user207

Copy from Remote HP NonStop to Local zOS

Copy from Remote HP NonStop to Local z/OS via Universal Copy
SYSIN Options
Components

Copy from Remote HP NonStop to Local z/OS via Universal Copy

The following figure illustrates the copying of a file from a remote HP NonStop system to a local z/OS system.

//S1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlq.output.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
ucopy -mode text inputfile
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-server " -script_type OSS"
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 DD specifies a local data set to use for the standard output of the remote command. The option (value) is used with the UNVOUT -mode text

 command to read an EDIT file with a file code of 101. A value of binary (default) will read a C file with a file code of 180.ucopy

Additional options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-server The value is specified to notify the UCMD Server that it is to execute an OSS process,-script_type OSS
since Universal Copy is a native OSS program.

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_OPTIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user208

Third-Party Copy via Local zOS, from Windows to UNIX

Third-Party Copy via Local z/OS, from Windows to UNIX via Universal Copy
Parameters
SYSIN Options
Components

Third-Party Copy via Local z/OS, from Windows to UNIX via Universal Copy

The following figure illustrates the third-party copying of a file from a local z/OS system, which executes a command from Windows toucopy
UNIX.

//S1 EXEC UCMDPRC
//UNVIN DD DSN=hlq.userid(#useridunx),DISP=SHR
//LOGONDD DD DSN=hlq.userid(#useridnt),DISP=SHR
//SCRIPT DD *
@ECHO ON
:: TRANSFER FROM NT to UNIX
@SET UCOPYPATH=/opt/universal/bin/
@SET OUTPUTFILE=outputfile
@SET INPUTFILE=inputfile
@SET UNIXHOST=unixhost
@SET TEMPUNIXID=c:\temp\tempunixid
@SET MODE=text
ucopy -output %TEMPUNIXID%
ucmd¬
 -cmd " %UCOPYPATH%ucopy -output %OUTPUTFILE%"¬
 < %INPUTFILE% -host %UNIXHOST% -encryptedfile %TEMPUNIXID%¬
 -level info -stdin -mode %MODE%
SET RC=%ERRORLEVEL%
del %TEMPUNIXID%
URC %RC%
//SYSIN DD *
-script SCRIPT
-encryptedfile LOGONDD
-host NTHOST
-level info
/*

All informational messages will be routed to the z/OS manager. The authentication information for the UNIX server must reside on the z/OS.

The file is copied as a text file, since the default transfer mode for standard files is text.

Parameters

The following parameters should be changed to match your information:

Parameter Description

#USERIDUNX Encrypted userid and password member for UNIX server

#USERIDNT Encrypted userid and password member for NT server

UCOPYPATH Path to UCOPY on the receiving UNIX server

OUTPUTFILE Path and filename of receiving file on UNIX server

Universal Agent 6.6.x User Guide

 / ua-66x-user209

INPUTFILE Path and file name of sending file on Windows server

UNIXHOST IP address or hostname of receiving UNIX server

NTHOST IP address or hostname of sending Windows server

TEMPUNIXID Temporary file on the Windows server used to house the encrypted logon information for the UNIX server.
This file is deleted at the bottom of the script.

MODE Mode of file transfer (binary/text).

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .NTHOST

-level Sets the level of message information.

Components

Universal Command Manager for z/OS

Universal Command Manager for Windows

Universal Command Server for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user210

Third-Party Copy via Local zOS, from UNIX to Windows

Third-Party Copy via Local z/OS, from UNIX to Windows via Universal Copy
Parameters
SYSIN Options
Components

Third-Party Copy via Local z/OS, from UNIX to Windows via Universal Copy

The following figure illustrates the third-party copying of a file from a local z/OS system, which executes a from UNIX to Windows.ucopy

//S1 EXEC UCMDPRC
//UNVIN DD DSN=hlq.userid(#useridnt),DISP=SHR
//LOGONDD DD DSN=hlq.userid(#useridunx),DISP=SHR
//SCRIPT DD *
export UCMDPATH=/opt/universal/bin
export UCPYPATH=/opt/universal/bin
export OUTPUTFILE="c:\temp\outputfile"
export INPUTFILE=/tmp/inputfile
export NTHOST=nthostname
export TEMPNTID=/tmp/tempntid
export MODE=text
$UCPYPATH/ucopy -output $TEMPNTID
$UCMDPATH/ucmd \
-cmd "ucopy -output $OUTPUTFILE"< $INPUTFILE \
-host $NTHOST -encryptedfile $TEMPNTID -level info -stdin -mode $MODE
rc=$?
rm $TEMPNTID
exit $rc
//SYSIN DD *
-script SCRIPT
-encryptedfile LOGONDD
-host unixhostname
-level info
/*

All error messages will be routed to the z/OS manager. The authentication information for the NT server must reside on the z/OS.

The file is copied as a text file since the default transfer mode for standard files is text.

Parameters

The following parameters should be changed to match your information:

Parameter Description

#USERIDUNX Encrypted userid and password member for UNIX server

#USERIDNT Encrypted userid and password member for Windows server

UCOPYPATH Path to UNIX executableucopy

UCMDPATH Path to UNIX executableucmd

OUTPUTFILE Path and filename of receiving file

Universal Agent 6.6.x User Guide

 / ua-66x-user211

INPUTFILE Path and file name of sending file

NTHOST IP address or hostname of receiving Windows server

TEMPNTID Temporary file on the UNIX server used to house the encrypted logon information for the Windows server.

MODE Mode of file transfer (binary / text). Default is set to text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .unixhostname

-level Sets the level of message information.

Components

Universal Command Manager for z/OS

Universal Command Manager for UNIX

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user212

Third-Party Copy via Local zOS, from Windows to Windows

Third-Party Copy via Local z/OS, from Windows to Windows via Universal Copy
Parameters
SYSIN Options
Components

Third-Party Copy via Local z/OS, from Windows to Windows via Universal Copy

The following figure illustrates the third-party copying of a file from a local z/OS system, which executes a command from Windows toucopy
Windows.

The standard error is read into the UMET utility to verify the existence of the input file. The last step copies standard error to the job log.

//S1 EXEC UCMDPRC
//UNVIN DD DSN=hlq.userid(#nt2logon),DISP=SHR
//LOGONDD DD DSN=hlq.userid(#ntlogon),DISP=SHR
//UNVERR DD DSN=hlq.output(stderr),DISP=SHR
//SCRIPT DD *
@ECHO ON
:: TRANSFER FROM NT to NT
@SET OUTPUTFILE=c:\temp\output.file
@SET INPUTFILE=c:\temp\input.file
@SET NT2HOST=hostname
@SET TEMPNT2ID=c:\temp\userid.enc
@SET MODE=text
ucopy -output %TEMPNT2ID%
ucmd¬
 -cmd "ucopy -output %OUTPUTFILE%" < %INPUTFILE% ¬
 -host %NT2HOST% -encryptedfile %TEMPNT2ID% -level info -stdin -mode %MODE%
SET RC=%ERRORLEVEL%
del %TEMPNT2ID%
URC %RC%
//SYSIN DD *
 -script SCRIPT
 -encryptedfile LOGONDD
 -host NTHOST
 -level info /*
//*
//***
//S1 EXEC PGM=UMET,PARM='-TABLE TABLE -LEVEL VERBOSE'
//STEPLIB DD DISP=SHR,DSN=hlq.UNV.SUNVLOAD
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//TABLE DD *
 "The system cannot find the file specified." 8
/*
//SYSIN DD DISP=SHR,DSN=hlq.output(stderr)
//***
//S1 EXEC PGM=IEBGENER
//SYSUT1 DD DISP=SHR,DSN=hlq.output(stderr)
//SYSUT2 DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD DUMMY

All error messages will be routed to the z/OS manager. The authentication information for the Windows server must reside on the z/OS.

The file is copied as a text file, since the default transfer mode for standard files is text.

The UMETSTEP step executes the UMET utility. UMET is used to set the condition code field to a value based on message text. The SYSIN DD
is the standard error of the first step and the TABLE DD is the table defining which condition code to be used when text is found.

Universal Agent 6.6.x User Guide

 / ua-66x-user213

Note
The UMET program is used because native Windows returns a 0 return (exit) code, even when the stdin does not exist.
Therefore, the process would end with a 0, even if the input file did not exist. UMET will set the condition code to 8.

The IEBGENER step will copy the standard error file to SYSLOG if the process gets a non-zero condition code.

Parameters

The following parameters should be changed to match your information:

Parameter Description

#USERIDNT Encrypted userid and password member for sending Windows server

#USERIDNT2 Encrypted userid and password member for receiving Windows server

OUTPUTFILE Path and filename of receiving file

INPUTFILE Path and file name of sending file

NTHOST IP address or hostname of sending Windows server

NT2HOST IP address or hostname of receiving Windows server

TEMPNT2ID Temporary file on the Windows sending server used to house the encrypted logon information for the
Windows receiving server.

MODE Mode of file transfer (binary / text). Default is set to text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .NTHOST

-level Sets the level of message information.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user214

Components

Universal Command Manager for z/OS

Universal Command Manager for Windows

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user215

Third-Party Copy via Local zOS, from UNIX to UNIX

Third-Party Copy via Local z/OS, from UNIX to UNIX via Universal Copy
Parameters
SYSIN Options
Components

Third-Party Copy via Local z/OS, from UNIX to UNIX via Universal Copy

The following figure illustrates the third-party copying of a file from a local z/OS system, which executes a command from UNIX to UNIX.ucopy

//S1 EXEC UCMDPRC
//UNVIN DD DSN=hlq.userid(useridunxr),DISP=SHR
//LOGONDD DD DSN=hlq.userid(useridunxs),DISP=SHR
//SCRIPT DD *
export UCOPYPATH=/opt/universal/bin
export UCMDPATH=/opt/universal/bin
export OUTPUTFILE=/outputfile
export INPUTFILE=/inputfile
export UNIXRHOST=receivinghostname
export TEMPUNIXRID=/tmp/unixid.tmp
export MODE=text
$UCOPYPATH/ucopy -output $TEMPUNIXRID
$UCMDPATH/ucmd \
 -cmd "$UCOPYPATH/ucopy -output $OUTPUTFILE" < $INPUTFILE \
 -host $UNIXRHOST -encryptedfile $TEMPUNIXRID -level info -stdin -mode $MODE
rc=$?
rm $TEMPUNIXRID
exit $rc
//SYSIN DD *
 -script SCRIPT
 -encryptedfile LOGONDD
 -host unixshost
 -level info
/*

All error messages will be routed to the z/OS manager. The authentication information for both UNIX servers must reside on the z/OS.

The file is copied as a text file since the default transfer mode for standard files is text.

Parameters

The following parameters should be changed to match your information:

Parameter Description

UCOPYPATH Path pointing to the executable on the second UNIX serverucopy

UCMDPATH Path pointing to the executable on the second UNIX serverucmd

OUTPUTFILE Path and filename of receiving file

INPUTFILE Path and file name of sending file

UNIXSHOST IP address or hostname of sending UNIX server

Universal Agent 6.6.x User Guide

 / ua-66x-user216

UNIXRHOST IP address or hostname of receiving UNIX server

TEMPUNIXRID Temporary file on the sending UNIX server used to house the encrypted logon information for the
receiving UNIX server.

MODE Mode of file transfer (binary / text). Default is set to text.

USERUNXR Points to the userid / password information for the receiving UNIX server.

USERUNXS Points to the userid / password information for the sending UNIX server.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script Specifies the DD from which to read a script file. The script file is sent to the remote system for
execution.

-encryptedfile Specifies the DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .unixshost

-level Sets the level of message information.

Components

Universal Command Manager for z/OS

Universal Command Manager for UNIX

Universal Command Server for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user217

Copy from Local zOS to Remote System (in Binary)

Copy from Local z/OS to Remote System (in Binary) via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote System (in Binary) via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote system, in binary, with no end-of-line character
interpretation.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
@echo off
ucopy -output C:\OUTPUT.FILE
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-stdin -mode binary
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 option used with the command directs the stdout to a local data set on the remote server. The option used with the -output ucopy -mode ucopy

command defaults to binary, so no end-of-line character interpretation is done. Binary is specified for standard input transfer mode.

Additional options are read from the encrypted file allocated to DD .LOGONDD

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-stdin Specification that the options following this one apply to the stdin file.

-mode Specification for whether transferred data is treated as text or binary.

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/OUTPUT+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user218

Copy from Remote System to Local zOS (in Binary)

Copy from Remote System to Local z/OS (in Binary) via Universal Copy
SYSIN Options
Components

Copy from Remote System to Local z/OS (in Binary) via Universal Copy

The following figure illustrates the copying of a file from a remote system to a local z/OS system, in binary, with no end-of-line character
interpretation.

//S1 EXEC UCMDPRC
//UNVOUT DD DISP=SHR,DSN=hlg.output.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
@echo off
ucopy C:\INPUT.FILE
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-stdout -mode binary
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 DD specifies a local data set to use for the standard output of the remote command. The option used with the commandUNVOUT -mode ucopy

defaults to binary, so no end-of-line character interpretation is done. Binary is specified for standard output transfer mode.

Additional options are read from the encrypted file allocated to DD .LOGONDD

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-stdout Specification that the options following this one apply to the stdout file.

-mode Specification for whether transferred data is treated as text or binary.

Components

Universal Command Manager for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/MODE+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_MODE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user219

Copy from Local zOS to Remote zOS

Copy from Local z/OS to Remote z/OS (with Encryption, Compression, and Data Authentication) via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote z/OS (with Encryption, Compression, and Data
Authentication) via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote z/OS system (with encryption, compression, and data
authentication).

//STEP1 EXEC UCMDPRC
//UNVIN='DISP=SHR,DSN=MY.PDS(MEMBER)
//LOGONDD DD DISP=SHR,DSN=MY.LOGON(USERID)
//SCRIPTDD DD *
/opt/universal/bin/ucopy > //'REMOTE.PDS(MEMBER)'
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-stdin -encrypt yes -compress yes -authenticate yes
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution.UCMDPRC dallas

Options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file (default transfer mode for standard files is text).

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-stdin Specification that the options following this one apply to the stdin file.

-encrypt Specification that standard file data sent over the network is encrypted.

-compress Specification for whether the standard file data transmitted across the network should be
compressed.

-authenticate Specification that standard file data sent over the network is authenticated.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_ENCRYPTION+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_COMPRESSION+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_AUTHENTICATION+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user220

Components

Universal Command Manager for z/OS

Universal Command Server for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user221

Copy from Remote zOS to Local zOS

Copy from Remote z/OS to Local z/OS (with Encryption, Compression, and Data Authentication) via Universal Copy
SYSIN Options
Components

Copy from Remote z/OS to Local z/OS (with Encryption, Compression, and Data
Authentication) via Universal Copy

The following figure illustrates the copying of a file from a remote z/OS system to a local z/OS system (with encryption, compression, and data
authentication).

//STEP1 EXEC UCMDPRC
//UNVOUT='DISP=SHR,DSN=MY.PDS(MEMBER)
//LOGONDD DD DISP=SHR,DSN=MY.LOGON(USERID)
//SCRIPTDD DD *
/opt/universal/bin/ucopy < //'REMOTE.PDS(MEMBER)'
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
-stdout -encrypt yes -compress yes -authenticate yes
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 DD specifies a local data set to use for the standard output of the remote command.UNVOUT

Options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

-stdout Specification that the options following this one apply to the stdout file.

-encrypt Specification that standard file data sent over the network is encrypted.

-compress Specification for whether the standard file data transmitted across the network should be
compressed.

-authenticate Specification that standard file data sent over the network is authenticated.

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_ENCRYPTION+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_COMPRESSION+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DATA_AUTHENTICATION+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user222

Components

Universal Command Manager for z/OS

Universal Command Server for z/OS

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user223

Copy from Local zOS to Remote Windows (with Windows Date Variables)

Copy from Local z/OS to Remote Windows (with Windows Date Variables) via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote Windows (with Windows Date Variables) via Universal
Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote Windows system.

The file name on the Windows server is dynamically created based on the current date.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
@echo off
for /f "tokens=1 delims=/" %%a in ('date /t') do set daymm=%%a
for /f "tokens=2" %%a in ('echo %daymm%') do set mm=%%a
for /f "tokens=2 delims=/" %%a in ('date /t') do set dd=%%a
for /f "tokens=3 delims=/" %%a in ('date /t') do set yy=%%a
echo daymm: %daymm%
echo mmddyy: %mm%%dd%%yy%
ucopy -output c:\temp\outputfile%mm%%dd%%yy%
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. The UCMDPRC dallas
 option is used with the command to direct stdout to a local data set on the remote Windows server. The file name is created with a-output ucopy

date variable. The date variable is set to the current date in the commands preceding the command.ucopy

Additional command line options are read from the encrypted file allocated to DD .LOGONDD

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Command Server for Windows

https://www.stonebranch.com/confluence/display/UA66/OUTPUT+-+UCOPY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user224

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user225

Copy from Local zOS to Remote UNIX (with UNIX Date Variables)

Copy from Local z/OS to Remote UNIX (with UNIX Data Variables) via Universal Copy
SYSIN Options
Components

Copy from Local z/OS to Remote UNIX (with UNIX Data Variables) via Universal Copy

The following figure illustrates the copying of a file from a local z/OS system to a remote UNIX system. The file name on the UNIX server is
dynamically created based on the current date.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.input.file
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
DATEN=`date +%d%m`
export DATEN
echo $DATEN
/opt/universal/bin/ucopy \
-output /tmp/output$DATEN.file
//SYSIN DD *
-script SCRIPTDD
-encryptedfile LOGONDD
-host dallas

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution. TheUCMDPRC dallas
stdout redirection character is used with the command to direct stdout to a local data set on the remote server. The file name is created> ucopy
with a date variable, which is set to the current date in the commands preceding the command. The path to the binary must beucopy ucopy
specified if the directory is not defined in the user's path environmental variable.

Additional command line options are read from the encrypted file allocated to DD . The UNIX continuation character is used to splitLOGONDD \
the command to two lines.ucopy

The file is copied as a text file, since the default transfer mode for standard files is text.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script DD from which to read a script file. The script file is sent to the remote system for execution.

-encryptedfile DD from which to read an encrypted command options file.

-host Directs the command to a computer with a host name of .dallas

Components

Universal Command Manager for z/OS

Universal Command Server for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user226

Copy from Remote UNIX to Local zOS Using cat Command

Copy from Remote UNIX to Local z/OS Using UNIX cat Command via Universal Command Manager for z/OS
SYSIN Options
Components

Copy from Remote UNIX to Local z/OS Using UNIX cat Command via Universal Command
Manager for z/OS

The following figure illustrates the copying of a file from a remote UNIX system to a local z/OS system using the UNIX command.cat

//UNIXCAT JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=username.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC,
// STDOUT='DISP=SHR,DSN=username.UNIX.FILE1'
//SYSIN DD *
-cmd 'cat /export/home/username/file1'
-host Unix_1 -userid username -pwd password -level audit
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-cmd Remote command to execute. The program copies the filescat /export/home/username/file1 cat
specified on the command line to its .stdout.n

-host Directs the command to a computer with host address .Unix_1

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-level Message level output for this command execution.

Components

Universal Command Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user227

Copy from Remote UNIX to Local Windows

Copy from Remote UNIX to Local Windows via Universal Command Manager for Windows
Parameters
Command Line Options
Components

Copy from Remote UNIX to Local Windows via Universal Command Manager for Windows

The following figure illustrates the copying of a file from a remote UNIX system to a local Windows system. Although the command is shown on
two lines, it should be entered on one line at the command prompt. If it is coded in a script, the Windows continuation character of must be¬
used.

ucmd -cmd " /opt/universal/bin/ucopy unixinputfile"
-host unixhost -encryptedfile unixid.file > c:\temp\ntoutputfile

The standard out of the command on the remote host is redirected back to the local host and written to . Theucopy c:\temp\ntoutput.file
command is installed as part of Universal Command Server on the remote system.ucopy

The file is copied as a text file, since the default transfer mode for standard files is text.

Parameters

The following parameters should be changed to match your information:

Parameter Description

ntoutputfile Path and filename of output file

unixinputfile Path and file name of input file

unixhost IP address of remote UNIX server

unixid.file File on the Windows server used to house the authentication parameters for the UNIX server

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its STDOUT.

-host Directs the command to a computer with a host name of .unixhost

-encryptedfile File from which to read encrypted command options.

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user228

Components

Universal Command Manager for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user229

Copy From Local Windows to Remote UNIX

Copy From Local Windows to Remote UNIX via Universal Command Manager for Windows
Parameters
Command Line Options
Components

Copy From Local Windows to Remote UNIX via Universal Command Manager for
Windows

The following figure illustrates the copying of a file from a local Windows system to a remote UNIX system. Although the command is shown on
two lines, it should be entered on one line at the command prompt. If it is coded in a script, the Windows continuation character of must be¬
used.

ucmd -cmd " /opt/universal/bin/ucopy -output /tmp/unixoutputfile"
-host unixhost -encryptedfile unixid.file
< c:\temp\ntinputfile

The stdin of the manager on the local host is redirected to the stdout of the remote host and written to . Theucmd /tmp/unixoutputfile
command is installed as part of Universal Command Server on the remote system. The file is copied as a text file since the default transferucopy
mode for standard files is text.

Parameters

The following parameters should be changed to match your information:

Parameter Description

unixoutputfile Path and filename of output file

ntinputfile Path and file name of input file

unixhost IP address of sending UNIX server

unixid.file File on the Windows server used to house the authentication parameters for the UNIX server

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its stdout.

-host Directs the command to a computer with a host name of .unixhost

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user230

-encryptedfile File from which to read encrypted command options.

Components

Universal Command Manager for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user231

Copy from Remote UNIX to Local Windows Using the UNIX cat Command

Copy from Remote UNIX to Local Windows Using the UNIX cat Command via Universal Command Manager for Windows
Command Line Options
Components

Copy from Remote UNIX to Local Windows Using the UNIX cat Command via Universal
Command Manager for Windows

The following figure illustrates copying of file from a remote UNIX system to a local Windows system using the UNIX command.cat

Although the command is shown on two lines, it should be entered as one line at the command prompt.

ucmd -cmd "cat ~/file" -host dallas
 -userid joe -pwd password -comment "copy ~/file from dallas" > localfile

The stdout of the command on the remote host is redirected back to the local host and written to the stdout of , which is then redirectedcat ucmd
to the local file .localfile

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command - - to execute. The program copies the files specified on the command"cat ~/file" cat
line to its stdout.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-comment Description of the process executed by Universal Command.

The file is copied as a text file, since the default transfer mode is .text

Components

Universal Command Manager for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMENT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user232

Copy from Local UNIX to Remote Windows

Copy from Local UNIX to Remote Windows via Universal Command Manager for UNIX
Command Line Options
Components

Copy from Local UNIX to Remote Windows via Universal Command Manager for UNIX

The following figure illustrates the copying of a file from a local UNIX system to a remote Windows system.

Although the command is shown on two lines, it should be entered as one line at the command prompt.

ucmd -cmd 'ucopy > remotefile' -host dallas
 -userid joe -pwd password < localfile

The command receives its stdin file from ucmd. The standard in of UCMD is redirected from .ucopy localfile

The command is installed as part of Universal Command Server on the remote system.ucopy

The file is copied as a text file, since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies its standard in to itsucopy > remotefile ucopy
standard out.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user233

Copy Encrypted File from Local UNIX to Remote Windows

Copy Encrypted File from Local UNIX to Remote Windows via Universal Command Manager for UNIX
Command Line Options
Components

Copy Encrypted File from Local UNIX to Remote Windows via Universal Command
Manager for UNIX

The following figure illustrates the copying of a file from a local UNIX system to a remote Windows server.

Although the command is shown on two lines, it should be entered on one line at the command prompt. If it is coded in a script, the UNIX
continuation character of must be used.\

ucmd -cmd 'ucopy -output c:\temp\ntoutput.file' -host nthost
 -encryptedfile login.file < /tmp/unixinput.file

The stdin of the ucmd manager on the local host is redirected to the remote host and written to stdout file . Thec:\temp\ntoutput.file
command is installed as part of Universal Command Server on the remote system.ucopy

The file is copied as a text file, since the default transfer mode for standard files is text.

Command Line Options

The command line options used are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its stdout.

-host Directs the command to a computer with a host name of .nthost

-encryptedfile File from which to read encrypted command options.

Components

Universal Command Manager for UNIX

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user234

Copy from Remote Windows to Local UNIX

Copy from Remote Windows to Local UNIX via Universal Command Manager for UNIX
Command Line Options
Components

Copy from Remote Windows to Local UNIX via Universal Command Manager for UNIX

The following figure illustrates the copying of a file from a remote Windows system to a local UNIX system.

Although the command is shown on two lines, it should be entered as one line at the command prompt.

ucmd -cmd 'ucopy file' -host dallas
 -userid joe -pwd password > localfile

The stdout of the command on the remote host is redirected back to the local host and written to the stdout of ucmd, which is thenucopy
redirected to the local file .localfile

The command is installed as part of UCMD Server on the remote system.ucopy

The file is copied as a text file since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its stdout.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user235

Copy Encrypted File from Remote Windows to Local UNIX

Copy Encrypted File from Remote Windows to Local UNIX via Universal Command Manager for UNIX
Command Line Options
Components

Copy Encrypted File from Remote Windows to Local UNIX via Universal Command
Manager for UNIX

The following figure illustrates the copying of a file from a remote Windows system to a local UNIX server.

If it is coded in a script, then the UNIX continuation character of must be used.\

ucmd -cmd 'ucopy ntinputfile' -host nthost -encryptedfile
ntid.file > /tmp/unixoutputfile

The stdout of the command on the remote host is redirected back to the local host and written to . The commanducopy /tmp/unixoutputfile
 is installed as part of Universal Command Server on the remote system.ucopy

The file is copied as a text file, since the default transfer mode for standard files is text.

Command Line Options

The command line options used are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its stdout.

-host Directs the command to a computer with a host name of .nthost

-encryptedfile File from which to read encrypted command options.

Components

Universal Command Manager for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user236

Copy from Remote Windows to Local IBM i via UCMD Manager

Copy from Remote Windows to Local IBM i via Universal Command Manager for IBM i
Command Line Options
Components

Copy from Remote Windows to Local IBM i via Universal Command Manager for IBM i

The following figures illustrate copying a file from a remote Windows system to a local file.

STRUCM CMD('ucopy infile') HOST(dallas) USERID(joe) PWD(password) SOTFILE(localfile)

UCOPY, which the UCMD Server invokes on system , retrieves data from the file named . It sends data to the UCMD Managerdallas infile
running under IBM i using standard output. The UCMD Manager, in turn, receives input via stdin and writes to file specified by SOTFILE, .localfile
The file is copied via UCMD as a text file, since the default transfer mode is .text

STRUCM CMD('ucopy c:\ntinput.file') HOST(nthost) USERID(joe) PWD(akkSdiq) SOTFILE(library/outputfile)
SOTMBR(member)

UCOPY runs on the remote host and retrieves data from . UCOPY output is redirected back to the local host and written toc:\ntinput.file
the stdout of . output is, in turn, directed to the local file and, optionally, . The file is copied via UCMD as aSTRUCM STRUCM SOTFILE SOTMBR
text file, since the default transfer mode for standard files is text.

The command is installed as part of UCMD Server on the remote system.ucopy

Command Line Options

The command line options used are:

Option Description

CMD Remote command to execute. The program copies the files specified on the command line toucopy
its stdout.

HOST Directs the command to a computer with a host name of .nthost

USERID Remote user ID with which to execute the command.

PWD Password for the user ID.

SOTFILE [SOTMBR] Location to which the stdout file data is written.

Components

Universal Command Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user237

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user238

Copy from Remote IBM i to Local Windows via UCMD Manager

Copy from Remote IBM i to Local Windows via Universal Command Manager for IBM i
Command Line Options
Components

Copy from Remote IBM i to Local Windows via Universal Command Manager for IBM i

The following figure illustrates the copying of a file initiated by Windows, which copies the first member of a file from IBM i to a file on the Windows
system.

ucmd -host sysName -userid userId -pwd password
-cmd "strucp frmfile(mylib/myfile)" > D:\tmp\File400.txt

UCMD running on Windows invokes STRUCP via a UCMD Server running on IBM i. The FRMFILE parameter overrides input from stdin to the file
. Since the FRMMBR parameter is not used, input defaults to the file member . Data is transferred from mylib/file *FIRST mylib/myfile to

 via UCMD Manager stdout.D:\tmp\File400.txt

The command is installed as part of UCMD Server on the IBM i system.STRUCP

The file is copied as a text file, since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute on the IBM i.

-host Directs the command to a computer with a host name of .sysName

-userid IBM i user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

Universal Command Server for IBM i

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user239

Copy from Local Windows to Remote IBM i via UCMD Manager

Copy from Local Windows to Remote IBM i
Command Line Options
Components

Copy from Local Windows to Remote IBM i

The following figure illustrates the copying of a file initiated by Windows which copies a file from Windows to the first member of a file on IBM i.

ucmd -host sysName -userid userId -pwd password
-cmd "strucp tofile(mylib/readme)" < D:\tmp\README.txt

Using redirected stdin, UCMD Manager, running under Windows sends, transfers data to a UCMD Server running on the remote IBM i system,
. The UCMD Server on invokes UCOPY to transfer the data to . file member is usedsysName sysName mylib/readme mylib/readme *FIRST

since TOMBR was not specified.

The command is installed as part of UCMD Server on the IBM i system.STRUCP

The file is copied as a text file since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute on the IBM i.

-host Directs the command to a computer with a host name of .sysName

-userid IBM i user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for Windows

Universal Command Server for IBM i

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user240

Copy from Local IBM i to Remote Windows via UCMD Manager

Copy from Local IBM i to Remote Windows via Universal Command Manager for IBM i
Command Line Options
Components

Copy from Local IBM i to Remote Windows via Universal Command Manager for IBM i

The following figures illustrate copying a file from a local IBM i system to a remote Windows system.

STRUCM CMD('ucopy > remotefile') HOST(dallas)
 USERID(joe) PWD(password) SINFILE(localfile)

The UCOPY utility running on the remote Windows system receives its standard in file from STRUCM via the Windows agent. The standard in of
STRUCM is read from , as specified by .localfile SINFILE

The file is copied via UCMD as a text file, since the default transfer mode is .text

STRUCM CMD('ucopy -output c:\ntoutput.file') HOST(nthost) USERID(joe) PWD(akkSdiq)
SINFILE(library/inputfile) SINMBR(member)

The command receives its stdin file from STRUCM. The stdin of STRUCM is redirected from and, optionally, to stdoutucopy SINFILE SINMBR
of , via the Windows agent.ucopy
UCOPY stdout is redirected to using the UCOPY parameter.c:\ntoutput.file output

The file is copied via UCMD as a text file, since the default transfer mode for standard files is text.

The command is installed as part of UCMD Server on the remote system.ucopy

Command Line Options

The command line options used are:

Option Description

CMD Remote command to execute. The program copies its stdin to its stdout.ucopy > file ucopy

HOST Directs the command to a computer with a host name of .nthost

USERID Remote user ID with which to execute the command.

PWD Password for the user ID.

SINFILE [SINMBR] Location from which the stdin file data is written.

Components

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user241

Universal Command Manager for IBM i

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user242

Copy from Remote Windows to Local HP NonStop via UCOPY

Copy from Remote Windows to Local HP NonStop via Universal Copy
Command Line Options
Components

Copy from Remote Windows to Local HP NonStop via Universal Copy

The following figure illustrates the copying of a file from a remote Windows system to a local file.

Although the command shown is on two lines, it should be entered on one line at the command prompt.

The HP NonStop manager is executed within the TACL environment.

run $SYSTEM.UNVBIN.ucmd /OUT outputfile/ -cmd 'ucopy inputfile' -host dallas -userid joe -pwd akkSdiq

The stdout of the command on the remote host is redirected back to the local host and written to the stdout of ucmd, which is thenucopy
redirected to the local file . The command is installed as part of Universal Command Server on the remote system.outputfile ucopy

The file is copied as a text file since the default transfer mode for standard files is text.

Command Line Options

The command line options used are:

Option Description

-cmd Remote command to execute. The program copies the files specified on theucopy file ucopy
command line to its stdout.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for HP NonStop

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user243

Copy from Local HP NonStop to Remote Windows via UCOPY

Copy from Local HP NonStop to Remote Windows via Universal Copy
Command Line Options
omponents

Copy from Local HP NonStop to Remote Windows via Universal Copy

The following figure illustrates the copying of a local file to a remote Windows system.

Although the command is shown on two lines, it should be entered on one line at the command prompt.

The HP NonStop manager is executed within the TACL environment.

The file is copied as a text file, since the default transfer mode for standard files is text.

run $SYSTEM.UNVBIN.ucmd /IN inputfile/ -cmd 'ucopy -output outputfile'
-host dallas -userid joe -pwd akkSdiq

The command receives its stdin file from ucmd. The stdin of ucmd is redirected from . The command is installed as part ofucopy inputfile ucopy
Universal Command Server on the remote system.

Command Line Options

The command line options used are:

Option Description

-cmd Remote command to execute. The program copies stdin to stdout.ucopy ucopy

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

omponents

Universal Command Manager for HP NonStop

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user244

Copy from Remote Windows to Local HP NonStop (using STDOUT) - 1

Copy from Remote Windows to Local HP NonStop via UCMD Manager for HP NonStop
Command Line Options
Components

Copy from Remote Windows to Local HP NonStop via UCMD Manager for HP NonStop

The following figure illustrates the copying of a file from a remote Windows system to a local file.

Although the command is shown on two lines, it should be entered on one line at the command prompt.

run $SYSTEM.UNVBIN.ucmd -cmd 'ucopy file' -host dallas -userid joe
-pwd password -stdout -localfile localfile

The standard out of the command on the remote host is redirected back to the local host and written to the standard out of UCMD, whichucopy
then is redirected to the local file . The command is installed as part of UCMD Server on the remote system. The process willlocalfile ucopy
authenticate and run under the authority of userid .joe

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.ucopy file

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-stdout Start of the stdout options.

-localfile Filename to which to redirect output.

Components

Universal Command Manager for HP NonStop

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user245

Copy from Remote Windows to Local HP NonStop (using STDOUT) - 2

Copy from Remote Windows to Local HP NonStop via UCMD Manager for HP NonStop
Command Line Options
Components

Copy from Remote Windows to Local HP NonStop via UCMD Manager for HP NonStop

The following figure illustrates the copying of a file from a remote Windows system to a local file.

Although the command is shown on two lines, it should be entered on one line at the command prompt.

run ucmd -cmd 'ucopy file' -host dallas -server " -script_type OSS"
 -userid joe -pwd password -stdout -localfile localfile

The stdout of the command on the remote host is redirected back to the local host and written to the standard out of UCMD, which is thenucopy
redirected to the local file .localfile

The command is installed as part of UCMD Server on the remote system.ucopy

The file is copied as a text file, since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies the files specified on the commanducopy file ucopy
line to its stdout.

-host Directs the command to a computer with a host name of .dallas

-server Command lines options for the UCMD Server process. The value is specified to notify-script_type OSS
the UCMD Server that it is to execute an OSS process, since Universal Copy is a native OSS program.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-stdout Start of the stdout options.

-localfile Filename to which to redirect output.

Components

Universal Command Manager for HP NonStop

Universal Command Server for Windows

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_OPTIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDOUT_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user246

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user247

Copy from Local HP NonStop to Remote Windows (using STDIN) - 1

Copy from Local HP NonStop to Remote Windows via UCMD Manager for HP NonStop
Command Line Options
Components

Copy from Local HP NonStop to Remote Windows via UCMD Manager for HP NonStop

The following figure illustrates the copying of a file from a local HP NonStop system to a remote Windows system.

Although the command is shown on two lines, it should be entered on one line at the command prompt.

run $SYSTEM.UNVBIN.ucmd -cmd 'ucopy > remotefile' -host dallas -userid joe -pwd password -stdin
-localfile localfile

The command receives its standard in file from the UCMD parameter. The file is written to on the remote system. Theucopy localfile remotefile
command is installed as part of UCMD Server on the remote system. The process will authenticate and run under the authority of userid ucopy

.joe

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.ucopy file

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-stdin Start of the stdin options.

-localfile Filename from which to redirect input.

Components

Universal Command Manager for HP NonStop

Universal Command Server for Windows

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user248

Copy from Local HP NonStop to Remote Windows (using STDIN) - 2

Copy from Local HP NonStop to Remote Windows via UCMD Manager for HP NonStop
Command Line Options
Components

Copy from Local HP NonStop to Remote Windows via UCMD Manager for HP NonStop

The following figure illustrates the copying of a file from a local HP NonStop system to a remote Windows system.

Although the command is shown on multiple lines, it should be entered as one line at the command prompt.

run ucmd -cmd 'ucopy > remotefile' -host dallas
 -server " -script_type OSS" -userid joe -pwd password
 -stdin -localfile localfile

The command receives its standard in file from UCMD. The standard in of UCMD is redirected from .ucopy localfile

The command is installed as part of UCMD Server on the remote system.ucopy

The file is copied as a text file since the default transfer mode is .text

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute. The program copies it stdin to its stdout.ucopy > remotefile ucopy

-host Directs the command to a computer with a host name of .dallas

-server Command lines options for the UCMD Server process. The value is specified to notify-script_type OSS
the UCMD Server that it is to execute an OSS process, since universal copy is a native OSS program.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

stdin Start of the stdout options.

-localfile Filename to which to redirect output.

Components

Universal Command Manager for HP NonStop

Universal Command Server for Windows

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_OPTIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STDIN_FILE_SPEC+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SIO_LOCAL_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+HP+NonStop
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user249

Universal Copy

https://www.stonebranch.com/confluence/display/UA66/Universal+Copy

Universal Agent 6.6.x User Guide

 / ua-66x-user250

1.
2.
3.

Transferring Files to and from Remote Systems

Transferring Files to and from Remote Systems
Transfer Operation Components

Manager
Primary Server
Secondary Server

Transferring Files to and from Remote Systems

Universal Data Mover's file transfer solution, developed specifically for corporate IT infrastructures and automated data center environments,
makes transferring data between various enterprise and desktop platforms reliable and easy.

These pages describe the framework in which transfers are made, and provides examples of file transfers from all supported operating systems.

Transfer Operation Components

There are three components to any Universal Data Mover transfer operation:

Manager
Primary server
Secondary server

The Manager can act as the primary server, depending on the type of transfer session: two-party or three-party (see).Transfer Sessions

The secondary server is always a separate and distinct component invoked via the Universal Broker.

Manager

The Universal Data Mover Manager processes commands using Universal Data Mover's scripting language. The Manager receives commands
from the user through an interactive session, an external script file, or some combination of the two. Before the Manager can initiate any transfer
operations, it must first establish a transfer session where it invokes the primary and secondary servers, which actually conduct the transfer
operations.

Primary Server

When a transfer session is being established, the Universal Data Mover Manager invokes the primary server, which acts as the first endpoint in a
transfer operation. In turn, the primary server invokes the secondary server, providing a single path of communication. The primary server also
acts as a relay for the Manager, forwarding on any messages for the secondary server from the Manager. This single message pipeline reduces
the number of connections needed for three-party transfers (see).Three-Party Transfer Sessions

Secondary Server

The secondary server acts as the second endpoint in a transfer operation. Data is transferred between primary and secondary servers, with either
endpoint able to act as the source in a transfer operation.

Universal Agent 6.6.x User Guide

 / ua-66x-user251

Transfer Sessions

Overview
Logical Names
Two-Party Transfer Sessions
Three-Party Transfer Sessions

Transfer Sessions (Illustrated)
Detailed Information

Overview

Transfer operations take place within the context of a transfer session. A transfer operation is initiated once the Universal Data Mover Manager
has established a transfer session with the primary and secondary transfer servers (see). AllUniversal Data Mover Transfer Operations
subsequent transfer operations take place between the primary and secondary transfer servers.

Universal Data Mover transfer sessions can be either two-party or three-party.

Logical Names

When a transfer session is established, the user gives each server a unique logical name. Commands addressed to a particular server reference
this logical name.

Two-Party Transfer Sessions

For a two-party transfer session, the Universal Data Mover Manager also acts as the primary transfer server, running in the directory – and under
the user ID – under which the Manager was launched. This means that the machine on which Manager resides is the first endpoint of the transfer.

With a two-party transfer session, the secondary server is invoked by the manager / primary server via the Universal Broker. The second endpoint
of the transfer session will be on the machine in which the secondary server was spawned. Transfer operations occur between the manager /
primary server and the secondary server.

(See the following illustration.)

Three-Party Transfer Sessions

For a three-party transfer session, the Universal Data Mover Manager acts solely as a control point for transfer operations, sending commands to
the primary and secondary servers to be executed. Both the primary and secondary servers are spawned via the Universal Broker, and transfer
operations take place between the two machines under which these servers are running.

(See the following illustration.)

Transfer Sessions (Illustrated)

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Transfer+Operations

Universal Agent 6.6.x User Guide

 / ua-66x-user252

Detailed Information

For detailed information on opening transfer sessions and all UDM transfer operations, see .Universal Data Mover Transfer Operations

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Transfer+Operations

Universal Agent 6.6.x User Guide

 / ua-66x-user253

Transferring Files to and from Remote Systems - Examples

Transferring Files Examples - z/OS
Transferring Files Examples - Windows and UNIX
Transferring Files Examples - IBM i

Transferring Files Examples - z/OS

Copy a File to an Existing z/OS Sequential Data Set
Copy a File to a New z/OS Sequential Data Set
Copy a z/OS Sequential Data Set to a File
Copy a Set of Files to an Existing z/OS Partitioned Data Set
Copy a Set of Files to a New z/OS Partitioned Data Set

These examples illustrate two-party transfer sessions between z/OS and UNIX. As appropriate for the example being illustrated, there are
versions for both the DSN and DD file systems.

They apply equally as well to the Windows and UNIX operating systems, with appropriate changes for the file system syntactical differences.

Transferring Files Examples - Windows and UNIX

Simple File Copy to the Manager - Windows and UNIX
Simple File Copy to the Server - Windows and UNIX
Copy a Set of Files - Windows and UNIX

These examples illustrate two-party transfer sessions.

Each example illustrates a procedure that occurs under the default file system for that operating system.

See the list of z/OS and IBM i examples for file transfer examples that apply equally as well to the Windows operating systems.

Transferring Files Examples - IBM i

Copy a File to an Existing IBM i File
Copy an IBM i Data Physical File to a File
Copy a Set of Files to an Existing Data Physical File
Copy a File to a New IBM i Data Physical File
Copy a File to a New IBM i Source Physical File
Copy a Set of Files to a New Data Physical File on IBM i
Copy Different Types of IBM i Files Using forfiles and $(_file.type)
Invoke a Script from an IBM i Batch Job

Note
These examples reference the IBM i commands by their untagged names. If you are using commands with tagged names to run

, substitute the tagged names for these untagged names. (For information on tagged names, see Universal Data Mover
.)UCHGRLS (Change Release Tag) Program

These examples illustrate two-party transfer sessions between IBM i and UNIX. Each example illustrate a file transfer for the LIB file system.

They apply equally as well to the Windows and UNIX operating systems, with appropriate changes for the file system syntactical differences.

The first example, , also includes a version specific to the HFS file system. For other examples similar to thoseCopy a File to an Existing IBM i File
used in the HFS file system, see .Transferring Files Examples - Windows and UNIX

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user254

1.
2.
3.

4.

5.
6.

7.

8.

Copy a File to an Existing zOS Sequential Data Set

Copy a File to an Existing z/OS Sequential Data Set
DD File System
DSN File System
Components

Copy a File to an Existing z/OS Sequential Data Set

These examples copy, in text mode, one sequential file to another. This is the simplest form of data transfer.

DD File System

//S1 EXEC UDMPRC
//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR
//UNVSCR DD *
1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 local=ddfilesys
5 unix=/opt/app/datacd
6 type=textmode
7 unix=data10.txt local=APOUTcopy
8 quit
/*

For this first z/OS example, the following is a line-by-line explanation:

Line 1 turns on command echo, which results in each command being written prior to processing.
Line 2 sets the error condition value on which script processing halts. Any error greater than or equal to warn halts script processing.
Line 3 opens a session between the local UDM Manager and a remote UDM server running on host . The host is given thesol9 sol9
logical name of . The command also provides user credentials for the UDM server to verify and, if successfully verified,unix open
specifies the user ID with which the UDM server executes.
Line 4 changes the local file system from the default of DSN to DD. The file system type dictates the syntax and semantics of file
specifications, such as in the command.copy
Line 5 changes the current directory of the UDM server running on host .unix sol9
Line 6 changes the transfer mode type from binary (the default) to text. Text mode transfers will translate between code pages (for
example, ASCII and EBCDIC) and process the end-of-line characters.
Line 7 is the command that actually moves the data between systems. It copies file on server to the local UDMcopy data10.txt unix
Manager ddname APOUT. Recall that line 4 sets the local file system type to DD; hence, APOUT is referencing a ddname.
Line 8 executes the command, which closes all sessions and exits UDM with the highest exit code set.quit

DSN File System

//S1 EXEC UDMPRC
//UNVSCR DD *
1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=textmode
6 local createop=replaceattrib
7 unix=data10.txt local='app.data.daily'copy
8 quit
/*

The DSN file system example is basically the same as the DD file system example, with these changes:

Removal of the command (line 4 in the DD file system example), since the default file system for the z/OS manager is DSN.filesys
Addition of line 6, which sets the local attribute . controls how a file is created. By default, its value is , indicatingcreateop createop new
that only new files are created and existing files are not written over (replaced). In this example, the value is being set to , whichreplace
specifies that if the file exists, it should be replaced; otherwise, it is created.

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/filesys+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/filesys+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user255

Components

Universal Data Mover Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user256

Copy a File to a New zOS Sequential Data Set

Copy a File to a New z/OS Sequential Data Set
DSN File System
Components

Copy a File to a New z/OS Sequential Data Set

This example copies, in text mode, a file from a remote UNIX system to a sequential data set on z/OS. The data set does not exist on z/OS; UDM
is instructed to create it.

The data set is dynamically allocated based on the local UDM dynamic allocation attributes. UDM provides default attributes that can be changed
to meet local requirements. The UDM defaults, as they are delivered, create a sequential, variable block record data set with a logical record
length of 1024.

The sample below changes the record length to 256 in order to demonstrate how to set dynamic allocation attributes.

A DD file system sample is not provided, since creating a new data set with JCL is the same in UDM as it is in any batch application. There are no
UDM specific requirements.

DSN File System

//S1 EXEC UDMPRC
//UNVSCR DD *
1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local lrecl=256attrib
6 data10.txt local='app.data.daily'copy
7 quit
/*

Note
All file names in the UNIX system must be within the eight-character range to be transferred successfully.

Almost all data set allocation attributes can be specified as UDM attributes, providing you with the ability to dynamically allocate any supported
data set.

Care should be taken that conflicting allocation attributes are not specified. The results of the allocation should be check to verify they meet your
intentions. Although UDM checks attribute values, some values are provided by the system from sources that UDM cannot verify and can result in
invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user257

Copy a zOS Sequential Data Set to a File

Copy a z/OS Sequential Data Set to a File
DD File System
DSN File System
Components

Copy a z/OS Sequential Data Set to a File

These examples copy, in text mode, a sequential data set on z/OS to a remote UNIX system.

Note
A text transfer, by default, does not trim spaces from the end of a record. If the data set being copied is a fixed record format,
each record is padded with spaces so that the record length equals the logical record length of the data set. If you do not want
the trailing spaces copied, they must be trimmed. Variable record formats do not normally have trailing spaces, so trimming
normally is not required.

DD File System

//S1 EXEC UDMPRC
//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR
//UNVSCR DD *
1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 local=ddfilesys
5 unix=/opt/app/datacd
6 type=text trim=yesmode
7 local=apout unix=data10.txtcopy
8 quit
/*

DSN File System

//S1 EXEC UDMPRC
//UNVSCR DD *
1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=text trim=yesmode
6 local='app.data.daily' unix=data10.txtcopy
7 quit
/*

Components

Universal Data Mover Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/filesys+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user258

Copy a Set of Files to an Existing zOS Partitioned Data Set

Copy a Set of Files to an Existing z/OS Partitioned Data Set
DD File System
DSN File System
Components

Copy a Set of Files to an Existing z/OS Partitioned Data Set

These examples copy (in text mode, and using the * wildcard) multiple files with one command to an already allocated partitioned data setcopy
(PDS) on a z/OS system.

The file names used to create the member names in the destination PDS are the source file names.

However, note that file names on UNIX and Windows file systems often have a file extension as part of their name. A file extension is a suffix
separated from the file's base name with a period (for example, BASE.TXT). The period in the file extension is not a valid character in PDS
member names, so UDM must be instructed to remove the file extensions before copying them into the PDS.

The attribute is used to instruct UDM to remove file name extensions from the source file prior to using the name as the destinationtruncext
member name.

This example assumes that the remote UNIX directory contains the following list of files:/opt/app/data

data001.txt
data002.txt
data003.txt
data004.pr
data005.pr

The result of the copy operation will create the following members in PDS :APP.DATA.PDS

DATA001
DATA002
DATA003

DD File System

//S1 EXEC UDMPRC
//APOUT DD DSN=APP.DATA.PDS,DISP=SHR
//UNVSCR DD *
1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 local=ddfilesys
4 unix=/opt/app/datacd
5 type=textmode
6 local truncext=yesattrib
7 unix=*.txt local=apoutcopy
8 quit
/*

DSN File System

//S1 EXEC UDMPRC
//UNVSCR DD *
1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local truncext=yesattrib
6 unix=*.txt local='app.data.daily'copy
7 quit
/*

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/filesys+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command

Universal Agent 6.6.x User Guide

 / ua-66x-user259

Components

Universal Data Mover Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user260

Copy a Set of Files to a New zOS Partitioned Data Set

Copy a Set of Files to a New zOS Partitioned Data Set
DSN File System
Components

Copy a Set of Files to a New zOS Partitioned Data Set

This example copies, in text mode, a set of files from a remote UNIX system to a partitioned data set on z/OS. The data set does not exist on
z/OS; UDM is instructed to create it.

The data set is dynamically allocated based on the local UDM dynamic allocation attributes. UDM provides default attributes that can be changed
to meet local requirements. The UDM defaults as they are delivered create a sequential, variable block record data set with a logical record length
of 1024.

This example changes the data set organization from sequential (PS) to partitioned (PO) and adjusts the data set's space allocation to space
units of cylinders, primary space to 1, secondary space to 2, and directory blocks to 10.

DSN File System

//S1 EXEC UDMPRC
//UNVSCR DD *
1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local dsorg=po spaceunit=cyl primspace=1 secspace=2 +attrib
6 dirblocks=10 truncext=yes
7 unix=*.txt local='app.data.pds'copy
8 quit
/*

Note
Line 5 is continued onto line 6 with the line continuation character (+).

Components

Universal Data Mover Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user261

1.
2.

3.

4.
5.

6.

7.

Simple File Copy to the Manager - Windows and UNIX

Simple File Copy to the Manager

This example copies, in text mode, one file to another. This is the simplest form of data transfer.

1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=textmode
6 unix=data10.txtcopy
7 quit

For this UNIX and Windows example, the following is a line-by-line explanation:

Line 1 turns on command echo, which results in each command being written prior to processing.
Line 2 sets error condition value on which script process halts. Any error equal to or greater than 4 halts script processing. A value of 4
effectively means halt on any error or warning.
Line 3 opens a session between the local UDM Manager and a remote UDM Server running on host . The host is given the asol9 sol9
logical name of . The command also provides user credentials for the UDM Server to verify and, if success verified, specifiesunix open
the user ID with which the UDM Server executes.
Line 4 changes the current directory of the UDM server running on host .unix sol9
Line 5 changes the transfer mode type from binary (the default) to text. Text mode transfers will translate between code pages and
process the end-of-line characters.
Line 6 is the command that actually moves the data between systems. It copies file on server to the local UDMcopy data10.txt unix
Manager as .data10.txt
Line 7 executes the command, which closes all sessions and exits UDM with the highest exit code set.quit

Components

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user262

1.
2.

3.

4.
5.

6.

7.

Simple File Copy to the Server - Windows and UNIX

Simple File Copy to the Server

This example copies, in text mode, a sequential data set on the UDM Manager machine to a remote UNIX system.

1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=textmode
6 local=c:\data10.txtcopy
7 quit

For this UNIX and Windows example, the following is a line-by-line explanation:

Line 1 turns on command echo, which results in each command being sent to stdout prior to processing.
Line 2 sets error condition value on which script process halts. Any error equal to or greater than 4 halts script processing. A value of 4
effectively means halt on any error or warning.
Line 3 opens a session between the local UDM Manager and a remote UDM server running on host . The host is given the asol9 sol9
logical name of . The command also provides user credentials for the UDM server to verify and, if success verified, specifiesunix open
the user ID with which the UDM server executes.
Line 4 changes the current directory of the UDM server running on host .unix sol9
Line 5 changes the transfer mode type from binary (the default) to text. Text mode transfers will translate between code pages and
process the end-of-line characters.
Line 6 is the command that actually moves the data between systems. It copies file in the root directory on drive C of thecopy data10.txt
Windows machine to the UNIX Server as .data10.txt
Line 7 executes the command, which closes all sessions and exits UDM with the highest exit code set.quit

Components

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user263

Copy a Set of Files - Windows and UNIX

Copy a Set of Files

This example copies (in text mode, and using the * wildcard) multiple files with one copy.

It assumes that the remote UNIX directory contains the following list of files:/opt/app/data

data001.txt
data002.txt
data003.txt
data004.pr
data005.pr

The following files will be created on the destination machine:

data001.txt
data002.txt
data003.txt

The attribute is used to instruct UDM to remove file name extensions from the source file prior to using the name as the destinationtruncext
member name.

1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local truncext=yesattrib
6 unix=*.txtcopy
7 quit

Components

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user264

1.
2.
3.

4.
5.

6.

7.

Copy a File to an Existing IBM i File

Copy a File to an Existing IBM i File
LIB File System
HFS File System
Components

Copy a File to an Existing IBM i File

These examples copy, in text mode, one sequential file to another. This is the simplest form of data transfer.

LIB File System

1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=textmode
6 unix=data10.txt local=MYLIB/APPDATA(DAILY)copy
7 quit

For this first IBM i example, the following is a line-by-line explanation:

Line 1 turns on command echo, which results in each command being sent to stdout prior to processing.
Line 2 sets the error condition value on which script processing halts. Any error greater than or equal to halts script processing.warn
Line 3 opens a session between the local UDM Manager and a remote UDM server running on host . The host is given thesol9 sol9
logical name of . The command also provides user credentials for the UDM server to verify and, if successfully verified,unix open
specifies the user ID with which the UDM server executes.
Line 4 changes the current directory of the UDM server running on host sol9.unix
Line 5 changes the transfer mode type from binary (the default) to text. Text mode transfers will translate between code pages (for
example, ASCII and EBCDIC) and process the end-of-line characters.
Line 6 is the command that actually moves the data between systems. It copies file on server to the local UDMcopy data10.txt unix
Manager library: MYLIB Data Physical File APPDATA member DAILY.
Line 7 executes the command, which closes all sessions and exits UDM with the highest exit code set.quit

HFS File System

1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 local=hfsfilesys
5 unix=/opt/app/datacd
6 type=textmode
7 local createop=replaceattrib
8 unix=data10.txt local=/opt/appdatacopy
9 quit

This HFS file system example is basically the same as the LIB file system example, with these changes:

Addition of line 4, which changes the local file system from the default of LIB to HFS. The file system type dictates the syntax and
semantics of file specifications, such as in the command.copy
Addition of line 7, which sets the local attribute . controls how a file is created. By default, its value is , whichcreateop createop new
indicates that only new files are created and existing files are not written over (replaced). In this case, its value is being set to ,replace
specifying that if the file exists, it should be replaced; otherwise, it is created.

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/filesys+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UDM510/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user265

Copy an IBM i Data Physical File to a File

Copy an IBM i Data Physical File to a File
LIB File System
Components

Copy an IBM i Data Physical File to a File

This example copies, in text mode, a Data Physical File on IBM i to a remote UNIX system.

Note
A text transfer, by default, does not trim spaces from the end of a record. If the data set being copied is a fixed record format,
each record is padded with spaces so that the record length equals the logical record length of the data set. If you do not want
the trailing spaces copied, they must be trimmed.

LIB File System

1 _echo=yesset
2 _halton=warnset
3 unix=sol9 user=top098 pwd=p100mopen
4 unix=/opt/app/datacd
5 type=text trim=yesmode
6 local=MYLIB/APPDATA(DAILY) unix=data10.txtcopy
7 quit

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user266

Copy a Set of Files to an Existing Data Physical File

Copy a Set of Files to an Existing Data Physical File
LIB File System
Components

Copy a Set of Files to an Existing Data Physical File

This example copies (in text mode, and using the * wildcard) multiple files with one command to an already allocated Data Physical File oncopy
an IBM i system.

The file names used to create the member names in the destination Data Physical File are the source file names. However, note that file names
on UNIX and Windows file systems often have a file extension as part of their name. A file extension is a suffix separated from the file's base
name with a period (for example, BASE.TXT). Member names are limited to 10 characters on the IBM i system, so UDM must be instructed to
remove the file extensions before copying them into the file.

The attribute is used to instruct UDM to remove file name extensions from the source file prior to using the name as the destinationtruncext
member name.

This example assumes that the remote UNIX directory contains the following list of files:/opt/app/data

data001.txt
data002.txt
data003.txt
data004.pr
data005.pr

The result of the copy operation will create the following members in Data Physical File APPDATA:

DATA001
DATA002
DATA003

LIB File System

1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local truncext=yesattrib
6 unix=*.txt local=MYLIB/APPDATAcopy
7 quit

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user267

Copy a File to a New IBM i Data Physical File

Copy a File to a New IBM i Data Physical File
LIB File System
Components

Copy a File to a New IBM i Data Physical File

This example copies, in text mode, a file from a remote UNIX system to a data physical file on IBM i. The Data Physical File does not exist on IBM
i; UDM is instructed to create it.

The file type created defaults to a Data Physical File. The Data Physical File is allocated based on the local UDM allocation attributes. UDM
provides default attributes that can be changed to meet local requirements. The UDM defaults, as delivered, create a Data Physical File with a
logical record length of 92 and maximum members of 1.

This example changes the record length to 80, and the maximum members to unlimited (), in order to demonstrate how to set allocationnomax
attributes.

LIB File System

1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local rcdlen=80 maxmbrs=nomaxattrib
6 unix=data10.txt local=MYLIB/APPDATA(DAILY)copy
7 quit

Almost all data set allocation attributes can be specified as UDM attributes giving you the ability to dynamically allocate any supported Data
Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of the allocation should be checked to verify they meet
your intentions. Although UDM checks attribute values, some values are provided by the system from sources that UDM cannot verify and can
result in invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user268

Copy a File to a New IBM i Source Physical File

Copy a File to a New IBM i Source Physical File
LIB File System
Components

Copy a File to a New IBM i Source Physical File

This example copies, in text mode, a file from a remote UNIX system to a Source Physical File on IBM i. The Source Physical File does not exist
on IBM i; UDM is instructed to create it.

The Source Physical File is allocated based on the local UDM allocation attributes. UDM provides default attributes that can be changed to meet
local requirements. The UDM defaults, as delivered, create a Data Physical File with a logical record length of 92 and maximum members of 1.

This example changes the file type to in order to demonstrate how to set allocation attributes.src

LIB File System

1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local filetype=srcattrib
6 unix=data10.txt local=MYLIB/APPDATA(DAILY)copy
7 quit

Almost all data set allocation attributes can be specified as UDM attributes giving you the ability to dynamically allocate any supported Data
Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of the allocation should be checked to verify they meet
your intentions. Although UDM checks attribute values, some values are provided by the system from sources that UDM cannot verify and may
result in invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user269

Copy a Set of Files to a New Data Physical File on IBM i

Copy a Set of Files to a New Data Physical File on IBM i
LIB File System
Components

Copy a Set of Files to a New Data Physical File on IBM i

This example copies (in text mode, and using the * wildcard) a set of files from a remote UNIX system to a data physical file on IBM i. The data file
does not exist on IBM i; UDM is instructed to create it.

The data set is allocated based on the local UDM allocation attributes. UDM provides default attributes that can be changed to meet local
requirements. The UDM defaults, as delivered, create a data physical file with a logical record length of 92 and maximum members of 1.

This example changes the record length to 80 and the maximum members to unlimited ().nomax

LIB File System

1 _echo=yes _halton=warnset
2 unix=sol9 user=top098 pwd=p100mopen
3 unix=/opt/app/datacd
4 type=textmode
5 local maxmbrs=nomax rcdlen=80 truncext=yesattrib
6 unix=*.txt local=MYLIB/APPDATAcopy
7 quit

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/set+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/cd+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/mode+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/attrib+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/quit+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user270

Copy Different Types of IBM i Files Using forfiles and $(_file.type)

Copy Different Types of IBM i Files using forfiles and $(_file.type)
LIB File System
Components

Copy Different Types of IBM i Files using forfiles and $(_file.type)

Physical files are considered directories in UDM because they contain 1+ member. Save files are considered files because they do not contain
any members. The statement and the variable allow you to do a wildcard copy on both save and physical files in the LIB fileforfiles $(_file.type)
system.

This example copies a mix of files (Save and Physical) from an IBM i system in a single operation, using the statement and the forfiles
 variable attribute.$(_file.type)

LIB File System

 src=MYLIB/*forfiles
 $(_file.type) EQ directoryif

 src=$(_path)\(*)copy
 else
 src=$(_path)copy

end
end

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+forfiles+Statement
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+forfiles+Statement
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+forfiles+Statement
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+-+if+Statement
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/UDM+-+if+Statement+-+Adding+an+Alternate+Path+with+else+Statement
https://www.stonebranch.com/confluence/display/UA66/copy+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user271

Invoke a Script from an IBM i Batch Job

Invoke a Script from an IBM i Batch Job
LIB file system
Components

Invoke a Script from an IBM i Batch Job

To invoke a script included as an inline file in a database job, the call must specify as the database member name.*FIRST

The following example illustrates both:

Invocation of an inline script, , using the STRUDM command from a database job.CALLME
Invocation of an inline script, , using the CALL command from a database job.CALL1

LIB file system

//BCHJOB JOB(testcall) ENDSEV(10) OUTQ(mytest/UDMOUTQ) LOGCLPGM(*YES) LOG(2 20 *SECLVL) MSGQ(*USRPRF)
//DATA FILE(CALL1) ENDCHAR(ENDDATAFILE)
print msg="I made it to call1 - an inline file"
ENDDATAFILE
//DATA FILE(CALLME) ENDCHAR(ENDDATAFILE)
OPEN S=AS400V5 USER=qatest PWD=***** PORT=4311
CALL CALL1(*FIRST)
CLOSE
ENDDATAFILE
STRUDM SCRFILE(CALLME)
//ENDBCHJOB

Components

Universal Data Mover Manager for IBM i

https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+for+IBM+i

Universal Agent 6.6.x User Guide

 / ua-66x-user272

Encryption

Encryption
Encrypting Files
Transferring Encrypted Files between Servers

Security Considerations
Universal Broker Key Store
Additional Information

Encryption

Universal Agent programs have the ability to read command line options contained in command files. Command files that contain private
information must be protected by using local file system security. This ensures that only authorized accounts have read access.

The () utility adds an additional layer of security by encrypting the contents of command files into an unintelligibleUniversal Encrypt UENCRYPT
format.

Although all command line options can be encrypted with Universal Encrypt, most organizations use it to encrypt and store authentication
credentials such as user ID and/or password.

An encrypted command file can be decrypted only by Stonebranch product programs. No decrypt command is provided to decrypt the command
file.

Note
Universal Encrypt should not be used as a replacement for file system security.

Encrypting Files

Files do not have to be encrypted on the same platform or server on which they will be used. They can be encrypted on any platform or server
and then transferred. This means that applications development, platform administrators, and security administrators can encrypt passwords in
their own environments.

Universal Encrypt encrypts files with either:

56-bit DES
256-bit AES

Universal Encrypt reads an unencrypted file from its standard input and writes the encrypted version to its standard output.

Encrypted files are text files and contain comments that can be edited if required. Lines within the encrypted file that start with the # character are
comments. Default comments are created with the following information:

Date of encryption.
Userid that encrypted the file.
System on which the file was encrypted.
Version of Universal Encrypt used.
Level of encryption used.

Transferring Encrypted Files between Servers

Files encrypted via Universal Encrypt are text files.

You can transfer them between servers, using FTP or similar tools, in text mode. You also can email them between like systems (for example,
Windows to Windows).

Security Considerations

For production implementations, thought should be given to the location and security of encrypted files containing passwords. Consider who
needs access to create, update, and use these files.

Many implementations are centralized around an enterprise scheduling solution. In this case, the encrypted files are often secured in such a way

https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user273

that only the enterprise scheduler is able to access them.

There are additional layers of security available to Universal Agent, such as and . These can beUniversal Access Control List X.509 Certificates
further used to ensure that access to servers is properly controlled.

Universal Broker Key Store

During installation, you can request the generation of an encryption key, which is stored in a Universal Broker key store.

If a Universal Agent component wants to use this encryption key, it requests it from the Universal Broker.

For detailed information on encryption keys and the key store, see .Universal Broker Key Store

Additional Information

The following pages provide additional detailed information for Encryption:

Encryption - Examples

https://www.stonebranch.com/confluence/display/UA66/Universal+Access+Control+List+%28UACL%29
https://www.stonebranch.com/confluence/display/UA66/X.509+Certificates
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide#UniversalBroker6.6.xReferenceGuide-UniversalBrokerKeyStore

Universal Agent 6.6.x User Guide

 / ua-66x-user274

Encryption - Examples

Examples

The following pages provide examples of how to use Universal Encrypt to encrypt a command file (and how to use the encrypted file). Each
example will encrypt a case sensitive password using AES 256 encryption.

Links to detailed technical information on appropriate Universal Agent components are provided for each example.

Creating Encrypted Command File on z/OS
Using Encrypted Command File on z/OS
Creating Encrypted Command File on Windows
Using Encrypted Command File on Windows
Creating Encrypted Command File on UNIX
Using Encrypted Command File on UNIX
Creating Encrypted Command File on IBM i
Using Encrypted Command File on IBM i
Creating Encrypted Command File on HP NonStop

Universal Agent 6.6.x User Guide

 / ua-66x-user275

Creating Encrypted Command File - zOS

Creating Encrypted Command File for z/OS
Command File
JCL
Contents of Encrypted File
Components

Creating Encrypted Command File for z/OS

Command File

In this example, a Universal Command command file named contains the following data:MY.CLEAR.CMDFILE

-userid T02JAH1 -pwd thames

Command File Options

The command file options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Note
If you are creating an encrypted file for use with the Universal Controller CLI (Command Line Interface), you must use the CLI
command line switches to specify the user ID and password:

-p (password)
-u (user ID)

JCL

The following JCL encrypts the command file allocated to ddname using AES encryption and an encryption key :UNVIN MYKEY123

//UENCRYPT EXEC PGM=UENCRYPT
//STEPLIB DD DISP=SHR,DSN=UNV.SUNVLOAD
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//UNVIN DD DISP=SHR,MY.CLEAR.CMDFILE
//UNVOUT DD DISP=SHR,MY.ENCRYPT.CMDFILE
//SYSIN DD *
-key MYKEY123 -aes YES
/*

The resulting encrypted command file is written to ddname .UNVOUT

SYSIN Options

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-Password
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-UserID

Universal Agent 6.6.x User Guide

 / ua-66x-user276

The SYSIN options used in this example are:

Option Description

-key Encryption key used by the encryption algorithm.

-aes Specification for whether or not AES encryption is used.

Contents of Encrypted File

The figure below illustrates the contents of .MY.ENCRYPT.CMDFILE

Universal Encrypt
Date : Thu Nov 3 07:29:03 2011
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 3.2.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA5021F
D92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F0686EFF
37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1

This encrypted command file can now be used by any Universal Agent command on any platform by specifying the encryption key .MYKEY123

Components

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/ENCRYPTION_KEY+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/AES+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user277

Using Encrypted Command File - zOS

Using Encrypted Command File on z/OS

For z/OS, the Universal Command Manager option specifies the ddname in the JCL that references the location of the Uencrypted-encryptedfile
file.

//UCM#000 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
// JCLLIB ORDER=#HLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC UCMDPRC
//UENCRYPT DD DISP=SHR,DSN=TEST.UENFILES(TESTPWD)
//COMMANDS DD *
 DIR
//SYSIN DD *
 -host 10.252.2.232
 -userid "testid"
 -encryptedfile UENCRYPT
 -script COMMANDS

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host List of one or more hosts upon which a command can run.

-userid User ID or account with which to execute the remote command.

-encryptedfile Encrypted command file.

-script Local script file to execute on the remote system.

Components

Universal Command Manager for z/OS

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user278

Creating Encrypted Command File - Windows

Creating Encrypted Command File for Windows
Command File
Encryption Command
Contents of Encrypted File
Components

Creating Encrypted Command File for Windows

Command File

In this example, a Universal Command command file named contains the following data:cmdfile.txt

-userid T02JAH1 -pwd thames

Command File Options

The command file options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Note
If you are creating an encrypted file for use with the Universal Controller CLI (Command Line Interface), you must use the CLI
command line switches to specify the user ID and password:

-p (password)
-u (user ID)

Encryption Command

The following command encrypts the command file using AES encryption with an encryption key .MYKEY123

uencrypt -key MYKEY123 -aes yes < cmdfile.txt > encfile.txt

The resulting encrypted command file is written to file .encfile.txt

Command Line Options

The command line options used in this example are:

Option Description

-key Encryption key used by the encryption algorithm.

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-Password
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-UserID
https://www.stonebranch.com/confluence/display/UA66/ENCRYPTION_KEY+-+UENCRYPT+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user279

-aes Specification for whether or not AES encryption is used.

Contents of Encrypted File

The following figure illustrates the contents of .encfile.txt

Universal Encrypt
Date : Thu Nov 3 07:29:03 2011
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 3.2.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA502
1FD92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F068
6EFF37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1

This encrypted command file now can be used by any Universal Agent command, on any operating system, by specifying the encryption key
.MYKEY123

Components

Universal Command Manager for Windows

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/AES+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user280

Using Encrypted Command File - Windows

Using Encrypted Command File on Windows

For Windows, the Universal Command Manager option specifies the location of the Uencrypted file.-encryptedfile

ucmd -host 10.252.2.232 -userid testid -encryptedfile c:\Universal\Encrypted\enc.txt -cmd "dir"

Command Line Options

The Command options used in this example are:

Option Description

-host List of one or more hosts upon which a command can run.

-userid User ID or account with which to execute the remote command.

-encryptedfile Encrypted command file.

-cmd Remote command to execute.

Components

Universal Command Manager for Windows

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user281

Creating Encrypted Command File - UNIX

Creating Encrypted Command File for UNIX
Command File
Encryption Command
Contents of Encrypted File
Components

Creating Encrypted Command File for UNIX

Command File

In this example, a Universal Command command file named contains the following data:cmdfile.txt

-userid T02JAH1 -pwd thames

Command File Options

The command file options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Note
If you are creating an encrypted file for use with the Universal Controller CLI (Command Line Interface), you must use the CLI
command line switches to specify the user ID and password:

-p (password)
-u (user ID)

Encryption Command

The following command encrypts the command file using AES encryption with an encryption key .MYKEY123

uencrypt -key MYKEY123 -aes yes < cmdfile.txt > encfile.txt

The resulting encrypted command file is written to file .encfile.txt

Command Line Options

The command line options used in this example are:

Option Description

-key Encryption key used by the encryption algorithm.

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-Password
https://www.stonebranch.com/confluence/display/UC66/Command+Line+Interface+%28CLI%29#CommandLineInterface%28CLI%29-UserID
https://www.stonebranch.com/confluence/display/UA66/ENCRYPTION_KEY+-+UENCRYPT+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user282

-aes Specification for whether or not AES encryption is used.

Contents of Encrypted File

The following figure illustrates the contents of .encfile.txt

Universal Encrypt
Date : Thu Nov 3 07:29:03 2011
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 3.2.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA502
1FD92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F068
6EFF37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1

This encrypted command file now can be used by any Universal Agent command, on any operating system, by specifying the encryption key
.MYKEY123

Components

Universal Command Manager for UNIX

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/AES+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user283

Using Encrypted Command File - UNIX

Using Encrypted Command File on UNIX

For the UNIX, the Universal Command Manager option specifies the location of the Uencrypted file.-encryptedfile

/opt/universal/bin/ucmd -host 10.252.2.232 -userid testid \
-encryptedfile /universal/encrypted/encfile.txt -cmd "dir"

Command Line Options

The Command options used in this example are:

Option Description

-host List of one or more hosts upon which a command can run.

-userid User ID or account with which to execute the remote command.

-encryptedfile Encrypted command file.

-cmd Remote command to execute.

Components

Universal Command Manager for UNIX

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user284

Creating Encrypted Command File - IBM i

Creating Encrypted Command File for IBM i
Command File
Encryption Command
Contents of Encrypted File
Components

Creating Encrypted Command File for IBM i

Command File

In this example, a Universal Command command file named contains the following data:MYLIB/QTXTSRC(TESTLOGIN)

-userid T02JAH1 -pwd tz74gan

Command File Options

The command file options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Encryption Command

The following command encrypts the command file using non-AES encryption with an encryption key for default codepage IBM1047.MYKEY123

STRUEN INFILE(MYLIB/QTXTSRC) INMBR(TESTLOGIN) OUTFILE(MYLIB/ENCRYPTEDF) OUTMBR(ENCRYPTEDF)
KEY(MYKEY123)

The resulting encrypted command file is written to file in library.ENCRYPTEDF MYLIB

Command Line Options

The command line options used in this example are:

Option Description

INFILE Input file that is to be encrypted.

INMBR Location of data in the input file that is to be encrypted.

OUTFILE File to which the encrypted input file is written.

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INPUT_FILE+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INPUT_FILE+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OUTPUT_FILE+-+UENCRYPT+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user285

OUTMBR Location of data in the file to which the encrypted input file is written.

KEY Encryption key used by the encryption algorithm.

Contents of Encrypted File

The figure below illustrates the contents of .MYLIB/ENCRYPTEDF(ENCRYPTEDF)

Universal Encrypt
Created on Wed Feb 22 18:43:51 2011
Created by uencrypt 3.2.0 Level 0

9ACB96416816600CB9D24C9072D80C11768B93CB0E79B944EC37D3495097AD793F97399220C9BB
472DF1E04F5BA8909BCA6C8C72DFD3B706487B1713E6F73F5A0539F17076DEF6D14083EF6E7023
158526E70BE3AF688579805DCAC0CFF1EB6A

This encrypted file now can be used as command file input for a Universal Agent command on any platform that uses the encryption key
.MYKEY123

Components

Universal Command Manager for IBM i

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/OUTPUT_FILE+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ENCRYPTION_KEY+-+UENCRYPT+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user286

Using Encrypted Command File - IBM i

Using Encrypted Command File on IBM i

For IBM i, the Universal Command Manager option specifies the location of the Uencrypted file.ECMFILE / ECMMBR

STRUCM HOST('10.252.2.232') USERID(testid) ECMFILE(UNIVERSAL/ENCRYPTED) ECMMBR(TETSPWD) CMD('DIR')

Command Line Options

The command line options used in this example are:

Option Description

HOST List of one or more hosts upon which a command can run.

USERID User ID or account with which to execute the remote command.

ECMFILE Encrypted command file.

ECMMBR Location of encrypted data in encrypted command file.

CMD Remote command to execute.

Components

Universal Command Manager for IBM i

Universal Encrypt

https://www.stonebranch.com/confluence/display/UCMD510/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user287

Creating Encrypted Command File - HP NonStop

Creating Encrypted Command File for HP NonStop
Command File
Encryption Command
Contents of Encrypted File
Components

Creating Encrypted Command File for HP NonStop

Command File

In this example, a command file named contains the following data:cmdfile

-userid T02JAH1 -pwd thames

Command File Options

The command file options used in this example are:

Option Description

-userid User ID or account with which to execute the remote command.

-pwd Password associated with .-userid

Encryption Command

The following command encrypts the command file using an encryption key :MYKEY123

run uencrypt /IN cmdfile, OUT encfile/ -key MYKEY123

The resulting encrypted command file is written to file .encfile

Command Line Options

The command line options used in this example are:

Option Description

-key Encryption key used by the encryption algorithm.

Contents of Encrypted File

The following figure illustrates the contents of .encfile

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ENCRYPTION_KEY+-+UENCRYPT+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user288

Universal Encrypt
Created on Mon Jul 14 16:47:50 2011
Created by uencrypt 2.1.1 Level 0

4F4813F7767318C3B1FB016F95B5FD07A6F90A787D9643A03C36503E761DF84AB64FF8877C76F9
8FDBEA1CE672A2DE943CE81BC1C159ABB01D0EC9E52E04A8C21A0269BE85F8443C1A5543901851
C29BE8223471A6BCD498163CD40D1E1866B4

This encrypted command file now can be used by any Universal Agent command, on any operating system. by specifying the encryption key
.MYKEY123

Components

Universal Command Manager for IBM i

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+IBM+i
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user289

Configuration Management for Universal Agent

Overview

Configuration consists of specifying options that control component behavior and resource allocation.

An example of configurable component behavior is whether or not data transferred over the network is compressed.
An example of configurable resource allocation is the directory location in which the product creates its log files.

Configuration can be done either by:

Setting default options and preferences for all executions of a component.
Setting options and preferences for a single execution of a component.

Each option is comprised of a pre-defined parameter, which identifies the option, and one or more values. The format of the parameter depends
on the method being used to specify the option.

Although there are many configurable component options, components are - in general - designed to require minimal configuration and
administration. The default options will work very well in most environments. When local requirements do require a change in component
configuration, there are multiple available to configure the components in order to meet your needs.methods

Detailed Information

The following pages provide detailed information for Configuration Management:

Configuration Methods
Remote Configuration
Universal Configuration Manager
Configuration Refresh
Refreshing via Universal Control Examples
Merging Configuration Options
Configuration Options

Universal Agent 6.6.x User Guide

 / ua-66x-user290

1.
2.
3.
4.

Configuration Methods

Configuration Methods
Universal Broker / Servers Configuration Method
z/OS Platform

Configuration Methods

All components provide a consistent and flexible method of configuration. An operating system's native configuration methods, such as
configuration files, are utilized in order to integrate with existing system management policies and procedures for the platform.

Depending on the specific Universal Agent component, and the operating system on which it is being run, component configuration is performed
by one or more methods.

These configuration methods, in their order of precedence, are:

Command Line
Command File
Environment Variables
Configuration File

The command line, command file, and environment variables methods let you set configuration options and preferences for a single execution of
a component.

The configuration file method lets you set default configuration options and preferences for all executions of a component.

This order of precedence means that an option specified on the command line overrides the same option specified in a command file, which
overrides the same option specified with an environment variable, which overrides the same option specified in a configuration file.

Note
For security reasons, not all options can be overridden.

Universal Broker / Servers Configuration Method

Universal Broker, and all Universal Agent servers, are configurable only by modifying their configuration files (see). They areConfiguration File
not configurable via command line, command file, or environmental variables.

z/OS Platform

On the z/OS platform, configuration can utilize z/OS system symbols as part of the configuration value. Each system symbol is resolved when the
value is first read by a component.

z/OS System symbols may be used in some of the configuration methods as follows:

Command line or command file options prefixed with a plus (+) character instead of a dash (-) result in system symbols in the option
value being resolved.
System symbols are not supported in environment variables.
System symbols are always resolved in configuration file values.

System symbols start with the ampersand character () and end with a period (). For example, the symbol specified in the& . &SYSNAME.
Universal Broker option is . The variable will be replaced with the symbolUNIX_DB_DATA_SET "UNV.&SYSNAME..UNVDB" "&SYSNAME."
value.

The z/OS system symbols that are defined on z/OS can be displayed with the MVS system command DISPLAY SYMBOLS.

https://www.stonebranch.com/confluence/display/UA66/UNIX_DB_DATA_SET+-+UBROKER+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user291

Configuration Methods - Command Line

Command Line

Command line options affect one instance of a program execution. Each time that you execute a program, command line options let you tailor the
behavior of the program to meet the specific needs for that execution.

Command line options are the highest in order of precedence of all the . They override the options specified using all otherConfiguration Methods
configuration methods, except where indicated.

Each command line options consist of:

Parameter (name of the option)
Value (pre-defined or user-defined value of the option)

The command line syntax depends, in part, on the operating system, as noted below.

A value may or may not be case-sensitive, depending on what it is specifying. For example, if a value is either or , it is not case-sensitive. Ityes no
could be specified as , , or . However, if a value specifies a directory name or file name, it would be case-sensitive if the operatingYES Yes yes
system's file system is case-sensitive.

If an option is specified more than once on the command line, the last instance of the option specified is used.

z/OS Command line options are specified in the JCL EXEC statement PARM keyword or on the SYSIN ddname.
The PARM keyword is used to pass command line options to the program being executed with the EXEC
statement.

Command line options are prefixed with a dash (-) character or a plus (+) character. The plus character
indicates that system symbols found in the value are resolved to their defined value before the value is
processed by the Universal Agent component. For many options, there are two different forms in which they
can be specified:

Short form: one case-sensitive character
Long form: two or more case-insensitive characters

The parameter and value must be separated by at least one space.

Example command line options specified in the PARM value:

Short form:
PARM='-l INFO -G yes'

Long form:
PARM='-LEVEL INFO -LOGIN YES'

As noted above, z/OS command line options also can be specified on the SYSIN ddname. This is the easiest
and least restrictive place to specify options, since the PARM values are limited in length. The options
specified in the SYSIN ddname have the same syntax. Options can be specified on one line or multiple lines.
The data set or inline data allocated to the SYSIN ddname cannot have line numbers in the last 8 columns
(that is, all columns of the records are used as input).

Universal Agent 6.6.x User Guide

 / ua-66x-user292

UNIX, Windows, HP NonStop Command line options are prefixed with a dash () character, and alternatively on Windows, the slash ()- /
character.

For many options, there are two different forms in which they can be specified:

Short form: one case-sensitive character.
Long form: two or more case-insensitive characters.

The parameter and value must be separated by at least one space or tab character.

Example command line options:

Short form:
-l info -G yes

Long form:
-level info -login yes
-LEVEL info -LoGiN YES

IBM i Command line options use the native conventions for Command Language (CL) commands. The option name
is specified as a CL parameter with its value enclosed in parentheses.

Example command line options:

MSGLEVEL(INFO) COMPRESS(*YES)

All Universal Agent components provide IBM i-style command panels. The panels are accessed by entering
the command name on the command line and pressing the F4 (PROMPT) key.

Universal Agent 6.6.x User Guide

 / ua-66x-user293

Configuration Methods - Command File

Command File

The command file contains command line options specified in a file. The command file enables you to save common command line options in
permanent storage and reference them as needed.

The command file is the second to highest in the precedence order, after command line options (see).Configuration Methods

Individual command line options can be specified on one or multiple lines. Blank lines are ignored. Lines starting with the hash () character are#
ignored and can be used for comments.

The command file can be encrypted if it is necessary to secure the contents (see).Universal Encrypt

Note
If the contents of the file contain sensitive material, the operating system's native file and user security facilities should be used
in addition to the file encryption provided by Universal Agent.

In order to use a command file, either of the following is used:

COMMAND_FILE_PLAIN option is used to specify the command file name.
COMMAND_FILE_ENCRYPTED option is used to specify the encrypted command file name.

https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user294

Configuration Methods - Environment Variables

Environment Variables

Environment variables, like command line options, allow options to be specified for one instance of a program execution. Each time that you
execute a program, environment variables allow you to tailor the behavior of the program to meet the specific needs for that execution.

Environment variables are the third to highest in the precedence order, after command file options (see).Configuration Methods

Each operating system has its own unique method of setting environment variables.

All environment variables used by Universal Agent are upper case and are prefixed with a product identifier consisting of three or four characters.
The product sections specify the value of the environment variables. Values are case-sensitive.

z/OS Environment variables in z/OS are specified in the JCL EXEC statement PARM keyword. Environment variables are part of the
IBM Language Environment (LE) and as such are specified as LE runtime options. The PARM value is divided into LE options
and application options by a slash () character. Options to the left of the slash are LE options and options to the right are/
application options.

Example of setting an environment variable (set option UCMDLEVEL to a value of INFO):

PARM='ENVAR("UCMDLEVEL=INFO")/'

UNIX Environment variables in UNIX are defined as part of the shell environment. As such, shell commands are used to set
environment variables. The environment variable must be exported to be used be a called program.

Example of setting an environment variable (set option UCMDLEVEL to a value of INFO in a bourne, bash, or korn shell):

UCMDLEVEL=INFO
export UCMDLEVEL

Windows Environment variables in Windows are defined as part of the Windows console command environment. As such, console
commands are used to set environment variables.

Example of setting an environment variable (set option UCMDLEVEL to a value of INFO):

SET UCMDLEVEL=INFO

IBM i Environment variables in IBM i are defined with Command Language (CL) commands for the current job environment.

Example of setting an environment variable (set option UCMDLEVEL to a value of INFO):

ADDENVVAR ENVVAR(UCMDLEVEL) VALUE(INFO)

Universal Agent 6.6.x User Guide

 / ua-66x-user295

HP NonStop Environment variables in HP NonStop are defined with HP NonStop Advanced Command Language (TACL) commands for the
current job environment.

Example of setting an environment variable (set option UCMDLEVEL to a value of INFO):

PARAM UCMDLEVEL INFO

Universal Agent 6.6.x User Guide

 / ua-66x-user296

Configuration Methods - Configuration File

Configuration File
Configuration File Syntax

Configuration File

Configuration files are used to specify system-wide configuration values. This method is last in the order of precedence; that is, configuration file
option values can be overridden by every other method of configuration (see).Configuration Methods

For most Universal Agent components, some options can be specified only in a configuration file, while other options can be overridden by
individual command executions. The for each component identifies these options.Reference Guide

Universal Broker maintains the for all Universal Agent components, including itself. The components do not read their configuration files
themselves (except for , which does read its own configuration file).Universal Enterprise Controller

At initial start-up, Universal Broker reads the configuration files of all components and places the configuration data in Universal Broker memory.
When a component starts, it first registers with its local Universal Broker. As part of the registration process, Universal Broker sends that
component's configuration data to the component. Thereafter, if a configuration file is modified, Universal Broker must be refreshed. This directs
Universal Broker to re-read all component configuration files and update the configuration data in memory (see).Configuration Refresh

Universal Broker can operate in managed or unmanaged mode:

In unmanaged mode, the configuration information for the various Universal Agent components can be modified either:
Locally (either by editing the configuration files or, on Windows systems, via the).Universal Configuration Manager
Remotely, via the Universal Enterprise Controller application.I-Management Console

In managed mode, the configuration information for the various Universal Agent components is "locked down" and can be modified or
viewed only via the I-Management Console.

(For information on unmanaged and managed modes, see).Remote Configuration

z/OS Configuration files are members of a PDSE. The data set record format is fixed or fixed block with a record length of 80. No line
numbers can exist in columns 72-80. All 80 columns are processed as data.

All configuration files are installed in the library. See , below, for the configuration fileUNVCONF Configuration File Syntax
syntax.

UNIX Configuration files are regular text files on UNIX. The files can be edited with a text editor. See , below,Configuration File Syntax
for the configuration file syntax.

Universal Broker searches for the configuration files in a fixed list of directories. The Broker will use the first configuration file
that it finds in its search. The directories are listed below in the order they are searched.

/etc/opt/universal
/etc/universal (installation default)
/etc/stonebranch (obsolete as of version 2.2.0)
/etc
/usr/etc/universal
/usr/etc/stonebranch (obsolete as of version 2.2.0)
/usr/etc

Windows Although configuration files can be edited with any text editor (for example, Notepad), the Universal Configuration Manager
application, accessible via the Control Panel, is the recommended way to set configuration options. Universal Configuration
Manager provides a graphical interface and context-sensitive help, and helps protect the integrity of the configuration file by
validating all changes to configuration option values.

IBM i The configuration files on IBM i are stored in a source physical file named UNVCONF in the UNVPRD520 library. The files can
be edited with a text editor. See , below, for the configuration file syntax.Configuration File Syntax

HP NonStop The configuration files on HP NonStop are stored as EDIT files, file code 101, within the subvolume. The$SYSTEM.UNVCONF
files can be edited with the EDIT editor. See , below, for the configuration file syntax.Configuration File Syntax

Configuration File Syntax

Configuration files are text files that can be edited with any available text editor.

https://www.stonebranch.com/confluence/display/UACDOC64/Universal+Automation+Center+Documentation+Library
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Enterprise+Controller+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/I-Management+Console

Universal Agent 6.6.x User Guide

 / ua-66x-user297

The following rules apply for configuration file syntax:

Options are specified in a keyword / value format.
Keywords can start in any column.
Keywords must be separated from values by at least one space or tab character.
Keywords are not case sensitive.
Keywords cannot contain spaces or tabs.
Values can contain spaces and tabs, but if they do, they must be enclosed in single () or double () quotation marks. Repeat the' "
enclosing characters to include them as part of the value.
Values case sensitivity depends on the value being specified. For example:

Directory and file names are case sensitive.
Pre-defined values (such as and) are not case sensitive.yes no

Each keyword / value pair must be on one line.
Characters after the value are ignored.
Newline characters are not permitted in a value.
Values can be continued from one line to the next either by ending the line with a:

Plus () character, to remove all intervening spaces.+
Minus () character, to preserve all intervening spaces between the end of the line being continued and the beginning of the-
continuing line.

Ensure that the line continuation character is the last character on a line.
Comment lines start with a hash () character.#
Blank lines are ignored.

Note
If an option is specified more than once in a configuration file, the last instance is used.

Universal Agent 6.6.x User Guide

 / ua-66x-user298

1.
2.

Remote Configuration

Remote Configuration
Unmanaged Mode
Managed Mode

Selecting Managed Mode
Universal Broker Start-up

Start-up in Unmanaged Mode
Start-up in Managed Mode

Remote Configuration

Universal Agent components can be configured remotely by Universal Enterprise Controller via the client application, andI-Management Console
can be "locked down" so that they can be remotely configured.only

I-Management Console instructs the of a remote Agent to modify the configurations of all Universal Agent components managedUniversal Broker
by that Universal Broker.

Universal Broker supports remote configuration in either of two modes:

Unmanaged Mode
Managed Mode

Unmanaged Mode

Unmanaged mode is the default mode of operations for Universal Broker. It allows a Universal Broker - and the Universal Agent components
managed by that Universal Broker - to be configured either:

Locally, by editing configuration files.
Remotely, via I-Management Console.

The system administrator for the machine on which an Agent resides can use any text editor to modify the configuration files of the various local
Universal Agent components.

Via I-Management Console, selected users can modify all configurations of any Agent, including the local Agent. I-Management Console sends
the modified data to the Universal Broker of that agent, which Universal Broker then uses to update the appropriate configuration files.

If I-Management Console sends modifications for a Universal Broker configuration, Universal Broker validates the modified data before it accepts
it. If the data fails validation, Universal Broker does not update its configuration file.

If I-Management Console sends modification to the configuration of any other Universal Agent component, the Universal Broker updates the
appropriate configuration file. The component will use this new configuration at its next invocation.

Note
If errors or invalid configuration values are updated via I-Management Console for a component other than Universal Broker, the
component may not run successfully until the configuration has be corrected.

Managed Mode

When a Universal Broker is operating in managed mode, the configuration information for all Universal Agent components managed by that
Universal Broker is "locked down." Universal Broker stores the information in a database file located within its specified spool directory. The
information can be modified only via I-Management Console.

From this point on, Universal Broker uses the database file - not the configuration files - to access configuration information. Any configuration
changes made to the components - via I-Management Console - are placed in the database file. Therefore, as long as Universal Broker stays in
managed mode, the configuration files may no longer contain current or valid configuration information.

If managed mode is de-selected for the Universal Broker, it reads the database file where it stored the configuration information. Universal Broker
uses this information to create and/or update configuration files for the components.

If a configuration file exists in the configuration directory, it is overwritten.
If a configuration file does not exist, it is created.

https://www.stonebranch.com/confluence/display/UA66/I-Management+Console
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide

Universal Agent 6.6.x User Guide

 / ua-66x-user299

Note
Because of remote configuration and the desire to be able to "lock down" all product configurations, Universal Broker - and all
Universal Agent servers - no longer support the command line and environmental variables methods of specifying configuration
options.

Selecting Managed Mode

The managed mode of operations for Universal Broker is selected via the client application (see).I-Administrator Adding an Agent

The following figure illustrates remote configuration for one Agent in managed mode and one Agent in unmanaged mode.

https://www.stonebranch.com/confluence/display/UA66/I-Administrator
https://www.stonebranch.com/confluence/display/UA66/I-Administrator

Universal Agent 6.6.x User Guide

 / ua-66x-user300

Universal Broker Start-up

At Universal Broker start-up, in both managed and unmanaged modes, the Universal Broker configuration file is always read.

Start-up in Unmanaged Mode

At Universal Broker start-up in unmanaged mode, Universal Broker reads the configuration files of all Universal Agent components into its
memory. The Universal Broker configuration file is used to define the Universal Broker configuration, just as all configuration files are used in
unmanaged mode. Universal Broker updates its memory from the configuration files whenever Universal Control issues a configuration refresh
request.

Universal Agent 6.6.x User Guide

 / ua-66x-user301

Start-up in Managed Mode

At Universal Broker start-up in managed mode, the Universal Broker configuration file points Universal Broker to the location of the configuration
spool file, from which the Broker retrieves configuration information for all Universal Agent components. Universal Broker updates its memory
from the configuration spool file and, automatically, after changes are made via I-Management Console.

If more configuration information than needed is included in the Universal Broker configuration file at Universal Broker start-up, Universal Broker
will update its running configuration with the information that it retrieved from the spool file. The configuration file that was used at start-up is made
obsolete.

Universal Agent 6.6.x User Guide

 / ua-66x-user302

1.

2.

Universal Configuration Manager

Overview
Availability

UAC Compatibility
Accessing the Universal Configuration Manager
Navigating through Universal Configuration Manager
Modifying / Entering Data

Rules for Modifying / Entering Data
Saving Data
Accessing Help Information
Additional Information

Overview

The Universal Configuration Manager is a Universal Agent graphical user interface application that enables you to configure all of the Universal
 that have been installed on a Windows operating system.Agent components

It is the recommended method of specifying configuration data that will not change with each command invocation. Universal Configuration
Manager helps protect the integrity of the configuration file by validating all changes to configuration option values.

Availability

Universal Configuration Manager is installed automatically on the Windows operating system as part of every Universal Agent for Windows
installation.

It is available to all user accounts in the Windows Administrator group.

UAC Compatibility

When the Universal Configuration Manager is opened for the first time with any version of Windows (starting with Windows Vista), the Program
Compatibility Assistant (PCA) and User Account Control (UAC) features may affect its behavior.

With these two features enabled, the expected Universal Configuration Manager behavior is as follows:

Universal Configuration Manager may issue the following error.

Click to dismiss the error message.OK
The Windows <version> Program Compatibility Assistant (PCA) displays the following dialog:

Universal Agent 6.6.x User Guide

 / ua-66x-user303

2.

3.

4.

To continue, select . This instructs the PCA to "shim" (Microsoft term) theOpen the control panel using recommended settings
Configuration Manager, establishing it as an application that requires elevated privileges.
Windows Vista / Windows 7 User Account Control (UAC) then displays a prompt seeking permission to elevate the logged-in account's
access token.
Select to give the account full administrative privileges.Continue
Subsequent attempts to open Universal Configuration Manager should result only in the UAC prompt.

Accessing the Universal Configuration Manager

To access the Universal Configuration Manager:

Step 1 Display the Windows Control Panel.

Step 2 Select the Universal Configuration Manager icon to display the Universal Configuration Manager screen (see the following figure).

Windows XP, Windows Vista, Windows 7, Windows Server 2008 / 2008 R2, Windows Server 2012 / 2012 R2, Windows
Server 2016
Newer versions of Windows support a Control Panel view that places applet icons within categories. This "category view" may
affect the location of the Universal Configuration Manager icon.

For example, the Windows XP Category View places the Universal Configuration Manager icon under the Other Control Panel
 link. Windows Vista, Windows 7, Windows Server 2008 / 2008 R2, and Windows Server 2012 place the icon within the Options

 category.Additional Options

If you have trouble locating the Universal Configuration Manager icon, simply switch to the Classic View to display all Control
Panel icons at the same time.

64-bit Windows Editions
The Windows Control Panel places icons for all 32-bit applets under the (or, on newer versions,View x86 Control Panel Icons
the) category, even when the Classic View is enabled.View 32-bit Control Panel Icons

When using the Category View, look for the 32-bit Control Panel applet icons in the category.Additional Options

Universal Agent 6.6.x User Guide

 / ua-66x-user304

1.

2.

Each Universal Configuration Manager screen contains two sections:

Left side of the screen displays the Installed Components tree, which lists:
Universal Agent components currently installed on your system.
Property pages available for each component (as selected), which include one or more of the following:

Configuration options
Access control lists
Licensing information
Other component-specific information

Right side of the screen displays information for the selected component / page.

(By default, Universal Configuration Manager displays the first property page of the first component in the Installed Components tree.)

Navigating through Universal Configuration Manager

To display general information about a component, click the component name in the Installed Components list.

To display the list of property pages for a component, click the icon next to the component name in the Installed Components list.+

To display a property page, click the name of that page in the Installed Components list.

If a property page has one or more of its own pages, a icon displays next to the name of that property page in the Installed Components list.+
Click that icon to display a list of those pages.+

In the previous figure, for example:

List of property pages is displayed for Universal Broker.
Message Options property page has been selected, and information for that property is displayed on the right side of the page.
No icons next to any of the property pages indicates that they do not have one or more of their own property pages.+

Modifying / Entering Data

On the property pages, modify / enter data by clicking radio buttons, selecting from drop-down lists, and/or typing in data entry fields.

Some property pages provide panels that you must click in order to:

Modify or adjust the displayed information.
Display additional, modifiable information.

Universal Agent 6.6.x User Guide

 / ua-66x-user305

Note
You do not have to click the button after every modification or entry, or on every property page on which you have modifiedOK
and/or entered data. Clicking just once, on any page, will save the modifications and entries made on all pages - and willOK
exit Universal Configuration Manager (see .)Saving Data

Rules for Modifying / Entering Data

The following rules apply for the modification and entry of data:

Quotation marks are not required for configuration values that contain spaces.
Edit controls (used to input free-form text values) handle conversion of any case sensitive configuration values. Except where specifically
noted, values entered in all other edit controls are case insensitive.

Saving Data

To save all of the modifications / entries made on all of the property pages, click the button at the bottom of any property page. TheOK
information is saved in the configuration file, and Universal Broker is automatically refreshed.

Clicking the button also exits the Universal Configuration Manager. (If you click after every modification, you will have to re-accessOK OK
Universal Configuration Manager.)

To exit Universal Configuration Manager without saving any of the modifications / entries made on all property pages, click the button.Cancel

Accessing Help Information

Universal Configuration Manager provides context-sensitive help information for the fields and panels on every Universal Agent component
options screen.

To access Help:

Step 1 Click the question mark () icon at the top right of the screen.?

Step 2 Move the cursor (now accompanied by the () to the field or panel for which you want help.?

Step 3 Click the field or panel to display Help text.

Step 4 To remove the displayed Help text, click anywhere on the screen.

Windows Vista, Windows 7, Windows Server 2008 / 2008 R2
The Universal Configuration Manager's context-sensitive help is a WinHelp file, which Windows Vista, Windows 7, Windows
Server 2008 / 2008 R2, and Windows Server 2012 do not support.

Microsoft offers the 32-bit WinHelp engine as a separate download from its website. If you require access to the Universal
Configuration Manager's context-sensitive help, simply download and install the WinHelp engine.

Additional Information

The following pages provide additional detailed information for Universal Configuration Manager:

Universal Configuration Manager - Installed Components

Universal Agent 6.6.x User Guide

 / ua-66x-user306

Universal Configuration Manager - Installed Components

Universal Command Installed Components
Universal Command Manager
Universal Command Server

Universal Command Agent for SOA Installed Components
Universal Application Container Server

Universal Connector Component
Universal Data Mover Installed Components

Universal Data Mover Manager
Universal Data Mover Server

Universal Event Monitor Installed Components
Universal Event Monitor Manager
Universal Event Monitor Server

Universal Enterprise Controller Component
Universal Broker Installed Component
Universal Automation Center Agent Installed Component
Universal Message Service Installed Component
Universal Agent Utilities Installed Components

Universal Control Manager
Universal Control Server
Universal Event Log Dump
Universal Query

Universal Command Installed Components

Universal Command Manager

The following figure illustrates the Universal Configuration Manager screen for the Universal Command Manager.

The Installed Components list identifies all of the UCMD Manager property pages.

The text describes the selected component, Universal Command Manager.

Universal Agent 6.6.x User Guide

 / ua-66x-user307

Universal Command Server

The following figure illustrates the Universal Configuration Manager screen for the Universal Command Server.

The Installed Components list identifies all of the UCMD Server property pages.

The text describes the selected component, Universal Command Server.

Universal Command Agent for SOA Installed Components

Universal Application Container Server

The following figure illustrates the Universal Configuration Manager screen for the Universal Application Container Server.

The Installed Components list identifies all of the UAC Server property pages.

The text describes the selected component, Universal Application Container Server.

Universal Agent 6.6.x User Guide

 / ua-66x-user308

Universal Connector Component

The following figure illustrates the Universal Configuration Manager screen for the Universal Connector.

The Installed Components list identifies all of the Universal Connector property pages.

The text describes the selected component, Universal Connector.

Universal Agent 6.6.x User Guide

 / ua-66x-user309

Universal Data Mover Installed Components

Universal Data Mover Manager

The following figure illustrates the Universal Configuration Manager screen for the Universal Data Mover Manager.

The Installed Components list identifies all of the UDM Manager property pages.

The text describes the selected component, Universal Data Mover Manager.

Universal Agent 6.6.x User Guide

 / ua-66x-user310

Universal Data Mover Server

The following figure illustrates the Universal Configuration Manager screen for the Universal Data Mover Server.

The Installed Components list identifies all of the UDM Server property pages.

The text describes the selected component, Universal Data Mover Server.

Universal Agent 6.6.x User Guide

 / ua-66x-user311

Universal Event Monitor Installed Components

Universal Event Monitor Manager

The following figure illustrates the Universal Configuration Manager screen for the Universal Event Monitor Manager.

The Installed Components list identifies all of the UEM Manager property pages.

The text describes the selected component, Universal Event Monitor Manager.

Universal Agent 6.6.x User Guide

 / ua-66x-user312

Universal Event Monitor Server

The following figure illustrates the Universal Configuration Manager screen for the Universal Event Monitor Server.

The Installed Components list identifies all of the UEM Server property pages.

The text describes the selected component, Universal Event Monitor Server.

Universal Agent 6.6.x User Guide

 / ua-66x-user313

Universal Enterprise Controller Component

The following figure illustrates the Universal Configuration Manager screen for the Universal Enterprise Controller.

The Installed Components list identifies all of the UEC property pages.

The text describes the selected component, Universal Enterprise Controller.

Universal Agent 6.6.x User Guide

 / ua-66x-user314

Universal Broker Installed Component

The following figure illustrates the Universal Configuration Manager screen for the Universal Broker.

The Installed Components list identifies all of the Universal Broker property pages.

The text describes the selected component, Universal Broker.

Universal Agent 6.6.x User Guide

 / ua-66x-user315

Universal Automation Center Agent Installed Component

The following figure illustrates the Universal Configuration Manager screen for the Universal Automation Center Agent.

The Installed Components list identifies all of the Universal Automation Center Agent property pages.

The text describes the selected component, Universal Automation Center Agent.

Universal Agent 6.6.x User Guide

 / ua-66x-user316

Universal Message Service Installed Component

The following figure illustrates the Universal Configuration Manager screen for the Universal Message Service (OMS) Server.

The Installed Components list identifies all of the OMS Server property pages.

The text describes the selected component, OMS Server.

Universal Agent 6.6.x User Guide

 / ua-66x-user317

Universal Agent Utilities Installed Components

Universal Control Manager

The following figure illustrates the Universal Configuration Manager screen for the Universal Control Manager.

The Installed Components list identifies all of the Universal Control Manager property pages.

The text describes the selected component, Universal Control Manager.

Universal Agent 6.6.x User Guide

 / ua-66x-user318

Universal Control Server

The following figure illustrates the Universal Configuration Manager screen for the Universal Control Server.

The Installed Components list identifies all of the Universal Control Server property pages.

The text describes the selected component, Universal Control Server.

Universal Agent 6.6.x User Guide

 / ua-66x-user319

Universal Event Log Dump

The following figure illustrates the Universal Configuration Manager screen for the Universal Event Log Dump utility.

The Installed Components list identifies all of the Universal Event Log Dump property pages.

The text describes the selected component, Universal Event Log Dump.

Universal Agent 6.6.x User Guide

 / ua-66x-user320

Universal Query

The following figure illustrates the Universal Configuration Manager screen for the Universal Query utility.

The Installed Components list identifies all of the Universal Query property pages.

The text describes the selected component, Universal Query.

Universal Agent 6.6.x User Guide

 / ua-66x-user321

Universal Agent 6.6.x User Guide

 / ua-66x-user322

Configuration Refresh

Overview
Configuration Refresh via Universal Control

Configuration Refresh via Universal Control for Universal Event Monitor Server
Configuration Refresh via Universal Control for Universal Automation Center Agent

Configuration Refresh via I-Management Console
Configuration Refresh via Universal Configuration Manager
Configuration Refresh of Universal Broker for its own Configuration Options

Overview

Universal Broker maintains the for all Universal Agent components, including itself. The components do not read theirconfiguration files
configuration files themselves (except for Universal Enterprise Controller, which does read its own configuration file).

At initial start-up, Universal Broker reads the configuration files of all components and places the configuration data in Universal Broker memory.
When a component starts, it first registers with its local Universal Broker. As part of the registration process, Universal Broker sends that
component's configuration data to the component. Thereafter, if a configuration file is modified, Universal Broker must be refreshed. This directs
Universal Broker to re-read all component configuration files and update the configuration data in memory.

A Universal Broker is refreshed when any of the following occurs:

Universal Broker is recycled ().stopped and restarted
Universal Broker is refreshed via .Universal Control
Universal Broker is refreshed via the UEC client application.I-Management Console
Universal Broker is refreshed via ().Universal Configuration Manager Windows only

Then, when a component restarts, it again registers with its local Universal Broker, which sends that component's configuration data to the
component.

Configuration Refresh via Universal Control

Universal Control refreshes the Universal Broker by issuing a configuration refresh request via its configuration option.REFRESH_CMD

The configuration refresh request directs Universal Broker to take the following actions:

Step 1 Read all component configuration files, or the configuration file of a single, specified component, and update the configuration data in
Universal Broker memory. (Currently, the only individual component that can be refreshed this way is the Universal Event Monitor
Server, .)uems

Step 2 Read all (or only the component definition for) in the . Universal Brokercomponent definitions uems Component Definition directory
replaces all component definitions with the newly read component definitions. New component definitions are added and deleted
component definitions are removed.

Step 3 Read the configuration entries (or only entries for) from the registry. Universal BrokerUniversal Access Control List (UACL) uems
replaces its UACL entries with the newly read entries.

Configuration Refresh via Universal Control for Universal Event Monitor Server

Because an typically is a long-running process, the ability to refresh an active UEM Server'sevent-driven Universal Event Monitor Server
configuration and list of assigned event definitions is provided. Automatic refresh of configuration and event information for a UEMdemand-driven
Server is not supported; the values it obtains at start-up are the ones it uses throughout its lifetime.

When a change is made to the stored UEM Server configuration settings (see), active event-driven UEM Servers must beConfiguration File
notified that a change has taken place. This is done via Universal Control, using the Universal Control Manager option, alongREFRESH_CMD
with a component type value that identifies the component to refresh (see).Refreshing via Universal Control Examples

Windows
A request to update the configuration of local event-driven UEM Servers is issued automatically whenever a change is made to
a UEM Server's configuration through the .Universal Configuration Manager

When Universal Control or the Universal Configuration Manager (Windows only) instructs an active event-driven UEM Server to refresh its cached
configuration, the event-driven Server processes the request immediately.

https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMPONENT_DIRECTORY+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Access+Control+List+%28UACL%29
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user323

The UEMLoad utility automatically notifies an event-driven UEM Server of an event definition change via a flag that resides in the local Universal
Broker. UEM Server checks this flag every two minutes and updates its cached list of event definitions whenever UEMLoad updates them. This
eliminates the need to refresh UEM Server with Universal Control following a database change.

Configuration Refresh via Universal Control for Universal Automation Center Agent

Since Universal Automation Center Agent (UAG) starts automatically when the Universal Broker starts, the ability to refresh an active Universal
Automation Center Agent's configuration is provided.

When a change is made to the stored UAG configuration settings (see), active UAG components must be notified that a changeConfiguration File
has taken place. This is done via Universal Control, using the Universal Control Manager option, along with a component typeREFRESH_CMD
value that identifies the component to refresh (see).Refreshing via Universal Control Examples

Windows
A request to update the configuration of UAG is issued automatically whenever a change is made to UAG configuration through
the .Universal Configuration Manager

When Universal Control or the Universal Configuration Manager (Windows only) instructs UAG to refresh its cached configuration, UAG
processes the request immediately.

The following UAG configuration file options are dynamically updated by Universal Control Manager :REFRESH_CMD

Option Description

LOGLVL Logging level of UAG.

MESSAGE_LEVEL Level of messages to write or UAG.

SECURITY Activates user security.

TRACE_DIRECTORY Directory that UAG uses for trace files (MESSAGE_LEVEL option value is set to trace).

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

Additionally, the following UAG UACL file entry is dynamically updated by Universal Control Manager :REFRESH_CMD

Entry Description

UAG_WORK_REQUEST Allows or denies access to a task execution request and if allowed, specifies whether or not user authentication is
performed.

Configuration Refresh via I-Management Console

When configuration options are updated using the , a configuration refresh request automatically is sent to UniversalI-Management Console
Broker, and its configuration data is refreshed.

The configuration refresh request directs Universal Broker to take the following actions:

Step 1 Read all component configuration files and update the configuration data in Universal Broker memory.

Step 2 Read all in the . Universal Broker replaces all component definitions with thecomponent definitions Component Definition directory
newly read component definitions. New component definitions are added and deleted component definitions are removed.

Step 3 Read the configuration entries from the registry. Universal Broker replaces its UACL entries withUniversal Access Control List (UACL)
the newly read entries.

Configuration Refresh via Universal Configuration Manager

When configuration options are updated using the , a configuration refresh request is sent to Universal Broker,Universal Configuration Manager
and its configuration is refreshed automatically.

The configuration refresh request directs Universal Broker to take the following actions:

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/LOGLVL+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURITY+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACE_DIRECTORY+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACE_FILE_LINES+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRACE_TABLE+-+UAG+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UAG_WORK_REQUEST+-+UAG+UACL+Entry
https://www.stonebranch.com/confluence/display/UA66/I-Management+Console
https://www.stonebranch.com/confluence/display/UA66/COMPONENT_DIRECTORY+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Access+Control+List+%28UACL%29

Universal Agent 6.6.x User Guide

 / ua-66x-user324

Step 1 Read its configuration file. Universal Broker refreshes its configuration options.

Step 2 Read all in the . Universal Broker replaces all component definitions with thecomponent definitions Component Definition directory
newly read component definitions. New component definitions are added and deleted component definitions are removed.

Step 3 Read the configuration entries from the registry. The Broker replaces its UACL entries with theUniversal Access Control List (UACL)
newly read entries.

Configuration Refresh of Universal Broker for its own Configuration Options

As with all Universal Agent components, all Universal Broker options can be modified by editing its configuration file () directly.ubroker.conf

However, unlike other components, not all Universal Broker options can be modified via . (In I-Management Console,I-Management Console
these Universal Broker options are read-only.). These options can be modified only by editing the Universal Broker configuration file,

. For these modifications to be updated in Universal Broker memory and take immediate effect, Universal Broker must beubroker.conf
recycled.

All other Universal Broker options can be modified either:

By editing .ubroker.conf
Via I-Management Console.
Via the Universal Configuration Manager.

Depending on the configuration option, for a modification to be updated in Universal Broker memory and take immediate effect:

Universal Broker must be recycled.
Universal Broker must be refreshed by issuing a Universal Control configuration refresh request (via the configurationREFRESH_CMD
option), if the modifications are made in .ubroker.conf
Universal Broker is refreshed automatically, if the modifications are made via I-Management Console or the Universal Configuration
Manager.

For a list of the Universal Broker configuration options in each category, see .Universal Broker Configuration Options Refresh

https://www.stonebranch.com/confluence/display/UA66/COMPONENT_DIRECTORY+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Access+Control+List+%28UACL%29
https://www.stonebranch.com/confluence/display/UA66/I-Management+Console
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+Configuration+Options+Refresh

Universal Agent 6.6.x User Guide

 / ua-66x-user325

Refreshing via Universal Control Examples
Error formatting macro: redirect: java.lang.NullPointerException

Universal Agent 6.6.x User Guide

 / ua-66x-user326

Refreshing via Universal Control Examples - Overview

Refreshing via Universal Control Examples

Refreshing Universal Broker from z/OS
Refreshing a Component from z/OS
Refreshing Universal Broker from Windows
Refreshing a Component from Windows
Refreshing Universal Broker from UNIX
Refreshing a Component from UNIX
Refreshing Universal Broker from IBM i
Refreshing a Component from IBM i
Refreshing Universal Broker from HP NonStop
Refreshing a Component from HP NonStop

These examples illustrate how to use Universal Control to refresh configuration data of all components, including itself, or a single component.

Currently, the only individual components that can be refreshed are the Universal Event Monitor Server (uems) and the Universal Automation
Center Agent (uag).

Note
The IBM i examples reference the IBM i commands by their untagged names. If you are using commands with tagged names to
run , substitute the tagged names for these untagged names. (For information on tagged names, see Universal Control

.)UCHGRLS (Change Release Tag) Program

https://www.stonebranch.com/confluence/display/UA66/Universal+Control
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user327

Refreshing Universal Broker from zOS

Refreshing Universal Broker from z/OS
SYSIN Options
Universal Broker Actions
Components

Refreshing Universal Broker from z/OS

This example refreshes Universal Broker on z/OS.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//***
//* (c) Copyright 2001-2008, Stonebranch, Inc. All rights reserved.
//*
//* Stonebranch, Inc.
//* Universal Control
//*
//* Description
//* -----------
//* This sample demonstrates the use of the UCTL program to refresh
//* a running component on host dallas.
//*
//* Make the following modifications as required by your local
//* environment:
//*
//* - Modify the JOB statement as appropriate.
//* - Change all '#HLQ' to the high-level qualifier of the
//* Universal Command data sets.
//* - If not already done, modify the JCL procedure UCTLPRC
//* as required by your local environment.
//***
//*
// JCLLIB ORDER=#HLQ.UNV.SUNVSAMP
//*
//STEP1 EXEC UCTLPRC
//SYSIN DD *
 -refresh -host dallas
/*

This example refreshes the Universal Broker configuration on host .dallas

SYSIN Options

The SYSIN options used in this example are:

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of .dallas

Universal Broker Actions

The refresh request directs the Broker to take the following actions:

Step 1 Read its configuration file. The Broker refreshes configuration options.

Step 2 Read all component definitions found in ddname . The Broker replaces all component definitions with the newly readUNVCONF
component definitions. New component definitions are added and deleted component definitions are removed.

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user328

Step 3 Read the Universal Access Control List configuration file allocated to ddname . The Broker replaces its UACL entries with theUNVACL
newly read entries.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user329

Refreshing a Component from zOS

Refreshing a Component from z/OS
SYSIN Options
Components

Refreshing a Component from z/OS

This example refreshes a Universal Event Monitor Server (uems) component on a remote system.

//jobname JOB CLASS=A,MSGCLASS=X
//STEP1 EXEC UCTLPRC
//SYSIN DD *
-refresh uems -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq
/*

This example refreshes a Universal Automation Center Agent (uag) component on a remote system.

//jobname JOB CLASS=A,MSGCLASS=X
//STEP1 EXEC UCTLPRC
//SYSIN DD *
-refresh uag -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq
/*

SYSIN Options

The SYSIN options used in these examples are:

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of "ABC-dallas" to the started component.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user330

Refreshing Universal Broker from Windows

Refreshing Universal Broker via Universal Control from Windows
Command Line Options
Universal Broker Actions
Components

Refreshing Universal Broker via Universal Control from Windows

This example refreshes Universal Broker on a remote system.

uctl -refresh -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Universal Broker Actions

This refresh request directs Universal Broker to take the following actions:

Step 1 Read its configuration file. Universal Broker refreshes its configuration options.

Step 2 Read all component definitions found in the component definition directory. Universal Broker replaces all component definitions with
the newly read component definitions. New component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration entries from the registry. Universal Broker replaces its UACL entries with the
newly read entries.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user331

Refreshing a Component from Windows

Refreshing a Component via Universal Control from Windows
Command Line Options
Components

Refreshing a Component via Universal Control from Windows

This example refreshes a Universal Event Monitor Server (uems) component on a remote system.

uctl -refresh uems -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

This example refreshes a Universal Automation Center Agent (uag) component on a remote system.

uctl -refresh uag -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Type of component to refresh on the remote system.

-cmd Assigns a command identifier of to the started component."ABC-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user332

Refreshing Universal Broker from UNIX

Refreshing Universal Broker via Universal Control from UNIX
Command Line Options
Universal Broker Actions
Components

Refreshing Universal Broker via Universal Control from UNIX

This example refreshes Universal Broker on a remote system.

uctl -refresh -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Universal Broker Actions

This refresh request directs Universal Broker to take the following actions:

Step 1 Read its configuration file . Universal Broker refreshes the following configuration options:ubroker.conf

MESSAGE_LANGUAGE
RUNNING_MAX

Step 2 Read all component definitions found in the component definition directory. Universal Broker replaces all component definitions with
the newly read component definitions. New component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration file . Universal Broker replaces its UACL entries with the newly readuacl.conf
entries.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LANGUAGE+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RUNNING_MAX+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user333

Refreshing a Component from UNIX

Refreshing a Component via Universal Control from UNIX
Command Line Options
Components

Refreshing a Component via Universal Control from UNIX

This example refreshes a Universal Event Monitor Server (uems) component on a remote system.

uctl -refresh uems -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

This example refreshes a Universal Automation Center Agent (uag) component on a remote system.

uctl -refresh uag -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of to the started component."ABC-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user334

Refreshing Universal Broker from IBM i

Refreshing Universal Broker via Universal Control from IBM i
Command Line Options
Universal Broker Actions
Components

Refreshing Universal Broker via Universal Control from IBM i

This example refreshes a component on a remote system.

STRUCT REFRESH(*yes) HOST(dallas) USERID(joe) PWD(akkSdiq)

Command Line Options

The command line options used in this example are:

Option Description

REFRESH Instruction to refresh Universal Broker on the remote system.

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the Universal Control Server process.

PWD Password for the user ID.

Universal Broker Actions

The REFRESH command directs Universal Broker to take the following actions:

Step 1 Read its configuration file and member .UNVCONF UBROKER

Step 2 Read all component definitions found in the component definition file, / . Universal Broker replaces allUNVPRD520 UNVCOMP
component definitions with the newly read component definitions. New component definitions are added and deleted component
definitions are removed.

Step 3 Read the Universal Access Control List configuration file and member . Universal Broker replaces its UACL entriesUNVCONF UACL
with the newly read entries.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user335

Refreshing a Component from IBM i

Refreshing a Component via Universal Control from IBM i
Command Line Options
Components

Refreshing a Component via Universal Control from IBM i

This example refreshes a Universal Event Monitor Server (uems) component on a remote system.

STRUCT REFRESH(*yes) RFSHCMPNM(uems) CMDID('ABC-dallas') HOST(dallas) USERID(joe) PWD(akkSdiq)

This example refreshes a Universal Automation Center Agent (uag) component on a remote system.

STRUCT REFRESH(*yes) RFSHCMPNM(uag) CMDID('ABC-dallas') HOST(dallas) USERID(joe) PWD(akkSdiq)

Command Line Options

The command line options used in this example are:

Option Description

REFRESH Specification for whether or not to refresh.

RFSHCMPNM Type of component to refresh on the remote system.

CMDID Assigns a command identifier of to the started component.'ABC-dallas'

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the Universal Control Server process.

PWD Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user336

Refreshing Universal Broker from HP NonStop

Refreshing Universal Broker via Universal Control from HP NonStop
Command Line Options
Universal Broker Actions
Components

Refreshing Universal Broker via Universal Control from HP NonStop

This example refreshes Universal Broker on a remote system.

run uctl -refresh -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Type of component to refresh on the remote system.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Universal Broker Actions

The REFRESH command directs Universal Broker to take the following actions:

Step 1 Read its configuration file . Universal Broker refreshes the following configuration options:UBRCFG

MESSAGE_LANGUAGE
RUNNING_MAX

Step 2 Read all component definitions found in the component definition subvolume. Universal Broker replaces all component definitions with
the newly read component definitions. New component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration file . Universal Broker replaces its UACL entries with the newly readUACLCFG
entries.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LANGUAGE+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RUNNING_MAX+-+UBROKER+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user337

Refreshing a Component from HP NonStop

Refreshing a Component via Universal Control from HP NonStop
Command Line Options
Components

Refreshing a Component via Universal Control from HP NonStop

This example refreshes a Universal Event Monitor Server (uems) component on a remote system.

run uctl -refresh uems -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

This example refreshes a Universal Automation Center Agent (uag) component on a remote system.

run uctl -refresh uag -cmdid "ABC-dallas" -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of to the started component."ABC-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user338

Merging Configuration Options

Overview
Merging during Upgrades
Merging at any Time
Examples

Overview

The (UPIMERGE) utility merges options and values from one Universal Agent component configuration file orUniversal Products Install Merge
component definition file with another.

Merging during Upgrades

UPIMERGE runs automatically during Universal Agent installation upgrades on UNIX and Windows. During the install, UPIMERGE combines
options and values from existing configuration and component definition files with the options and values in the most recent versions of those files
(delivered with the distribution package).

The result of each merge is a single file, with preserved options and values residing alongside any new options and values that were introduced to
support new Universal Agent features.

Merging at any Time

The Universal Agent (UNIX and Windows) and Universal Enterprise Controller (Windows only) distribution packages also install UPIMERGE. This
makes UPIMERGE available at any time for recovering archived options and values and merging them with the most recent options and values.

When used to update a Universal Agent configuration or component definition file, UPIMERGE must run with a user account that has write access
to the output file. This typically means administrative access (that is, root on UNIX, Administrator on Windows).

Examples

The following pages provide examples of how configuration files can be merged:

Files Used in UPI Merge Examples
Merge Configuration Files Using Program Defaults
Merge Configuration Files Introducing New Options
Merge Configuration Files Using Installation-Dependent Values

These examples illustrate the merging of Universal Agent (for Windows or UNIX) components' configuration options using the
 (UPI) component.Universal Products Install Merge

 The information on these pages also is located in [UACDOC64:Universal Automation Center PDFs^Universal Agent 6.6.x User
.Guide.pdf]

https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge
https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge

Universal Agent 6.6.x User Guide

 / ua-66x-user339

Files Used in UPI Merge Examples

Files Used in Examples
Universal Agent Configuration File Sample (infile.txt)
Universal Agent Configuration File Sample (outfile.txt)

Files Used in Examples

The examples in this section demonstrate the expected results when Universal Products Install Merge is executed using two configuration files
with the contents identified in the following tables.

Note
Although these examples show Windows path names, the Universal Install Merge behavior demonstrated also applies to UNIX
systems.

Universal Agent Configuration File Sample (infile.txt)

The following table identifies the contents of , a sample file in the Universal Agent standard keyword / value configuration file format.infile.txt

For the examples in this section, could represent an existing or archived configuration file, or a work file used to introduce and distributeinfile.txt
configuration values across one or more target systems.

Keyword Value

installation_directory "C:\Program Files\Universal\UCmdMgr"

message_level info

#host some.remote.host

port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301 *

* This license key is for demonstration purposes only. It is not a valid license key.

Universal Agent 6.6.x User Guide

 / ua-66x-user340

Universal Agent Configuration File Sample (outfile.txt)

The following table identifies the contents of , another sample file in Universal Agent standard keyword / value configuration file format.outfile.txt

For the examples in this section, might represent a default configuration file that is delivered during product installation, or an existingoutfile.txt
production configuration file that needs to be updated with values from .infile.txt

Keyword Value

port 7887

activity_monitoring yes

event_generation *,x100

Universal Agent 6.6.x User Guide

 / ua-66x-user341

Merge Configuration Files Using Program Defaults

Merge Configuration Files Using Program Defaults
Command Line Options
Merged File Contents
Components

Merge Configuration Files Using Program Defaults

The following figure illustrates the command line used to merge configuration options from into .infile.txt outfile.txt

In this example, UPIMERGE executes using program defaults.

upimerge -dest outfile.txt -source infile.txt

Command Line Options

The command line options used in this example are:

Option Description

-dest Name of a file used to store the result of the merge.

-source Name of a file used as input to the merge. If this option is omitted, UPIMERGE assumes input is
redirected via stdin.

Merged File Contents

The following table identifies the contents of after UPIMERGE completes.outfile.txt

To obtain this result, UPIMERGE added options from that did not exist in (that is, installation_directory,infile.txt outfile.txt
message_level, license_key, and so on). It also preserved the value for the option by replacing the 7887 value with the currently definedport
7850.

UPIMERGE also dropped the commented option from . UPIMERGE ignores any comments in the input file, because merginghost infile.txt
those lines into the output file would have no effect on the application's behavior.

Finally, UPIMERGE commented out the and options introduced by . UPIMERGE cannotactivity_monitoring event_generation outfile.txt
distinguish between options for new features and new values for existing options. To prevent the introduction of a new value into an application
currently running with application-defined defaults, UPIMERGE's default response is to comment out any option in the output file with no match in
the input file.

Keyword Value

installation_directory "C:\Program Files\Universal\UCmdMgr"

message_level info

port 7850

https://www.stonebranch.com/confluence/display/UA66/DESTINATION_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SOURCE_FILE+-+UPIMERGE+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user342

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

#activity_monitoring yes

#event_generation *,x100

Components

Universal Products Install Merge

https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge

Universal Agent 6.6.x User Guide

 / ua-66x-user343

Merge Configuration Files Introducing New Options

Merge Configuration Files Introducing New Options
Command Line Options
Merged File Contents
Components

Merge Configuration Files Introducing New Options

The following figure illustrates the command line used to merge configuration options from into .infile.txt outfile.txt

In this example, UPIMERGE changes its default behavior, and introduces new values for the and optionsactivity_monitoring event_generation
by not commenting them out in the merged file.

upimerge -dest outfile.txt -source infile.txt -keep_nomatch yes

Command Line Options

The command line options used in this example are:

Option Description

-dest Name of a file used to store the result of the merge.

-source Name of a file used as input to the merge. If this option is omitted, UPIMERGE assumes input is
redirected via stdin.

-keep_nomatch Controls merge behavior when an option in has no match in .-dest -source

Merged File Contents

The following table identifies the contents of after UPIMERGE completes.outfile.txt

The result is almost identical to the example shown in . Executing UPIMERGE with Merge Configuration Files Using Program Defaults
 set to enables the and options in the output file.-keep_nomatch yes activity_monitoring event_generation

Keyword Value

installation_directory "C:\Program Files\Universal\UCmdMgr"

message_level info

port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

https://www.stonebranch.com/confluence/display/UA66/DESTINATION_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SOURCE_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/KEEP_NOMATCH+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DESTINATION_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SOURCE_FILE+-+UPIMERGE+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user344

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

activity_monitoring yes

event_generation *,x100

Components

Universal Products Install Merge

https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge

Universal Agent 6.6.x User Guide

 / ua-66x-user345

Merge Configuration Files Using Installation-Dependent Values

Merge Configuration Files Using Installation-Dependent Values
Command Line Options
Merged File Contents
Components

Merge Configuration Files Using Installation-Dependent Values

The following figure illustrates the command line used to merge configuration options from into . In this example,infile.txt outfile.txt
UPIMERGE applies logic specific to a particular configuration file, and updates any references to locations that depend on the installed location of
that Universal Agent application.

upimerge -dest outfile.txt -source infile.txt -cfgtype ucmd -installdir "D:\Program
Files\Universal\UCmdMgr"

Command Line Options

The command line options used in this example are:

Option Description

-dest Name of a file used to store the result of the merge.

-source Name of a file used as input to the merge. If this option is omitted, UPIMERGE assumes input is
redirected via stdin.

-cfgtype Notifies UPIMERGE that is a configuration file that contains settings for the specified Universal-source
Agent application.

-installdir Primary location in which the Universal Agent application identified by resides.-cfgtype

Merged File Contents

The following table identifies the contents of after UPIMERGE completes. The result is almost identical to the example shown in outfile.txt
, except for the value of the option.Merge Configuration Files Using Program Defaults -installdir

Even though contained a value for*-installdir*, UPIMERGE interpreted that value as the application's current location. UPIMERGEinfile.txt
then updated any values in (executing logic based on the specified) that depend on the installed location.outfile.txt -cfgtype

This example might be useful in a situation where it is necessary to recover configuration settings from an archived file, but the application no
longer resides in the directory specified in the archive file. This is the logic that UPIMERGE uses during a Universal Agent installation to ensure
that installation-dependent locations are always correct.

Keyword Value

installation_directory "D:\Program Files\Universal\UCmdMgr"

message_level info

https://www.stonebranch.com/confluence/display/UA66/DESTINATION_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SOURCE_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CONFIGURATION_TYPE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SOURCE_FILE+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INSTALLATION_DIRECTORY+-+UPIMERGE+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CONFIGURATION_TYPE+-+UPIMERGE+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user346

Port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

#activity_monitoring yes

#event_generation *,x100

Components

Universal Products Install Merge

https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge

Universal Agent 6.6.x User Guide

 / ua-66x-user347

Configuration Options

Configuration Options

The following configuration options are available for Universal Agent components:

OMS Server Configuration Options

Universal Automation Center Agent Configuration Options

Universal Broker Configuration Options

Universal Command Manager Configuration Options

Universal Command Server Configuration Options

Universal Command Agent for SOA Configuration Options

Universal Connector for SAP Configuration Options

Universal Data Mover Manager Configuration Options

Universal Data Mover Server Configuration Options

Universal Enterprise Controller Configuration Options

UECLoad Configuration Options

Universal Event Monitor Manager configuration options

Universal Event Monitor Server configuration options

UEMLoad configuration options

Universal Certificate Configuration Options

Universal Control Manager Configuration Options

Universal Control Server Configuration Options

Universal Copy Configuration Options

Universal Database Dump Configuration Options

Universal Database Load Configuration Options

Universal Display Log File Configuration Options

Universal Encrypt Configuration Options

Universal Event Log Dump Configuration Options

Universal FTP Client Configuration Options

Universal Message Translator Configuration Options

Universal Products Install Merge Configuration Options

Universal Query Configuration Options

Universal Spool List Configuration Options

Universal Spool Remove Configuration Options

Universal Submit Job Configuration Options

Universal Write-to-Operator Configuration Options

https://www.stonebranch.com/confluence/display/UA66/OMS+Server+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Automation+Center+Agent+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Server+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Agent+for+SOA+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Connector+for+SAP+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Manager+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Server+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Enterprise+Controller+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/UECLoad+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+configuration+options
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+configuration+options
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+configuration+options
https://www.stonebranch.com/confluence/display/UA66/Universal+Certificate+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Control+Manager+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Control+Server+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Copy+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Database+Dump+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Database+Load+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Display+Log+File+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Log+Dump+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+FTP+Client+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Products+Install+Merge+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Query+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+List+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+Remove+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Submit+Job+Configuration+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Write-to-Operator+Configuration+Options

Universal Agent 6.6.x User Guide

 / ua-66x-user348

Component Management

Component Management

Component Management information for Universal Agent is comprised of:

Component Definition
Component Definition Options
Starting and Stopping Components
Starting and Stopping Components Examples
Maintaining Universal Broker Definitions in UEC Database

Universal Agent 6.6.x User Guide

 / ua-66x-user349

Component Definition

Overview

Each Universal Agent server component - Universal Command Server, Universal Data Mover Server, Universal Event Monitor Server, Universal
Control Server, Universal Application Container, and Universal Message Service (OMS) - has a component definition.

The Component Definition is a text file of options that defines component-specific information required by the .Universal Broker

Each Component Definition defines the following type of information:

Component type (for Universal Event Monitor Servers only).
Component name.
Component command name.
Component configuration file name.
Component working directory path.
Number of component instances that can run simultaneously.
Specification for whether or not the component starts automatically when the Universal Broker starts.

For information on the options that comprise each Component Definition, see:

Universal Automation Center Agent
Universal Command
Universal Data Mover
Universal Event Monitor
Universal Control
Universal Application Container
Universal Message Service (OMS)

Universal Event Monitor Component Definition

The Component Definition for a Universal Event Monitor Server defines whether it is a demand-driven or an event-driven server. Among other
factors, this determines how the server is started (see).Starting and Stopping Agent Components

For a complete explanation of the difference between demand-driven and event-driven Universal Event Monitor Servers, see UEM Servers -
.Demand-Driven vs. Event-Driven

https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Automation+Center+Agent+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Component+Definition+options
https://www.stonebranch.com/confluence/display/UA66/Universal+Control+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/UAC+Server+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/OMS+Server+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven

Universal Agent 6.6.x User Guide

 / ua-66x-user350

Component Definition Options

Component Definition Options

The following component definition options are available for Universal Agent components:

Universal Broker Component Definition Options

Universal Automation Center Agent Component Definition Options

Universal Command Component Definition Options

Universal Data Mover Component Definition Options

UAC Server Component Definition Options

Universal Event Monitor Component Definition Options

Universal Control Component Definition Options

https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Automation+Center+Agent+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Data+Mover+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/UAC+Server+Component+Definition+Options
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Component+Definition+options
https://www.stonebranch.com/confluence/display/UA66/Universal+Control+Component+Definition+Options

Universal Agent 6.6.x User Guide

 / ua-66x-user351

Starting and Stopping Agent Components

Starting Components
Starting Manually
Starting via Manager
Starting Automatically
Starting via Universal Control

Stopping Components

Starting Components

There are four ways in which Universal Agent components are started.

Starting Manually

The following components are started manually and run in the background until they are stopped manually:

Universal Broker
Universal Enterprise Controller

(See .)Starting and Stopping Agent Components - Examples

Starting via Manager

The following components are started on demand (that is, via their Managers) and run until the specified task has completed, then stop
automatically.

Universal Command Server
Universal Control Server
Universal Event Monitor Server ()demand-driven

Starting Automatically

The following components are auto-start components; that is, they start automatically when the Universal Broker starts and run until they are
stopped manually:

Universal Application Container Server
Universal Event Monitor Server ()event-driven
Universal Automation Center Agent (UAG)
Universal Message Service (OMS)

Note
The component definition option for Universal Event Monitor Server also can specify that anAUTOMATICALLY_START
event-driven server is not started automatically (see , below).Starting via Universal Control

The component definition option for OMS also can specify that it is not started automatically.AUTOMATICALLY_START

Starting via Universal Control

Universal Control can start Server components, via the Universal Control option, that do not require interaction with a Manager.START_CMD
Currently, only three Universal Agent components can be started via Universal Control:

Universal Event Monitor Server (event-driven)
Universal Automation Center Agent (UAG)
Universal Message Service (OMS)

(See .)Starting and Stopping Agent Components - Examples

Stopping Components

Any Universal Agent Server component can stopped via the Universal Control option.STOP_CMD

https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/AUTOMATICALLY_START+-+UEM+Component+Definition+option
https://www.stonebranch.com/confluence/display/UA66/AUTOMATICALLY_START+-+OMS+Component+Definition+option
https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user352

Authorized users also are able to use the I-Activity Monitor, a Universal Enterprise Controller (UEC) client application, to stop running any
Universal Agent Server component (if it is a component of an Agent being polled by UEC).

Universal Agent 6.6.x User Guide

 / ua-66x-user353

Starting and Stopping Agent Components - Examples

Starting and Stopping Universal Broker Examples

Starting and Stopping Universal Broker - z/OS
Starting Universal Broker - Windows
Starting Universal Broker - UNIX
Starting, Ending, Working with Universal Broker - IBM i
Starting Universal Broker - HP NonStop

Starting and Stopping Universal Enterprise Controller Examples

Starting and Stopping Universal Enterprise Controller - z/OS
Starting and Stopping Universal Enterprise Controller - Windows

Starting and Stopping Components via Universal Control Examples

Note
Currently, only Universal Event Monitor Servers and Universal Automation Center Agent can be started by Universal Control.

The examples assume that Universal Control Server is installed on a remote system named . The user ID and password used in thedallas
examples must be changed to a valid user ID and password for the remote system.

Links to detailed technical information on appropriate Universal Agent components are provided for each example.

Starting a z/OS Component via Universal Control
Stopping a z/OS Component via Universal Control
Starting a Windows Component via Universal Control
Stopping a Windows Component via Universal Control
Starting a UNIX Component via Universal Control
Stopping a UNIX Component via Universal Control
Starting an IBM i Component via Universal Control
Stopping an IBM i Component via Universal Control
Stopping an HP NonStop Component via Universal Control

Note
The IBM i examples reference the IBM i commands by their untagged names. If you are using commands with tagged names to
run and , substitute the tagged names for these untagged names. (For information on taggedUniversal Broker Universal Control
names, see .)UCHGRLS (Change Release Tag) Program

https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Control
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user354

Starting and Stopping Universal Broker - zOS

Overview
Start Universal Broker
Stop Universal Broker

Overview

Universal Broker for z/OS executes as a started task.

The UBROKER program utilizes the z/OS UNIX System Services environment.

Start Universal Broker

To start Universal Broker, execute the console command:START

START UBROKER[,UPARM='options']

Stop Universal Broker

To stop Universal Broker, execute the console command:STOP

STOP UBROKER

Universal Agent 6.6.x User Guide

 / ua-66x-user355

Starting Universal Broker - Windows

Overview
Console Application

Console Security
Windows Service

Service Security
Required File System Permissions
Executing the Broker Service With a Domain Account

Overview

Universal Broker can be executed in two different environments:

Console application
Windows service

Console Application

The command starts Universal Broker as a console application.ubroker

Enter either from the:ubroker

Command Prompt window
Run dialog (Select from the Windows menu.)Run... Start

Console Security

Universal Broker inherits its user account from the user that starts it. The Broker itself does not require any additional permissions or rights other
than the default ones granted to the Windows group user.

However, components started by the Broker also run with the same user account as the Broker. Some components may require permissions or
rights other than those granted to the user account that started the Broker.

For additional information regarding the security requirements of Universal Broker and all Universal Agent components, see Universal Agent
.Security

Windows Service

Universal Broker is installed as a Windows service that starts automatically when the system is started. Windows provides a utility called Services
that is used to interact with and manage all installed services. is an item in the Administrative Tools program group, which is accessibleServices
from the Control Panel.

Service Security

The Universal Broker service can be configured to execute with the Local System account or with a specially configured Administrative account.
The Local System account automatically provides the permissions necessary to execute the Broker.

An administrative account must have the following privileges to execute the Broker:

Act as part of the operating system
Adjust memory quotas for a process
Bypass traverse checking
Debug programs
Log on as a service
Impersonate a client after authentication
Increase scheduling priority
Replace a process level token
Take ownership of files and other objects

To restrict interactive access by the account to the system, we also recommend adding the following policies:

Deny log on as batch job
Deny log on locally
Deny log on through Terminal Services

Any existing Administrative account may be configured as described above to execute the Broker. The Universal Agent install also provides the

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Security
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Security

Universal Agent 6.6.x User Guide

 / ua-66x-user356

ability to create and configure an Administrative account with the privileges above.

Configuring the Broker to run with an Administrative account not only allows the service to execute with just the privileges it needs, it also enables
the Broker service to access network resources it would not have visibility to while executing as Local System.

Required File System Permissions

It may be necessary to update the Broker account's access to the Universal Agent installed directories and files. If the product is installed to its
default location under the Program Files directory, the local Administrative account used to execute the Broker (such as the default

 account) will likely get the file system access it needs via permissions inherited from parent directories.UBrokerService

However, if the application is installed to a location outside of the Program Files path - or a domain account is used to execute the Broker Service
- the required file system permissions may need to be added after the install.

The recommended approach is to grant the Broker service account Full Control of the following directories, making sure that the permissions are
propagated to all sub-directories and files:

.\Universal install directory.
%ALLUSERSPROFILE%\Application Data\Universal directory, which is the parent directory of the and directories in.\conf .\comp
which the configuration files and component definition files reside, respectively.

Full control is recommended because of the varied requirements and configurations possible with the Universal Agent components. However,
should you desire a more precise configuration, the Broker user only requires Read/Execute permissions for the following directories, along with
their sub-directories and files:

.\Universal\nls

.\Universal\UCmdMgr

.\Universal\UCtlMgr

.\Universal\UDMMgr

.\Universal\UEld

.\Universal\UEMMgr

.\Universal\UPIMerge

.\Universal\UQuery

.\Universal\USpool

Note
The Universal Agent installation itself does not set the required file permissions for the Broker user. It only relies on permissions
inherited from parent directories.

Executing the Broker Service With a Domain Account

The Universal Broker service may be configured to run with a Windows domain account.

To do so, verify the following before starting the installation (the Universal Agent install will not configure a domain account):

Account already exists.
Account belongs to the Administrators group.

Note
Depending on your environment, it may be necessary to add this account to the Domain Admins group. This will ensure
the account has sufficient access to domain resources and is recognized as a true administrative account on all domain
member systems that run the Universal Broker service as that account.

Account has the and listed above.privileges file system access

Universal Agent 6.6.x User Guide

 / ua-66x-user357

Starting Universal Broker - UNIX

Starting Universal Broker for UNIX
Console Application

Console Security
Daemon

Daemon Security

Starting Universal Broker for UNIX

Universal Broker can be executed in two different environments:

Console Application
Daemon

Differences between the environments are described in the following sections.

Only one instance of the Universal Broker can execute at any one time. A PID file is used to help ensure that there is only one active instance; it is
a locking mechanism that prevents the execution of a second Broker. The PID file, , is created in directory ubroker.pid /var/opt/universal
by default. If the PID file is in the PID directory, it is assumed that a Broker instance is executing.

Console Application

The command starts Universal Broker as a console application.ubroker

Console Security

Universal Broker runs with the same user ID as the user who starts it; it does not require superuser rights. Universal Broker only requires access
to its installation directory and files, which often are created by the superuser account when the product is installed.

However, components started by Universal Broker also run with the same user ID as Universal Broker. Some of these components requiremay
superuser rights.

See for details on their security requirements for specific Universal Agent components.Universal Agent Security

Daemon

Universal Broker can run as a UNIX daemon process. This is the preferred method of running the Broker. A daemon start-up script is provided to
manage the starting and stopping of the Broker daemon. The start-up script utilizes the PID file to ensure that only one instance of the Broker is
executing at any one time. For this reason, the start-up script should be used to start and stop the Broker.

Note
Although they have the same name, the Broker daemon start-up script should not be confused with the actual Broker daemon
program file.

Start-up script is installed in the primary Broker directory (that is,)../universal/ubroker
Program file is installed in the Broker's directory (that is,).bin ./universal/ubroker/bin

ubrokerd { start | stop | status | restart }

The following table describes the command line arguments to the Universal Broker daemon start-up script.

Command Description

start Starts the Universal Broker daemon. Only one instance of Universal Broker can run at any given time, so if the Broker already is
running, the command fails and the script returns.

stop Stops the Universal Broker daemon. If the Broker daemon is not running, the script simply returns.

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Security

Universal Agent 6.6.x User Guide

 / ua-66x-user358

status Returns the status of the Universal Broker daemon, either or . If the daemon is running, the script displays itsrunning stopped
process ID.

restart Performs a request followed by a request.stop start

Daemon Security

When a daemon is started at system initialization, it is started as user . The root user ID provides sufficient authority for the Broker and anyroot
component it may start.

If the daemon is started with a non-root user ID, the environment is the same as if it was started as a console application. (See ,Console Security
above, for more details.)

Universal Agent 6.6.x User Guide

 / ua-66x-user359

Starting, Ending, Working with Universal Broker - IBM i

Starting, Ending, and Working With Universal Broker for IBM i
Commands

Start Subsystem Command (STRSBS)
End Subsystem Command (ENDSBS)
Work With Subsystem Command (WRKSBS)

Starting, Ending, and Working With Universal Broker for IBM i

Universal Broker executes within its own IBM i subsystem, named . The subsystem provides a self-containedUNVUBR520 UNVUBR520
environment in which Universal Broker can be managed. The subsystem description (object type) is named .UNVUBR520 *SBSD UNVUBR520

The subsystem contains several entries that define the subsystem environment. The two most visible are:UNVUBR520

Autostart entry
Pre-start job entries

The subsystem autostart entry defines what jobs are started automatically when the subsystem is started. The subsystem definesUNVUBR520
one autostart entry, . The job executes with the job description (object type) and user profile UNVUBR520 UBROKER UBROKER *JOBD

 (object type). Only one instance of the job, which runs continuously, can be active at any one time within theUNVUBR520 *USRPRF UBROKER
context of any one Stonebranch-defined subsystem.

The subsystem pre-start job entries define jobs that are in an initialized state. They are not executing but are ready to accept a request and
execute at any time. Pre-starting jobs before they are required improves the overall throughput of the subsystem jobs.

Universal Broker jobs running under use the job queue and class located in the product installation library. See UNVUBR520 UBROKER IBM i
 for additional information.Installation - Customization

The Universal Command (UCMD) Server jobs log all significant events to the job log. However, by default, IBM i does not keep jobUBROKER
logs unless the job terminates due to an error. As a result, important information relevant to server errors may be discarded when the UBROKER
job is shut down normally.

To preserve the server-related information, the UBROKER job description specifies Message Logging as . The job's job log4 0 *MSG UBROKER
will be sent automatically to the output queue and printer device designated in the job description, which is located in the UniversalUBROKER
Agent installation library, (by default).UNVPRD520

In some very large organizations with heavy usage, the job log may fill. By default, IBM i jobs are stopped when the job log fills. ToUBROKER
ensure continuous operation, Universal Agent sets the job log to wrap. (See for additional information.)UBROKER IBM i Installation

Commands

The following O/S commands help manage the subsystem.UNVUBR520

Start Subsystem Command (STRSBS)

Starts the Universal Broker subsystem, .UNVUBR520

STRSBS UNVPRD520/UNVUBR520

End Subsystem Command (ENDSBS)

Ends the Universal Broker subsystem, .UNVUBR520

ENDSBS UNVUBR520

Work With Subsystem Command (WRKSBS)

Allows users to work with all active subsystems. Choose the subsystem from the list of subsystems displayed.UNVUBR520

https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+Customization
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+Customization
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation

Universal Agent 6.6.x User Guide

 / ua-66x-user360

WRKSBS

Universal Agent 6.6.x User Guide

 / ua-66x-user361

Starting Universal Broker - HP NonStop

Starting Universal Broker for HP Nonstop
Console Application

Console Security
Daemon

Daemon Security

Starting Universal Broker for HP Nonstop

Universal Broker for HP NonStop runs as an Open System Services (OSS) application.

It can be executed in two different environments:

Console Application
Daemon

Differences between the environments are described in the following sections.

Only one instance of the Universal Broker can execute at any one time. A PID file is used to help ensure only one active instance. The PID file is
a locking mechanism that prevents the execution of a second Broker. The PID file, named , is created in subvolume UBRPID $SYSTEM.UNVLOG
by default. If the PID file is in the PID subvolume, it is assumed that a Universal Broker instance is executing.

Console Application

The command starts Universal Broker as a console application.ubroker

The following figure illustrates the Universal Broker start command.

ubroker [OPTIONS...]

Console Security

The Universal Broker runs with the same user ID as the user who starts it. The Universal Broker does not require rights. It onlysuper.super
requires access to its installation subvolume and files.

However, components started by Universal Broker also run with the same user ID as Universal Broker. Some components may require
 rights.super.super

(See the security documentation of the components you wish to run for details on their security requirements.)

Daemon

Universal Broker can run as a daemon process. This is the preferred method of running the Broker. A daemon startup script is provided to
manage the starting and stopping of the Broker daemon. The startup script utilizes the PID file to ensure only one instance of the Broker is
executing at any one time. For this reason, the startup script should be used to start and stop the Broker.

Note
The Universal Broker daemon startup script and the Universal Broker daemon program file both are installed within the

 subvolume. The Broker daemon startup script name is and the Broker daemon program file$SYSTEM.UNVBIN ubrokerd
name is .ubrd

ubrokerd { start | stop | status | restart }

The following table describes the command line arguments to the Universal Broker daemon startup.

Universal Agent 6.6.x User Guide

 / ua-66x-user362

Command Description

Start Starts the Universal Broker daemon. Only one instance of Universal Broker can run at any given time, so if the Broker is already
running, the command fails and the script returns.

Stop Stops the Universal Broker daemon. If the Broker daemon is not running, the script simply returns.

Status Returns the status of the Universal Broker daemon: either or . If the daemon is running, the script displays itsrunning stopped
process ID.

Restart Performs a request followed by a request.stop start

Daemon Security

When a daemon is started at system initialization, it is started as user . The user ID provides sufficient authority for thesuper.super super.super
Broker and any component it may start.

If the daemon is started with a non-super user ID, the environment is the same as if it was started as a console application (see ,Console Security
above).

Universal Agent 6.6.x User Guide

 / ua-66x-user363

Starting and Stopping Universal Enterprise Controller - zOS

Overview
Starting UEC
Stopping UEC
System MODIFY Command

DUMP Command
BROKERSTAT Command

Overview

Universal Enterprise Controller (UEC) for z/OS executes as a started task.

Starting UEC

The UEC started task, , is started with the z/OS START command:UECTLR

S UECTLR

Stopping UEC

The UEC started task, , is stopped with the z/OS MODIFY STOP command:UECTLR

P UECTLR

After the STOP command is issued, UEC may take several seconds to shut down.

Note
The started task should run at a high dispatch priority in order to avoid not being dispatched in a timely enoughUECTLR
manner to process the agent polling protocol. If is not dispatched appropriately, the Broker may be reported as timedUECTLR
out when the Broker itself still is operational.

System MODIFY Command

The UEC started task accepts commands via the system MODIFY command. The MODIFY command's parameter is required, since UECAPPL=
runs as a USS address space.

DUMP Command

The DUMP command directs UEC to produce a Language Environment dump. The dump is written to the ddname. While the dump isCEEDUMP
being produced, UEC is paused by LE until the dump completes, after which UEC continues processing.

In the following example, the procedure name is assumed:UECTLR

F UECTLR,APPL=DUMP

The DUMP command is used for diagnostic purposes. It should be executed only at the request of Stonebranch, Inc.

BROKERSTAT Command

The BROKERSTAT command provides on-demand Broker status alerting. It causes UEC to issue an alert message for all defined Brokers
indicating their current internal state.

Alert UNV1056T (Unable to connect) is issued for Brokers that are down.
Alert UNV1059T (Broker responding) is issued for Brokers that are up.

Universal Agent 6.6.x User Guide

 / ua-66x-user364

The alert message is equivalent to what UEC issued at the time the alert was originally generated.

In the example below, the procedure name is assumed:UECTLR

F UECTLR,APPL=BROKERSTAT

Alerts issued on-demand (by BROKERSTAT) are not sent to the I-Activity Monitor client. (When issued under normal processing by UEC, the
alerts are sent to I-Activity Monitor.)

Universal Agent 6.6.x User Guide

 / ua-66x-user365

1.
2.

Starting and Stopping Universal Enterprise Controller - Windows

Starting / Stopping Universal Enterprise Controller for Windows

Universal Enterprise Controller (UEC) for Windows executes as a service.

By default, UEC for Windows is set to start automatically whenever Windows is booted.

Changes to UEC configuration require it to be stopped and restarted by the Windows Service Control Manager.

To access the Service Control Manager:

Step 1 Click the on the Windows Start menu.Control Panel

Step 2 Double-click the icon on the Control Panel window.Administrative Tools

Step 3 Double-click the icon on the Administrative Tools window.Services

Step 4 On the Services window, select Universal Enterprise Controller in the list of services.

Step 5 In the Action menu, click:

Stop, to stop UEC for Windows.
Start, to start UEC for Windows.

Universal Agent 6.6.x User Guide

 / ua-66x-user366

Starting a zOS Component via Universal Control

Starting a z/OS Component via Universal Control
SYSIN Options
Components

Starting a z/OS Component via Universal Control

This example - located in the Universal Control library - starts a component on a remote system.SUNVSAMP

It assumes that Universal Control Server is installed on a remote system named . The user ID and password used in the example must bedallas
changed to a valid user ID and password for the remote system.

//jobname JOB CLASS=A,MSGCLASS=X
//STEP1 EXEC UCTLPRC
//SYSIN DD *
-start uems -cmdid "UEM-dallas" -host dallas -userid joe -pwd akkSdiq
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of to the started component."UEM-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process. The started component, in
fact, will execute with the Universal Broker's security context.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user367

Stopping a zOS Component via Universal Control

Stopping a zOS Component via Universal Control
SYSIN Options
Components

Stopping a zOS Component via Universal Control

This example - located in the Universal Control library - stops a component on a remote system.SUNVSAMP

It assumes that Universal Control Server is installed on a remote system named . The user ID and password used in the example must bedallas
changed to a valid user ID and password for the remote system.

//jobname JOB CLASS=A,MSGCLASS=X
//STEP1 EXEC UCTLPRC
//SYSIN DD *
-stop 999234133 -host dallas -userid joe -pwd akkSdiq
/*

The sample JCL is located in member .UCTSAM1

The JCL procedure is used to execute the stop request.UCTLPRC

The stop request is sent to a remote system named for execution.dallas

SYSIN Options

The SYSIN options used in this example are:

Option Description

-stop Component to stop.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the stop request.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user368

Starting a Windows Component via Universal Control

Starting a Windows Component via Universal Control
Command Line Options
Components

Starting a Windows Component via Universal Control

This example starts a component on a remote system.

uctl -start uems -cmdid "UEM-dallas" -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of to the started component."UEM-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process. The started component, in
fact, will execute with the Universal Broker's security context.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user369

Stopping a Windows Component via Universal Control

Stopping a Windows Component via Universal Control
Command Line Options
Components

Stopping a Windows Component via Universal Control

This example stops a component on a remote system.

uctl -stop 10739132 -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-stop Component to stop.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the stop request.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user370

Starting a UNIX Component via Universal Control

Starting a UNIX Component via Universal Control
Command Line Options
Components

Starting a UNIX Component via Universal Control

This example starts a component on a remote system.

uctl -start uems -cmdid "UEM-dallas" -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of to the started component."UEM-dallas"

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the Universal Control Server process. The started component, in
fact, will execute with the Universal Broker's security context.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user371

Stopping a UNIX Component via Universal Control

Stopping a UNIX Component via Universal Control
Command Line Options
Components

Stopping a UNIX Component via Universal Control

This example stops a component on a remote system.

uctl -stop 10739132 -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-stop Component to stop.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the stop request.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user372

Starting an IBM i Component via Universal Control

Starting an IBM i Component via Universal Control
Command Line Options
Components

Starting an IBM i Component via Universal Control

This example starts a component on a remote system.

STRUCT START(uems) CMDID('UEM-dallas') HOST(dallas) USERID(joe) PWD(akkSdiq)

Note
This example references the IBM i command by its untagged name. If you are using commands with tagged names to run
Universal Control, substitute the tagged names for the untagged names.

Command Line Options

The command line options used in this example are:

Option Description

START Component to start on the remote system.

CMDID Assigns a command identifier of 'UEM-dallas' to the started component.

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the Universal Control Server process. The started component, in
fact, will execute with the Universal Broker's security context.

PWD Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user373

Stopping an IBM i Component via Universal Control

Stopping an IBM i Component via Universal Control
Command Line Options
Components

Stopping an IBM i Component via Universal Control

This example stops a component on a remote system.

STRUCT STOP(10739132) HOST(dallas) USERID(joe) PWD(akkSdiq)

Note
This example references the IBM i command by its untagged name. If you are using commands with tagged names to run
Universal Control, substitute the tagged names for the untagged names.

Command Line Options

The command line options used in this example are:

Option Description

STOP Component on the remote system to stop.

HOST Directs the command to a computer with a host name of .dallas

USERID Remote user ID with which to execute the stop request. This must match the user ID originally used to
start the component.

PWD Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user374

Stopping an HP NonStop Component via Universal Control

Stopping an HP NonStop Component via Universal Control
Command Line Options
Components

Stopping an HP NonStop Component via Universal Control

This example stops a component on a remote system.

run uctl -stop 10739132 -host dallas -userid joe -pwd akkSdiq

Command Line Options

The command line options used in this example are:

Option Description

-stop ID of the component on the remote system to stop.

-host Directs the command to a computer with a host name of .dallas

-userid Remote user ID with which to execute the command. This must match the user ID originally used to start
the component.

-pwd Password for the user ID.

Components

Universal Control

https://www.stonebranch.com/confluence/display/UA66/STOP_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user375

Maintaining Universal Broker Definitions in UEC Database

Maintaining Universal Broker Definitions in UEC Database

Maintaining Broker Definitions in UEC Database - z/OS and Windows
Maintaining Broker Definitions in UEC Database - z/OS
Maintaining Broker Definitions in UEC Database - Windows

Note
All of the tasks illustrated on these pages are implemented with use of the component.UECLoad Utility

https://www.stonebranch.com/confluence/display/UA66/UECLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user376

Maintaining Broker Definitions in UEC Database - zOS and Windows

List All Defined Universal Brokers
Export a Specific, Defined Universal Broker
Export Events
Delete a Specific, Defined Universal Broker
Add Specific, Defined Universal Broker via deffile
Add Existing Universal Brokers to a Broker Group
Delete Existing Universal Brokers from a Broker Group

List All Defined Universal Brokers

The following illustrates the output of a user-friendly format of the Universal Brokers defined in the UEC database.

uecload -port 8778 -userid joe -pwd akkSdiq -list -broker_name "*"

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-list Output the described broker definition in a user-friendly format.

-broker_name "*" specifies all Universal Brokers.

Export a Specific, Defined Universal Broker

The following illustrates the output of a Universal Broker defined in the UEC database in a format suitable for use within a broker definition file.

uecload -port 8778 -userid joe -pwd akkSdiq -level audit -export -broker_name mybroker1

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/LIST+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_NAME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user377

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-level Level of messages written.

-export Output the described broker definition in a format to be used by a broker definition file.

-broker_name Unique name of the defined Universal Broker.

Export Events

The following illustrates the export of an events file into CSV format.

uecload -port 8778 -userid joe -pwd akkSdiq -level audit -export EVENTS -stime "*-5" -etime "*"
-format CSV -deffile events.csv

Note
The double quotation marks (") are required only with UNIX.

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-level Level of messages written.

-export Output the described broker definition in a format to be used by a broker definition file.

-stime Start time of exported data.

-etime End time of exported data.

-format Format of the output from the EVENTS action.-export

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_NAME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/END_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORMAT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user378

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

Delete a Specific, Defined Universal Broker

The following figure illustrates the deletion of a Universal Broker defined in the UEC database. Specifically, Universal Broker ismybroker1
deleted from use of UEC.

uecload -port 8778 -userid joe -pwd akkSdiq -level audit -delete -broker_name mybroker1

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-level Level of messages written.

-delete Delete Agent definitions from UEC.

-broker_name Unique name of the defined Universal Broker.

Add Specific, Defined Universal Broker via deffile

The following figure illustrates the addition of a group of Universal Broker definitions specified within a definition file in the UEC database. The
name represents the name of the created file.sample_deffile

uecload -port 8778 -userid joe -pwd akkSdiq -level audit -add -deffile sample_deffile

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DELETE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_NAME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user379

-pwd Password associated with .-userid

-level Level of messages written.

-add Add Agent definitions to UEC.

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

Definition File

The following figure is the definition file to be used for this example.

<BROKERDEF>
broker_name mybroker1
broker_host localhost
broker_port 7887
broker_desc "This is a description of broker1."
groups "Group 1, Group 2,Group 3"
<BROKERDEF>
<BROKERDEF>
broker_name mybroker2
broker_host 127.0.0.1
broker_port 7887
broker_desc "This is a description of broker2."
groups "Group 1, Group 2, Group 3"
<BROKERDEF>
<BROKERDEF>
broker_name mybroker3
broker_host 10.20.30.40
broker_port 7887
broker_desc "This is a description of broker3."
groups "Group 1, Group 2, Group 3"
<BROKERDEF>

Add Existing Universal Brokers to a Broker Group

The following illustrates the addition of existing Universal Brokers to a Broker group.

uecload -port 8778 -userid joe -pwd akkSdiq -add -deffile brokers -groups "Test 1, Test 2, Test 3"

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-add Add Agent definitions to specified group(s).

https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ADD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ADD+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user380

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

-groups Group(s) in which the defined Universal Broker is a member. The Universal Broker will be added to the
Group(s).

Delete Existing Universal Brokers from a Broker Group

The following illustrates the deletion of existing Universal Brokers from a Broker group.

uecload -port 8778 -userid joe -pwd akkSdiq -delete -deffile brokers -groups "Test 2, Test 3"

Command Line Options

The command line options used in this example are:

Option Description

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-delete Delete Agent definitions from specified group(s).

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

-groups Group(s) in which the defined Universal Broker is a member. The Universal Broker will be added to the
Group(s).

https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/GROUPS+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DELETE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/GROUPS+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user381

Maintaining Broker Definitions in UEC Database - zOS

Export Events into ARC Format for z/OS
SYSIN Options

Retrieve Archived File and Export into XML for z/OS
SYSIN Options

Export Events into ARC Format for z/OS

The following figure illustrates the export of events into an ARC format file on z/OS.

//STEP1 EXEC PGM=UECLOAD,PARM='ENVAR(TZ=EST5EDT)/'
//STEPLIB DD DISP=SHR,DSN=#HLQ.UNV.SUNVLOAD
//*
//UNVCONF DD DISP=SHR,DSN=#HLQ.UNV.UNVCONF(UECCFG00)
//*
//UNVTRACE DD SYSOUT=*
//ARCFILE DD DSN=APP.UEC.ARCH,
// DISP=(,CATLG),UNIT=3390,VOL=SER=STG001,
// SPACE=(CYL,(5,5)),
// DCB=(RECFM=FB,LRECL=200,BLKSIZE=8000)
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD *
 -export EVENTS -port 8778 -userid joe -pwd akkSdiq -level audit
 -stime 2008/04/29,10:00:00 -etime 2008/04/30,10:00:00
 -format ARC -deffile ARCFILE

SYSIN Options

The SYSIN options used in this example are:

Option Description

-export Output the described broker definition in a format to be used by a broker definition file.

-port TCP/IP port number of the UEC.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-level Level of messages written.

-stime Start time of exported data.

-etime End time of exported data.

-format Format of the output from the EVENTS action.-export

https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEC_PORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/END_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORMAT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user382

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

Retrieve Archived File and Export into XML for z/OS

The following figure illustrates the retrieval of an archived file and its export into XML on z/OS.

//STEP1 EXEC PGM=UECLOAD,PARM='ENVAR(TZ=EST5EDT)/'
//STEPLIB DD DISP=SHR,DSN=#HLQ.UNV.SUNVLOAD
//*
//UNVCONF DD DISP=SHR,DSN=#HLQ.UNV.UNVCONF(UECCFG00)
//OUTPUT DD SYSOUT=*
//UNVTRACE DD SYSOUT=*
//ARCFILE DD DSN=APP.UEC.ARCH,DISP=SHR
//DEFFILE DD DSN=APP.UEC.DEFFILE,DISP=SHR
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD *
-export EVENTS -arcfile ARCFILE -level audit
-format XML -deffile DEFFILE

SYSIN Options

The SYSIN options used in this example are:

Option Description

-export Output the described broker definition in a format to be used by a broker definition file.

-arcfile Archived file to retrieve for export.

-level Level of messages written.

-format Format of the output from the EVENTS action.-export

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ARCFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORMAT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user383

Maintaining Broker Definitions in UEC Database - Windows

Export Events into ARC Format for Windows
Command Line Options

Retrieve Archived File and Export into CSV for Windows
Command Line Options

Export Events into ARC Format for Windows

The following illustrates the export of events into an ARC format file on Windows.

uecload -export EVENTS -userid admin -pwd admin -format ARC -stime 2011/06/24 -etime 2011/07/24
-deffile c:\test.xml -arcfile c:\test.arc

Command Line Options

The command line options used in this example are:

Option Description

-export Output the described broker definition in a format to be used by a broker definition file.

-userid UEC user ID/account with which Brokers will be modified.

-pwd Password associated with .-userid

-format Format of the output from the EVENTS action.-export

-stime Start time of exported data.

-etime End time of exported data.

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

-arcfile Archived file to retrieve for export.

Retrieve Archived File and Export into CSV for Windows

The following illustrates the retrieval of an archived file and its export into CSV on Windows.

uecload -arcfile c:\test.arc -export EVENTS -stime 2011/10/07 -etime 2012/01/01 -level audit -format
CSV -deffile c:\test.csv

https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORMAT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/END_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ARCFILE+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user384

Note
-port, , and are not used, since no connection is made to UEC for this operation.-userid -pwd

Command Line Options

The command line options used in this example are:

Option Description

-arcfile Archived file to retrieve for export.

-export Output the described broker definition in a format to be used by a broker definition file.

-stime Start time of exported data.

-etime End time of exported data.

-level Level of messages written.

-format Format of the output from the EVENTS action.-export

-deffile File containing multiple broker definitions to be added or deleted in the UEC database.

https://www.stonebranch.com/confluence/display/UA66/ARCFILE+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/END_TIME+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORMAT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EXPORT+-+UECLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/BROKER_DEFFILE+-+UECLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user385

Event Monitoring and File Triggering

Introduction
Detailed Information

Introduction

The Event Monitoring and File Triggering feature of Universal Agent provides a consistent, platform-independent means of monitoring one or
more local or remote system events. It also can execute a system command or script based on the outcome of the events that it monitors.

It allows one or more system events to be monitored at any given time.

The methods available for defining an event and its associated actions are described in these pages.

Detailed Information

The following pages provide detailed information for Event Monitoring and File Triggering:

Event Monitoring and File Triggering - Universal Event Monitor
Event Monitoring and File Triggering - UEMLoad
Event Monitoring and File Triggering - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user386

Event Monitoring and File Triggering - Universal Event Monitor

Universal Event Monitor
High-Level Interaction of UEM Components

Storing Event Definitions and Event Handlers
Interaction of Universal Broker and UEM Server during UEMLoad Execution

Monitoring a Single Event
Interaction of Universal Broker and UEM Components during UEM Manager Execution

Monitoring Multiple Events
Interaction of Universal Broker and an Event-Driven UEM Server

Universal Event Monitor

Use the (UEM) Manager to monitor a single local or remote system event.Universal Event Monitor

The () may provide all of the parameters necessary to define a system event, or it may specify the ID of a database recordUEM Manager uem
that contains the event definition. In either case, the UEM Manager passes the event definition to a local or remote (), whichUEM Server uemsrv
uses that information to look for an occurrence of the event and test for its completion.

The UEM Manager may also provide all of the parameters necessary to define an event handler to the UEM Server, or it may specify the ID of a
database record that contains the event handler. An event handler is a command or script that UEM Server executes, based on the outcome of
the event occurrence.

A UEM Server may monitor several local system events simultaneously using records stored in its event definition database. An event-driven
 executes in this manner. An event-driven UEM Server does not require a UEM Manager to initiate a monitoring request, and youUEM Server

may configure it to start automatically whenever the local starts. During start-up, an event-driven UEM Server retrieves a list ofUniversal Broker
its assigned event definitions from the local Universal Broker. UEM Server monitors each event until it is no longer active, or until the event-driven
Server ends.

The utility () enables you to add event definition and event handler records to their respective databasesUEMLoad uemload

UEMLoad handles all event definition and event handler database management tasks, including adds, updates, deletes, and lists / exports.
UEMLoad forwards a database request to a UEM Server, which validates the information. The UEM Server then sends a request to a local
Universal Broker to apply the requested operation to the appropriate UEM database file.

High-Level Interaction of UEM Components

The following figure illustrates the interaction of the various components that make up Universal Event Monitor.

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user387

Storing Event Definitions and Event Handlers

Event definitions and event handlers can be stored in separate BerkeleyDB database files. When an event definition or event handler record is
added to its respective database, a unique identifier must be specified. Whenever UEM is required to monitor an event or execute an event
handler, only this ID needs to be referenced in order for UEM to obtain the corresponding event definition or event handler parameters.

UEMLoad initiates all UEM-related database requests. UEMLoad is a command line application that can be used to:

Add, update, and delete event definition and/or event handlers from their respective databases
List the entire contents of the event definition and/or event handler databases
List the parameters of a single event definition and/or event handler
Export the contents of the event definition and/or event handler databases to a file that can be used to re-initialize the database or
populate a new database on another system.

When UEMLoad is started, it sends a request to a Universal Broker running on the local system to start a UEM Server process. Because a client
application (that is, UEMLoad) initiates the request, the UEM Server that is started is a demand-driven Server.

UEMLoad forwards the database request to the UEM Server, which validates it and supplies default values for any required parameters (based
upon the type of request) that were not specified from the UEMLoad command line. When a set of complete, valid parameters is available, the
UEM Server sends a request to the Universal Broker, which is responsible for actually performing the requested database operation.

Universal Broker reports the success or failure of all database maintenance requests (add, update, delete) to the UEM Server. The UEM Server
then passes any errors back to UEMLoad.

For a database query request (list, export), Universal Broker will return the contents of each requested event definition or event handler record to
the UEM Server, which then is responsible for forwarding the records to the UEMLoad.

Universal Agent 6.6.x User Guide

 / ua-66x-user388

Interaction of Universal Broker and UEM Server during UEMLoad Execution

The following figure illustrates the interaction of the Universal Broker and the Universal Event Monitor Server components involved during the
execution of UEMLoad.

Monitoring a Single Event

A single event can be monitored using the UEM Manager. The UEM Manager provides a command line interface from which all parameters
required to define an event and its associated event handlers can be specified. In addition, the ID of a stored event definition or event handler can
be used as an alternative to specifying all parameters explicitly.

When a UEM Manager is started, it sends a request to the specified local or remote Universal Broker to start a UEM Server. Because the request
to start the UEM Server comes from a client application (that is, UEM Manager), it is a UEM Server that is started.demand-driven

The UEM Manager sends the monitoring request to the UEM Server. The UEM Server validates the request and supplies default values for any
required parameters that were not specified from the command line.

The UEM Manager command line provides for the assignment of an event handler to execute whenever the UEM Server sets the state of an
event occurrence or state of the event itself. The UEM Server then is responsible for executing the assigned event handlers which are appropriate
for the state change.

Universal Agent 6.6.x User Guide

 / ua-66x-user389

The UEM Server will monitor the event until either of the following conditions is satisfied:

Required number of expected event occurrences has been detected
Inactive date and time specified for the event definition elapses.

When either of these occurs, the event becomes inactive and the UEM Server stops monitoring it. The UEM Server then ends after informing the
UEM Manager of the result of the monitoring request. The UEM Manager will set its exit code based on this information. This is the default
behavior.

However, if an option was set in the UEM Manager instructing it to not wait on the UEM Server, the UEM Manager will end as soon as the UEM
Server acknowledges its receipt of a valid monitoring request.

Interaction of Universal Broker and UEM Components during UEM Manager Execution

The following figure illustrates the interaction of the Universal Broker and the Universal Event Monitor components involved when a UEM
Manager is executed.

Monitoring Multiple Events

An UEM Server can be used to monitor multiple events at the same time. An event-driven UEM Server uses the records stored in theevent-driven
event definition database file to identify the events it is responsible for monitoring.

Universal Agent 6.6.x User Guide

 / ua-66x-user390

An event-driven UEM Server can be executed automatically during start-up of a Universal Broker. While it requires no interaction from a UEM
client application, however, an event-driven UEM Server can be started at any time using .Universal Control

Unless it is stopped manually (using Universal Control), the event-driven UEM Server will continue to run as long as the Broker remains active.
When the Broker stops, it will send a stop request to the UEM Server, instructing it to shut itself down.

When an event-driven UEM Server starts, it sends a request to the Broker asking for all of the event definitions residing in the event definition
database that are assigned to that event-driven UEM Server. (This assignment was made when the event definition record was added to the
database with UEMLoad.) The Server checks the active and inactive dates and times of the event definitions that it receives. It then begins
monitoring the active events.

Each event definition provides for the assignment of an event handler to execute when an event occurrence is triggered or rejected. The
assignment of an event handler to execute when an event expires also is made within the event definition. The UEM Server is responsible for
executing appropriate event handlers based upon the states it sets for detected event occurrences and/or the event themselves.

Interaction of Universal Broker and an Event-Driven UEM Server

The following figure illustrates the interaction of the Universal Broker and an event-driven UEM Server.

https://www.stonebranch.com/confluence/display/UA66/Universal+Control

Universal Agent 6.6.x User Guide

 / ua-66x-user391

1.
2.
3.

Event Monitoring and File Triggering - UEMLoad

Overview
Controlling Database Access

Access via UEMLoad Utility
Universal Access Control List

Overview

A (UEM) Server has three database files that it can use during event processing:Universal Event Monitor

ueme.db stores event definitions.
uemh.db stores event handlers.
uems.db is a spool file that records all activity related to event monitoring.

The utility () manages the event definition and event handler database files. (For information on the spool database file, see UEMLoad uemload
.)Universal Event Monitor Server

UEMLoad can be used to:

Add, update, and delete event definitions and/or event handlers from their respective database files.
List the entire contents of the event definition and/or event handler database files.
List the parameters of a single event definition and/or event handler.
Export the contents of the event definition and/or event handler database files to a file that can be used to re-initialize the database or
populate a new database on another system.

By design, UEMLoad itself only can access local event definition and event handler database files. However, it is possible to store definition load
files in a single location (for example, a PDS on a z/OS system) and centrally manage their distribution to remote systems using Universal
Command.

When a definition load file is redirected from to , Universal Command will in turn forward the redirected to astdin Universal Command stdin
remote instance of UEMLoad. UEMLoad then behaves as though it were reading a local definition load file.

For detailed information on the event definition and event handler database files, see .UEMLoad Utility

Controlling Database Access

Universal Broker is primarily responsible for providing access to the Universal Agent databases.

However, there are utilities provided, including () and () that can be used for directUniversal Spool List uslist Universal Spool Remove uslrm
access to these databases. While these utilities should be used only following a recommendation from and with the assistance of Stonebranch,
Inc. Customer Support, they are documented in the .Universal Agent Utilities 6.6.x Reference Guide

To protect the database contents, operating system permissions on the database files themselves should be set so that only accounts with
super-user or administrative privileges have access to them.

For more information on the location, names, and contents of the UEM database files, see .UEM Server Database Files

Access via UEMLoad Utility

While the contents of UEM databases can be viewed using , it is recommended that all access be done using the Universal Spool List UEMLoad
utility.

The ability to remove event definition and event handler records is provided only with UEMLoad. cannot be used toUniversal Spool Remove
delete records from those databases.

Only UEMLoad can manage event definition and event handler databases that are local to the system on which the UEMLoad resides. To
process a request, the UEMLoad sends a message to the Universal Broker running on that system, instructing it to start a demand-driven UEM

. A control session is established between UEMLoad and the UEM Server, which provides for direct communication between the twoServer
processes.

It is over this session that UEMLoad sends the database request to the UEM Server, so that supplied values can be validated and defaults can be
provided for any values that were omitted. The UEM Server then forwards the request to the Universal Broker for actual application of the
changes to the appropriate database.

UEMLoad executes in the security context of the user account that started it. Since it is the Universal Broker that applies changes to the event
definition and event handler databases, any user with the authority to execute UEMLoad will effectively have access to secure resources. It is

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+List
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+Remove
https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+Utilities+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/UEM+Server+Database+Files
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+List
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Spool+Remove
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven
https://www.stonebranch.com/confluence/display/UA66/UEM+Servers+-+Demand-Driven+vs.+Event-Driven

Universal Agent 6.6.x User Guide

 / ua-66x-user392

therefore strongly recommended that the privileges on UEMLoad be set such that only those user accounts with super-user or administrative
privileges be allowed to execute it.

Universal Access Control List

Support for controlling access to the event definition and event handler databases also is provided by .UEMLoad

A type of is provided in order to grant or deny local user accounts the authority to execute UEMLoad. TheUniversal Access Control List (UACL)
type of database access (that is: add, update, delete, list, and export) allowed for each authorized user also can be defined.

A typical set of UACL entries intended to fully secure the event definition and event handler databases would include an entry for each user
authorized to execute UEMLoad. Then, the types of database access permitted for each of the users would be set in those entries. Finally, a
single UACL entry that denies access to all other accounts would be defined.

Whenever UEMLoad is executed, the entries in the UACL will be checked. If a match cannot be found which indicates that the user account that
started UEMLoad has the authority to access the database and perform the requested operation, the application will terminate with an error.

https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Access+Control+List+%28UACL%29

Universal Agent 6.6.x User Guide

 / ua-66x-user393

Event Monitoring and File Triggering - Examples

Introduction
Event Monitoring and File Triggering Examples - zOS
Event Monitoring and File Triggering Examples - Windows
Event Monitoring and File Triggering Examples - UNIX

Introduction

The examples provided here for Event Monitoring and File Triggering are specific to the operating systems supported by Universal Agent.

Links to detailed technical information on appropriate Universal Agent components are provided for each example.

Note
The examples utilizing Universal Event Monitor assume the following information:

UEM Server is installed on a remote system named .uemhost
Security option has been enabled in the UEM Server's configuration.

The values for the (-userid) and (-pwd) configuration options represent the user ID andUSER_ID USER_PASSWORD
password of a valid user account defined on .uemhost

Event Monitoring and File Triggering Examples - zOS

Starting an Event-Driven UEM Server - zOS
Refreshing an Event-Driven UEM Server - zOS
Using a Stored Event Handler Record - z/OS
Handling an Event with a Script - z/OS
Handling an Expired Event - z/OS
Continuation Character (-) in z/OS Handler Script
Continuation Character (+) in z/OS Handler Script
Continuation Characters (- and +) in z/OS Handler Script

Event Monitoring and File Triggering Examples - Windows

Using a Stored Event Handler Record - Windows
Execute Script for Triggered Event Occurrence - Windows
Handling an Expired Event - Windows
Add a Single Event Record - Windows
Add a SIngle Event Handler Record - Windows
List All Event Definitions - Windows
Export Event Definition and Handler Databases - Windows
List a Single Event Handler Record - Windows
List Event Definitions and Handlers Using Wildcards - Windows
Add Record(s) Using Definition File - Windows
Add Records Remotely Redirected from STDIN - Windows
Add Records Redirected from STDIN (for z/OS) - Windows
Definition File Format - Windows

Event Monitoring and File Triggering Examples - UNIX

Using a Stored Event Handler Record - UNIX
Execute Script for Triggered Event Occurrence - UNIX
Handling an Expired Event - UNIX
Add a Single Event Record - UNIX
Add a Single Event Handler Record - UNIX
List All Event Definitions - UNIX
Export Event Definition and Handler Databases - UNIX
List a Single Event Handler Record - UNIX
List Event Definitions and Handlers Using Wildcards - UNIX
Add Record(s) Using Definition File - UNIX

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user394

Add Record(s) Remotely Redirected from STDIN - UNIX
Add Record(s) Remotely Redirected from STDIN (for z/OS) - UNIX
Definition File Format - UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user395

1.
2.

Starting an Event-Driven UEM Server - zOS

Starting an Event-Driven UEM Server

There are two ways start an event-driven UEM Server () component:uems

Recycle the daemon (Universal Broker service under Windows).ubroker
Use Universal Control to start the , either locally on the server or from the mainframe.uems

In this example, is started from the mainframe.uems

(This job will fail if is running at the time of submit; usually is started by the Universal Broker when it is started.)uems uems

//STUEMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCTLPRC
//LOGONDD DD DISP=SHR,DSN=MFC1A.JCL.CNTRL(WINUSER)
//SYSIN DD *
-host 172.16.30.30 -encryptedfile LOGONDD -port 7887 -start uems
/*

Note
There is only one different command () between this example and .-start Refreshing an Event-Driven UEM Server

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host TCP/IP host name of the remote computer on which Universal Broker is running and accepting
connections.

-encrypted Encrypted command file.

-port TCP/IP port number of the remote computer on which Universal Broker is running and accepting
connections.

-start Instruction to a Universal Broker to start the UEM Server.

Components

Universal Control

Universal Event Monitor Server for Windows

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_PORT+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user396

Refreshing an Event-Driven UEM Server - zOS

Refreshing an Event-Driven UEM Server

In this example, RESUEMS will refresh the event-driven UEM Server () to secure changes made to the configuration file.uems

//RESUEMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
// JCLLIB ORDER=SBI.UNV.SUNVSAMP
//*
//STEP1 EXEC UCTLPRC
//LOGONDD DD DISP=SHR,DSN=MFC1A.JCL.CNTRL(WINUSER)
//SYSIN DD *
-host 172.16.30.30 -encryptedfile LOGONDD -port 7887 -refresh uems
/*

Note
There is only one different command () between this example and .-refresh Starting an Event-Driven UEM Server

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host TCP/IP host name of the remote computer on which Universal Broker is running and accepting
connections.

-encrypted Encrypted command file.

-port TCP/IP port number of the remote computer on which Universal Broker is running and accepting
connections.

-refresh Instruction to the Universal Broker to refresh the UEM Server configuration.

Components

Universal Control

Universal Event Monitor Server for Windows

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_PORT+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REFRESH_CMD+-+UCTL+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Control
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user397

Using a Stored Event Handler Record - zOS

Using a Stored Event Handler Record in z/OS

In this example, a demand-driven UEM Server will watch for the creation of a file called . Since no path is specified, it will look for thisuemtest.dat
file in the user's UEM Server working directory, as specified in the component definition for a demand-driven UEM Server.

If the file completes before the inactive time of elapses, the event occurrence will be set to the state, and UEM will execute the17:38 triggered
command or script contained in the event handler , which is the ID of a record in the event handler database.h001

If the file does not complete before the inactive time elapses, the event occurrence will be set to a state. Since no event handlerrejected
information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time of elapses, the event will be set to an uemtest.dat 17:38 expired
state.

Note
Because the inactive date value was omitted, UEM Manager will default the inactive date to the current date. Further, because
no handler information is given for the state, no further action will be taken by the UEM Server once the event expires.expired

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC UEMPRC
//SYSIN DD *
-event_type file
-filespec uemtest.dat
-wait yes
-inact_date_time ,17:38
-triggered
-handler_id h001
-host uemhost
-userid uemuser
-pwd uemusers_password
-max_count 1
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-wait Forces the UEM Manager to wait for the completion of the UEM Server.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

-handler_id ID of a stored event handler record.

https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user398

-host List of one or more hosts upon which a command may run.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-max_count Maximum number of event occurrences to monitor.

Components

Universal Event Monitor Manager for z/OS

Universal Event Monitor Server

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAX_OCCURRENCE_COUNT+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server

Universal Agent 6.6.x User Guide

 / ua-66x-user399

Handling an Event with a Script - zOS

Handling an Event With a Script in z/OS

In this example, a demand-driven UEM Server installed on a Windows machine will watch for the creation of a file called . Since nouemtest.dat
path is specified, it will look for this file in the user's UEM Server working directory.

A relative inactive date/time is used to instruct the UEM Server to monitor the event for minutes. If the file is detected and completes within that10
time, the event occurrence will be set to the state. The script statements contained within the DD statement then will betriggered MYSCRIPT
written to a temporary script file and executed by UEM Server.

The value specified by the option is appended to the command line constructed by UEM in order to execute the temporary script-handler_opts
file. This will cause the values , , and to be passed to the script. Further, any output generated by the script will be written to aparm1 parm2 parm3
file in the UEM Server working directory, .uemtest.log

If the file is detected, but does not complete before the inactive time elapses, the event occurrence will be set to a state. Since no eventrejected
handler information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time elapses, the event will be set to an state. Again,uemtest.dat expired
because no handler information is given for this state, no further action will be taken by the UEM Server.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC UEMPRC
//MYSCRIPT DD *
@echo off

:: Program variables
set parmCtr=1

:: Loop through parameter list

:: **** Start of loop ****
:BeginLoop
if ""%1""=="""" goto EndLoop

:DisplayParm
echo Parm %parmCtr%: %1

:: Shift the next parm
shift
set /a parmCtr+=1

:: Go back to the top
goto BeginLoop

:: **** End of loop ****
:EndLoop

//SYSIN DD *
 -event_type file
 -filespec uemtest.dat
 -inact_date_time +10
 -handler_opts "parm1 parm2 parm3 >uemtest.log 2>&1"
 -host uemhost
 -userid uemuser
 -pwd uemusers_password
 -triggered -script myscript
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-event_type Type of event to monitor.

https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user400

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-handler_opts Forces the UEM Manager to wait for the completion of the UEM Server.

-host List of one or more hosts upon which a command may run.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

-script Complete path to a local script file or DD statement that contains one or more system commands that
should be executed on behalf of the event handler.

Components

Universal Event Monitor Manager for z/OS

Universal Event Monitor Server for Windows

https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user401

Handling an Expired Event - zOS

Handling an Expired Event in z/OS

In this example, a demand-driven UEM Server installed on a UNIX system watches for the creation of a file called . The uemtest.dat -filespec
option contains no path information, so UEM Server looks for this file in uemuser's home directory.

A relative inactive date / time instructs the demand-driven Server to monitor the event for one (1) minute. If the UEM Server detects the file, and
the file completes within that time, UEM sets the event occurrence to the state. Since the command options contain no event handlertriggered
information for a occurrence, the UEM Server simply renames the file (by default). UEM Server then makes the event inactive, andtriggered
ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM sets the occurrence to the rejected state. Since the
command options contain no event handler information for a rejected occurrence, the UEM Server leaves the file as-is and takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time elapses, it sets the event to the expired state. When this
happens, the UEM Server executes the command specified by the parameter of the option. In this example, UEM executes the -cmd -expired ls

 command.-alR /home

Note
In this example, the option is followed by the option, which redirects the output of the -expired -options "ls -alR /home"
command to a file in uemuser's home directory called .uemtest.log

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//STEP1 EXEC UEMPRC
//SYSIN DD *
-event_type file
-filespec uemtest.dat
-inact_date_time +1
-expired -cmd "ls -alR /home" -options ">uemtest.log 2>&1"
-host uemhost
-userid uemuser
-pwd uemusers_password
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-expired Event state that, when encountered, will result in the execution of the associated event handler.

-cmd Complete path to an application file or remote script that should be executed on behalf of the event
handler.

https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user402

-host List of one or more hosts upon which a command may run.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

Components

Universal Event Monitor Manager for z/OS

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user403

Continuation Character (-) in zOS Handler Script

Continuation Character - in z/OS Handler Script

Continuation characters (and) are useful when you want to execute a script line that is longer than your available z/OS character space.- +

The continuation character will preserve trailing spaces in your line.-

The continuation character will not preserve trailing spaces in your line.+

The following z/OS handler script:

begin_script
 stmt "ls -a - <---- Notice the continuation character "-"
 >dirfile"
 end_script

Will produce the following output when loaded to the uemh.db:

Handler ID...................: MFCTRIGGER_1
Handler Type.................: SCRIPT
Max Acceptable Return Code...: 0
Encrypted User File..........:
User ID......................: mfc1a
Script statements:
 ls -a >dirfile
 Script Type..................: bat
Command Line Options.........:
Last Modified On.............: 06/11/11 10:32:31 AM
Last Modified By.............: mfc1a

Components

Universal Event Monitor Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user404

Continuation Character (+) in zOS Handler Script

Continuation Character + in z/OS Handler Script

Continuation characters (and) are useful when you want to execute a script line that is longer than your available z/OS character space.- +

The continuation character will preserve trailing spaces in your line.-

The continuation character will not preserve trailing spaces in your line.+

The following z/OS handler script:

begin_script
 stmt "ls -a >dir + <---- Notice the continuation character "+"
 file"
 end_script

Will produce the following output when loaded to the uemh.db:

Handler ID...................: MFCTRIGGER_1
Handler Type.................: SCRIPT
Max Acceptable Return Code...: 0
Encrypted User File..........:
User ID......................: mfc1a
Script statements:
 ls -a >dirfile
Script Type..................: bat
Command Line Options.........:
Last Modified On.............: 06/11/11 11:46:32 AM
Last Modified By.............: mfc1a

Components

Universal Event Monitor Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user405

Continuation Characters (- and +) in zOS Handler Script

Continuation Characters - and + in z/OS Handler Script

Continuation characters (and) are useful when you want to execute a script line that is longer than your available z/OS character space. The - + -
character will preserve trailing spaces in your line. The character will not preserve trailing spaces in your line.+

This example shows the use of to concatenate a command line or a word within a z/OS script without a space as the use of to continue a line+ -
of script where a space is required within the same z/OS handler script.

The following z/OS handler script:

 begin_script
 stmt "ls -a >dir +
 file"
 stmt "uemFName=`basename \u201c$UEMORIGFILE\u201d | sed 's/\(.*\)+
 \.\(.*$\)/\1/'`"
 stmt "fname=$uemFName.$dt.$tm.$pid.txt"
 stmt " ls -al >dir+
 data"
 stmt "ls -a -
 >new+
data"
 end_script

Will produce the following output when loaded to the uemh.db:

Handler ID...................: MFCTRIGGER_1
Handler Type.................: SCRIPT
Max Acceptable Return Code...: 0
Encrypted User File..........:
User ID......................: mfc1a
Script statements:
 ls -a >dirfile
 uemFName=`basename \u201c$UEMORIGFILE\u201d | sed 's/\(.*\)\.\(.*\)/\1/'`
 fname=$uemFName.$dt.$tm.$pid.txt
 ls -al >dirdata
 ls -a >newdata
Script Type..................: bat
Command Line Options.........:
Last Modified On.............: 06/11/1 01:25:20 PM
Last Modified By.............: mfc1a

Components

Universal Event Monitor Manager for z/OS

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+zOS

Universal Agent 6.6.x User Guide

 / ua-66x-user406

Using a Stored Event Handler Record - Windows

Using a Stored Event Handler Record in Windows

In this example, a demand-driven UEM Server will watch for the creation of a file called in the directory.uemtest.dat C:\UEM Files

If the file completes before the inactive time of elapses, the event occurrence will be set to the state, and UEM will execute the20:00 triggered
command or script contained in the event handler , which is the ID of a record in the event handler database.h001

If the file does not complete before the inactive time elapses, the event occurrence will be set to a rejected state. Since no event handler
information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time of elapses, the event will be setC:\UEM Files\uemtest.dat 20:00
to an state.expired

Note
Because the inactive date value was omitted, UEM Manager will default the inactive date to the current date. Further, because
no handler information is given for the state, no further action will be taken by the UEM Server once the event expires.expired

uem -host uemhost -event_type file
-filespec "C:\UEM Files\uemtest.dat"
-inact_date_time ,20:00 -userid uemuser -pwd uemusers_password
-triggered -handler_id h001

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

-handler_id ID of a stored event handler record.

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user407

Components

Universal Event Monitor Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user408

Execute Script for Triggered Event Occurrence - Windows

Executing a Script for a Triggered Event Occurrence in Windows
Command Line Options
Contents of Sample Script File
Components

Executing a Script for a Triggered Event Occurrence in Windows

In this example, a demand-driven UEM Server installed on a UNIX machine will watch for the creation of a file called . Since no pathuemtest.dat
is specified, it will look for this file in the user's home directory.

A relative inactive date / time is used to instruct the UEM Server to monitor the event for minutes. If the file is detected and completes within10
that time, the event occurrence will be set to the state. The script statements contained within the local file triggered

 then will be written to a temporary script file on and executed by UEM Server.C:\UEMScripts\h_001.txt uemhost

The value specified by the option is appended to the command line constructed by UEM to execute the temporary script file. This-handler_opts
will cause the values , , and to be passed to the script. Any output generated by the script will be written to a file in the UEMparm1 parm2 parm3
Server working directory called .uemtest.log

If the file is detected, but does not complete before the inactive time elapses, the event occurrence will be set to a state. Since no eventrejected
handler information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time elapses, the event will be set to an state. Again,uemtest.dat expired
because no handler information is given for this state, no further action will be taken by the UEM Server.

uem -host uemhost -event_type file -filespec uemtest.dat
-inact_date_time +10 -userid uemuser -pwd uemusers_password
-triggered -script C:\UEMScripts\h_001.txt
-handler_opts "parm1 parm2 parm3 >uemtest.log 2>&1"

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user409

-script Complete path to a local script file that contains one or more system commands that should be executed
on behalf of the event handler.

-handler_opts Options that are passed as command line arguments to any process executed on behalf of an event
handler.

Contents of Sample Script File

The following figure illustrates the contents of the file.C:\UEMScripts\h_001.txt

#!/bin/sh

Sample script h_001.txt

argNum=1

Display each command line argument.
while ["$1" != ""]
do
echo Parm $argNum: $1
shift
argNum=`expr $argNum + 1`
done

Components

Universal Event Monitor Manager for Windows

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user410

Handling an Expired Event - Windows

Handling an Expired Event in Windows

In this example, a demand-driven UEM Server installed on a UNIX system watches for the creation of a file called in the filesuemtest.dat /uem
directory.

Note
The space that precedes the path name specified in the option is necessary to accommodate parsing requirements for-filespec
command options in Windows (see the UEM Manager option).FILE_SPECIFICATION

A relative inactive date / time instructs the demand-driven Server to monitor the event for one (1) minute. If the UEM Server detects the file, and
the file completes within that time, UEM sets the event occurrence to the triggered state. Since the command options contain no event handler
information for a triggered occurrence, the UEM Server simply renames the file (by default). UEM Server then makes the event inactive, and
ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM sets the occurrence to the rejected state. Since the
command options contain no event handler information for a rejected occurrence, the UEM Server leaves the file as-is and takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time elapses, it sets the event to the expired state. When this
happens, the UEM Server executes the command specified by the parameter of the option. In this example, UEM executes the -cmd -expired 'ls

 command.-alR /uem files'

Note
In this example, the option is followed by the option, which redirects the output of the -expired -options "ls -alR '/uemfiles'"
command to a file in uemuser's home directory called .uemtest.log

uem -host uemhost -event_type file
-userid uemuser -pwd uemusers_password
-filespec " /uem files/uemtest.dat"
-inact_date_time +1
-expired -cmd "ls -alR '/uem files'" -options ">uemtest.log 2>&1"

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user411

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-expired Event state that, when encountered, will result in the execution of the associated event handler.

-cmd Complete path to an application file or remote script that should be executed on behalf of the event
handler.

-options Values that are passed as command line arguments to a particular handler specified for a given
.EVENT_STATE

Components

Universal Event Monitor Manager for Windows

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user412

Add a Single Event Record - Windows

Adding a Single Event Record for Windows

In this example, a single event record identified as is added to the local event definition database.payrollfile

This event definition will instruct a UEM Server, which resides on the local (UNIX) system, to detect all occurrences of the file ./tmp/payroll.dly
Whenever UEM detects this file and sets the associated event occurrence to a state, UEM will execute the command or scripttriggered
contained in the stored event handler record that has an ID of . If this event handler record does not exist at the time the event occurrencelistdir
is triggered, an error will be issued by UEM.

When the record has been added to the event definition database, it is immediately available for use by a demand-driven UEM Server. In other
words, there is no restriction with respect to how quickly a UEM Manager can reference the stored event definition after UEMLoad adds it to the
database.

Because no values for the UEMLoad , , and options were specified, the defaultEVENT_STATE ACTIVE_DATE_TIME INACTIVE_DATE_TIME
value of , the current date and time, and 2038.01.16,23:59, respectively, are used. This means the event will be monitored as soon as theenable
event definition is assigned to an event-driven UEM Server. In this case, the event definition is assigned to the UEM Server component with an ID
of (the default).uems

If this UEM Server component is active when the record is added, this assignment will occur the next time that the UEM Server refreshes its
configuration. If the UEM Server component is not active, the assignment is made the next time it is started.

uemload -add -event_id payrollfile -event_type file
-filespec "/tmp/payroll.dly" -triggered_id listdir

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-event_id Identifier that uniquely identifies an event definition record.

-event_type Type of system event represented by the event definition record.

-filespec Name of a file to monitor.

-triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

Components

UEMLoad Utility for Windows

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user413

Add a SIngle Event Handler Record - Windows

Adding a Single Event Handler Record for Windows

In this example, a single handler record identified, , is added to the local event handler database.listdir

Whenever a UEM Server invokes this event handler, a handler process is started that executes the command , which lists the contents of thels -al
current directory on a UNIX system. The file, referenced by the option, is a Universal Encrypted file. This fileencrypted.file -encryptedfile
contains a user ID and, optionally, a password that is used by an event-driven UEM Server to establish a security context in which to execute the
handler process (provided the option is enabled in the UEM Server's configuration).USER_SECURITY

Once this record is added, it is available immediately to both demand-driven and event-driven UEM Servers.

Note
If a demand-driven UEM Server uses this handler, any user information specified in is overridden by the userencrypted.file
information provided by the UEM Manager's command options.

uemload -add -handler_id listdir -encryptedfile encrypted.file
-cmd "ls -al"

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-handler_id Identifier that uniquely identifies an event handler record.

-encryptedfile Complete path to a file encrypted with Universal Encrypt.

-cmd Command to execute on behalf of the event handler.

Components

UEMLoad Utility for Windows

Universal Event Monitor Server for UNIX

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/USER_SECURITY+-+UEM+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_FILE_ENCRYPTED+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user414

List All Event Definitions - Windows

Listing All Event Definitions for Windows

In this Windows example, the option is used to dump all records in the event definition database and display them to .-list stdout

If the request were executed on a UNIX system, the asterisk () would need to be escaped or enclosed within quotes (that is: or ,* * "*"
respectively).

uemload -list -event_id *

Note
The default behavior when listing or exporting records, when neither an event ID nor a handler ID is specified, is to return all
records. However, in this example, even though no handler ID was specified, no event handler records are returned.

Conversely, if just a handler ID had been specified, no event definition records would be returned. Supplying an event ID and/or
handler ID serves as a filter which causes to return just those records specifically requested.uemload

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-event_id Identifier that uniquely identifies an event definition record.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user415

Export Event Definition and Handler Databases - Windows

Exporting the Event Definition and Event Handler Databases for Windows

In this example, the option is used to dump all records in the event definition and event handler databases to a text file in the current-export
directory named . This file is a UEMLoad definition file that also can be used to add or update records in the event definition and/oruemout.txt
event handler databases.

The contents of the file resembles the example shown in .Definition File Format - Windows

-export -deffile uemout.txt

Note
No event ID or handler ID is specified from the command line. If neither parameter is specified when listing or exporting records,
the default behavior is to retrieve all database records.

Command Line Options

The command line options used in this example are:

Option Description

-export Dumps the contents of the specified event definition and/or event handler records to a text file that can be
used as input to a subsequent run of the UEMLoad utility.

-deffile Name of a file that contains event definition and/or event handler parameters.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user416

List a Single Event Handler Record - Windows

List a Single Event Handler Record for Windows

In this example, the option is used to display the contents of an event handler record with an ID of .-list dirlist

uemload -list -handler_id dirlist

The following figure illustrates sample output for this command. (The values shown are those that could be expected if the record were added
using the command shown in .)Add a SIngle Event Handler Record - Windows

In this specific instance, the user ID contained in (from) is , and the recordencrypted.file Add a SIngle Event Handler Record - Windows sparkie
was added by the user account with an ID of .sbuser

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-handler_id Identifier that uniquely identifies an event handler record.

Sample List Output

UNV3659I Connecting to local broker on port 7887.
UNV3406I Universal Event Monitor Server component 1117035117 started.
UNV3666I Load request started at 11:32:45 AM 05/25/2011.

Event Handler(s):
=================
Handler ID.................: dirlist
Max Acceptable Return Code.: 0
User ID....................: sparkie
Command....................: ls -al
Last Modified On...........: 05/25/2011 11:32:06 AM
Last Modified By...........: sbuser

UNV3667I Universal Event Monitor Load is ending successfully with exit code 0.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user417

List Event Definitions and Handlers Using Wildcards - Windows

Listing Multiple Event Definitions and Event Handlers Using Wildcards for Windows

In this example, the wildcards supported by are demonstrated.uemload

Wildcards can be used to select event definitions and event handlers whose respective IDs match the specified pattern.

Asterisk () can be used to match 0 or more characters.*
Question mark () can be used to match any single character.?

All event definitions whose IDs start with the characters are returned by the command below. In addition, all event handlers whose IDsevent
begin with and end with any two characters are selected.handler0

uemload -list -event_id event* -handler_id handler0??

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-event_id Identifier that uniquely identifies an event definition record.

-handler_id Identifier that uniquely identifies an event handler record.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user418

Add Record(s) Using Definition File - Windows

Add Record(s) Using a Definition File for Windows

In this example, a text file named is used to add one or more records to the UEM databases. The contents of the file resemble thoseuemadd.txt
shown in .Definition File Format - Windows

A definition file allows multiple records to be added to the event definition and/or event handler databases at the same time. When no definition
file is used, only a single record can be added to the database(s).

uemload -add -deffile uemadd.txt

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-deffile Name of a file that contains event definition and/or event handler parameters.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user419

Add Records Remotely Redirected from STDIN - Windows

Add Record(s) Remotely, Using a Definition File Redirected from STDIN for Windows

In this example, a definition load file named is used to add one or more records to the databases of a remote UEM Server. Theuemadd.txt
contents of the file resemble those shown in .Definition File Format - Windows

Universal Command is used to execute UEMLoad on the remote UEM Server's system. The definition load file is redirected from standard input (
), which eliminates the step of copying the load file to the remote system before executing UEMLoad.stdin

ucmd -cmd "uemload -add" -host rmthost -encryptedfile rmtacctinfo.enc <uemadd.txt

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-host List of one or more hosts upon which a command may run.

-encryptedfile Encrypted command file.

Components

UEMLoad Utility for Windows

Universal Command Manager for Windows

Universal Event Monitor Server

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server

Universal Agent 6.6.x User Guide

 / ua-66x-user420

Add Records Redirected from STDIN (for zOS) - Windows

Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for Windows

In this example, a definition load file named is used to add one or more records to the databases of a remote UEMMY.UEM.DATA(UEMDEF)
Server. The contents of the file resemble those shown in .Definition File Format - Windows

Universal Command is used to execute UEMLoad on the remote UEM Server's system. It redirects standard input (stdin) from a data set allocated
to the UNVIN ddname. This eliminates the step of copying the data set to the remote system before executing UEMLoad.

//STEP1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=MY.UEM.DATA(UEMDEF)
//SYSIN DD *
-host dallas
-userid joe
-pwd ahzidaeh
-cmd "uemload -add"

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-cmd Remote command to execute.

-add Writes one or more new event definition and/or event handler records to the appropriate database.

Components

UEMLoad Utility for Windows

Universal Command Manager for zOS

Universal Event Monitor Server

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server

Universal Agent 6.6.x User Guide

 / ua-66x-user421

Definition File Format - Windows

Definition File Format for Windows

The format of the definition load file for events and event handlers follows the keyword / value-pair convention used for Universal Agent
configuration files. However, because more than one definition can be specified in a load file, some additional conventions are used.

The and keywords are used to mark the beginning and end, respectively, of each event definition entry.begin_event end_event
The and keywords are used to mark the beginning and end, respectively, of each event handler entry.begin_handler end_handler
The and keywords are used to mark the beginning and end, respectively, of any user script contained in thebegin_script end_script
definition load file.

Lines that belong to the script must begin with the keyword. Long values that have to be split across lines can be done so using the stmt stmt +
and line continuation characters (as described in). These lines will be accepted verbatim, and no script syntax- Configuration File Syntax
validation will be done. Lines will continue to be added to the script until an , , , or keywordend_script end_handler begin_handler begin_event
is read, or the end of the file is reached.

If a parameter's value contains spaces, it must be enclosed in double () quotation marks."

If quotes are to be saved as part of the parameter's value, use extra double () quotation marks to escape the quotes (for example, " optname
)."optval1 ""optval2 optval2a"" optval3"

The keyword can be used in lieu of a block, in which case the contents of the specified file will be written to thescript begin_script/end_script
event handler.

A sample definition file for Windows is shown in the following figure.

Universal Agent 6.6.x User Guide

 / ua-66x-user422

Indented lines are for illustration only. Leading spaces are
ignored by UEMLoad. Defaults will be used for any omitted
values.

Start of parameters for an event definition with an ID of
"win_event_sample".

begin_event
 event_id win_event_sample
 event_type FILE
 comp_name uems
 state enable
 inact_date_time 2011.12.31,23:59
 triggered_id script_sample
 filespec "uem*.dat"
 rename_file yes
 rename_filespec "$(compname).$(compid).$(date).$(seqno)"
end_event

End of parameters for event definition "win_event_sample".

Start of parameters for an event handler with an ID of
"win_script_sample".

begin_handler
 handler_id script_sample
 handler_type SCRIPT
 maxrc 0
 userid uemuser
 begin_script
 stmt "@echo off"
 stmt ""
 stmt "dir /-p/o/s ""C:\Program Files"""
 end_script
 script_type bat
end_handler

End of parameters for event handler "win_script_sample".

Start of parameters for an event definition with an ID of
"win_cmd_sample".

begin_handler
 handler_id cmd_sample
 maxrc 0
 userid uemuser
 cmd "C:\Documents and Settings\uemuser\TEST.BAT"
end_handler

End of parameters for event definition "win_cmd_sample".

Definition File Options

The Definition File options used in this example are:

Option Description

event_id Identifier that uniquely identifies an event definition record.

event_type Type of system event represented by the event definition record.

comp_name Event-driven UEM Server responsible for monitoring the event.

state Event definitions that should be processed or ignored by UEM.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user423

inact_date_time Date and time at which UEM will stop monitoring an event definition.

triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

filespec Name of a file to monitor.

rename_file Specification for whether or not UEM should rename a monitored file when an event occurrence is
triggered.

rename_filespec Specification for how a file should be renamed when an event occurrence is triggered.

handler_id Identifier that uniquely identifies an event handler record.

handler_type Type of process executed for the event handler, based on the contents of the and USER_COMMAND
 parameters.USER_SCRIPT

maxrc Highest value with which a handler can exit to still be considered as having executed successfully.

userid ID of a user account in whose security context the handler process will be executed.

script_type Type of script statements contained in the action field of the event handler record.

cmd Command to execute on behalf of the event handler.

Components

UEMLoad Utility for Windows

https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user424

Using a Stored Event Handler Record - UNIX

Using a Stored Event Handler Record in UNIX

In this example, a UEM Server (installed on a Windows system) will watch for the creation of a file called in the uemtest.dat C:\UEM Files
directory.

If the file completes before the inactive time of elapses, the event occurrence will be set to the state. UEM then will execute the08:00 triggered
command or script contained in the event handler , which is the ID of a record in the event handler database.h001

If the file does not complete before the inactive time elapses, the event occurrence will be set to a state. Since no event handlerrejected
information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time of elapses, the event will be setC:\UEM Files\uemtest.dat 08:00
to an state.expired

Note
Because the inactive date value was omitted, UEM Manager will default the inactive date to the current date. Again, because no
handler information is given for the state, no further action will be taken by the UEM Server once the event expires.expired

uem -host uemhost -event_type file
-filespec "C:\UEM Files\uemtest.dat"
-inact_date_time ,08:00 -userid uemuser -pwd uemusers_password
-triggered -handler_id h001

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

-handler_id ID of a stored event handler record.

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user425

Components

Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for Windows

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user426

Execute Script for Triggered Event Occurrence - UNIX

Executing a Script for a Triggered Event Occurrence in UNIX
Command Line Options
Contents of Sample Script File
Components

Executing a Script for a Triggered Event Occurrence in UNIX

In this example, a UEM Server installed on a Windows machine will watch for the creation of a file called . Since no path is specified,uemtest.dat
it will look for this file in the user's UEM Server working directory.

A relative inactive date/time is used to instruct the UEM Server to monitor the event for minutes. If the file is detected and completes within that10
time, the event occurrence will be set to the state. The script statements contained within the local file thentriggered /UEMScripts/h_001.txt
will be written to a temporary script file on and executed by the UEM Server. The value specified by the option isuemhost -handler_opts
appended to the command line constructed by UEM to execute the temporary script file. This will cause the values , , and toparm1 parm2 parm3
be passed to the script. Any output generated by the script will be written to a file in the UEM Server working directory called .uemtest.log

If the file is detected, but does not complete before the inactive time elapses, the event occurrence will be set to a state. Since no eventrejected
handler information is provided for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of before the inactive time elapses, the event will be set to an state. Again,uemtest.dat expired
because no handler information is given for this state, no further action will be taken by the UEM Server.

uem -host uemhost -event_type file -filespec uemtest.dat
-inact_date_time +10 -userid uemuser -pwd uemusers_password
-triggered -script /UEMScripts/h_001.txt
-handler_opts "parm1 parm2 parm3 >uemtest.log 2>&1"

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-triggered Event state that, when encountered, will result in the execution of the associated event handler.

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user427

-script Complete path to a local script file that contains one or more system commands that should be executed
on behalf of the event handler.

-handler_opts Options that are passed as command line arguments to any process executed on behalf of an event
handler.

Contents of Sample Script File

The following figure illustrates the contents of the file./UEMScripts/h_001.txt

:: Sample script h_001.txt
@echo off

:: Program variables
set parmCtr=1

:: Loop through parameter list

:: **** Start of loop ****
:BeginLoop
if ""%1""=="""" goto EndLoop

:DisplayParm
echo Parm %parmCtr%: %1

:: Shift the next parm
shift
set /a parmCtr+=1

:: Go back to the top
goto BeginLoop

:: **** End of loop ****
:EndLoop

Components

Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for Windows

https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user428

Handling an Expired Event - UNIX

Handling an Expired Event in UNIX

In this example, a demand-driven UEM Server (installed on a different UNIX system) watches for the creation of a file called . The uemtest.dat
 option contains no path information, so UEM Server looks for this file in the home directory of .-filespec uemuser

A relative inactive date / time instructs the demand-driven Server to monitor the event for one (1) minute. If the UEM Server detects the file, and
the file completes within that time, UEM sets the event occurrence to the triggered state. Since the command options contain no event handler
information for a triggered occurrence, the UEM Server simply renames the file (by default). UEM Server then makes the event inactive, and
ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM sets the occurrence to the rejected state. Since the
command options contain no event handler information for a rejected occurrence, the UEM Server leaves the file as-is and takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time elapses, it sets the event to the expired state. When this
happens, the UEM Server executes the command specified by the option corresponding to the option. In this example, UEM-cmd -expired
executes the command.'ls -alR /uem files'

Note
In this example, the option is followed by the option, which redirects the output of the -expired -options 'ls -alR "/uemfiles"'
command to a file in uemuser's home directory called .uemtest.log

uem -host uemhost -event_type file -filespec uemtest.dat
-userid uemuser -pwd uemusers_password
-inact_date_time +1
-expired -cmd 'ls -alR "/uem files"' -options '>uemtest.log 2>&1'

Command Line Options

The command line options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-event_type Type of event to monitor.

-filespec Name or pattern of the file whose creation should be detected and tracked for completion.

-userid ID of a remote user account that the UEM Server uses to establish the security context in which event
monitoring is performed.

-pwd Password associated with .-userid

-inact_date_time Date and time at which the state of the monitored event should be made inactive.

-expired Event state that, when encountered, will result in the execution of the associated event handler.

https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user429

-cmd Complete path to an application file or remote script that should be executed on behalf of the event
handler.

-options Values that are passed as command line arguments to a particular handler specified for a given
.EVENT_STATE

Components

Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPTIONS+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user430

Add a Single Event Record - UNIX

Adding a Single Event Record for UNIX

In this example, a single event record identified as is added to the local event definition database.payrollfile

This event definition will instruct a UEM Server, which resides on the local (UNIX) system, to detect all occurrences of the file
. Whenever UEM detects this file and sets the associated event occurrence to a state, UEM will execute the/tmp/payroll.dly triggered

command or script contained in the stored event handler record that has an ID of . If this event handler record does not exist at the time thelistdir
event occurrence is triggered, an error will be issued by UEM.

When the record has been added to the event definition database, it is immediately available for use by a demand-driven UEM Server. In other
words, there is no restriction with respect to how quickly a UEM Manager can reference the stored event definition after UEMLoad adds it to the
database.

Because no values for the UEMLoad , , and options were specified, the defaultEVENT_STATE ACTIVE_DATE_TIME INACTIVE_DATE_TIME
values of , the current date and time, and 2038.01.16,23:59, respectively, are used. This means the event will be monitored as soon as theenable
event definition is assigned to an event-driven UEM Server. In this case, the event definition is assigned to the UEM Server component with an ID
of (the default).uems

If this UEM Server component is active when the record is added, this assignment will occur the next time that the UEM Server refreshes its
configuration. If the UEM Server component is not active, the assignment is made the next time it is started.

uemload -add -event_id payrollfile -event_type file
-filespec "/tmp/payroll.dly" -triggered_id listdir

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-event_id Identifier that uniquely identifies an event definition record.

-event_type Type of system event represented by the event definition record.

-filespec Name of a file to monitor.

-triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

Components

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user431

Add a Single Event Handler Record - UNIX

Adding a Single Event Handler Record for UNIX

In this example, a single handler record identified, , is added to the local event handler database.listdir

Whenever a UEM Server invokes this event handler, a handler process is started that executes the command , which lists the contents of thels -al
current directory on a UNIX system. The file, referenced by the option, is a Universal Encrypted file. This fileencrypted.file -encryptedfile
contains a user ID and, optionally, a password that is used by an event-driven UEM Server to establish a security context in which to execute the
handler process (provided the option is enabled in the UEM Server configuration).USER_SECURITY

Once this record is added, it is available immediately to both demand-driven and event-driven UEM Servers.

Note
If a demand-driven UEM Server uses this handler, any user information specified in is overridden by the userencrypted.file
information provided by the UEM Manager's command options.

uemload -add -handler_id listdir -encryptedfile encrypted.file
-cmd "ls -al"

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-handler_id Identifier that uniquely identifies an event handler record.

-encryptedfile Complete path to a file encrypted with Universal Encrypt.

-cmd Command to execute on behalf of the event handler.

Components

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

Universal Encrypt

https://www.stonebranch.com/confluence/display/UA66/USER_SECURITY+-+UEM+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_FILE_ENCRYPTED+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/Universal+Encrypt

Universal Agent 6.6.x User Guide

 / ua-66x-user432

List All Event Definitions - UNIX

Listing All Event Definitions for UNIX

In this example, the option is used to dump all records in the event definition database and display them to .-list stdout

The asterisk () must be escaped or enclosed in double quotation marks (that is: or , respectively).* * "*"

uemload -list -event_id *

Note
The default behavior when listing or exporting records, when neither an event ID nor a handler ID is specified, is to return all
records. However, in this example above, even though no handler ID was specified, no event handler records are returned.

Conversely, if just a handler ID had been specified, no event definition records would be returned. Supplying an event ID and/or
handler ID serves as a filter which causes to return just those records specifically requested.uemload

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-event_id Identifier that uniquely identifies an event definition record.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user433

List a Single Event Handler Record - UNIX

List a Single Event Handler Record for UNIX

In this example, the option is used to display the contents of an event handler record with an ID of .-list dirlist

uemload -list -handler_id dirlist

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-handler_id Identifier that uniquely identifies an event handler record.

Sample List Output

The following figure illustrates sample output for this command. (The values shown are those that could be expected if the record were added
using the command shown in .)Add a Single Event Handler Record - UNIX

In this specific instance, the user ID contained in (from) is , and the record wasencrypted.file Add a Single Event Handler Record - UNIX sparkie
added by the user account with an ID of .sbuser

UNV3659I Connecting to local broker on port 7887.
UNV3406I Universal Event Monitor Server component 1117035117 started.
UNV3666I Load request started at 11:32:04 AM 05/25/2011.

Event Handler(s):
=================
Handler ID.................: dirlist
Max Acceptable Return Code.: 0
User ID....................: sparkie
Command....................: ls -al
Last Modified On...........: 05/25/2011 11:32:06 AM
Last Modified By...........: sbuser

UNV3667I Universal Event Monitor Load is ending successfully with exit code 0.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user434

Export Event Definition and Handler Databases - UNIX

Exporting the Event Definition and Event Handler Databases for UNIX

In this example, the option is used to dump all records in the event definition and event handler databases to a text file in the current-export
directory named . This file is a UEMLoad definition file that also can be used to add or update records in the event definition and/oruemout.txt
event handler databases.

The contents of the file resembles the examples shown in .Definition File Format - UNIX

uemload -export -deffile uemout.txt

Note
No event ID or handler ID is specified from the command line. If neither parameter is specified when listing or exporting records,
the default behavior is to retrieve all database records.

Command Line Options

The command line options used in this example are:

Option Description

-export Dumps the contents of the specified event definition and/or event handler records to a text file that can be
used as input to a subsequent run of the UEMLoad utility.

-deffile Name of a file that contains event definition and/or event handler parameters.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user435

List Event Definitions and Handlers Using Wildcards - UNIX

Listing Multiple Event Definitions and Event Handlers Using Wildcards for UNIX

In this example, the wildcards supported by are demonstrated.uemload

Wildcards can be used to select event definitions and event handlers whose respective IDs match the specified pattern.

Asterisk () can be used to match 0 or more characters.*
Question mark () can be used to match any single character.?

All event definitions whose IDs start with the characters are returned by the command below. In addition, all event handlers whose IDsevent
begin with and end with any two characters are selected.handler0

uemload -list -event_id event* -handler_id handler0??

Command Line Options

The command line options used in this example are:

Option Description

-list Displays the complete contents of the specified event definition and/or event handler records.

-event_id Identifier that uniquely identifies an event definition record.

-handler_id Identifier that uniquely identifies an event handler record.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user436

Add Record(s) Using Definition File - UNIX

Add Record(s) Using a Definition File for UNIX

In this example, a text file named is used to add one or more records to the UEM databases. The contents of the file resemble thoseuemadd.txt
shown in .Definition File Format - UNIX

A definition file allows multiple records to be added to the event definition and/or event handler databases at the same time. When no definition
file is used, only a single record can be added to the database(s).

uemload -add -deffile uemadd.txt

Command Line Options

The command line options used in this example are:

Option Description

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-deffile Name of a file that contains event definition and/or event handler parameters.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/DEFINITION_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user437

Add Record(s) Remotely Redirected from STDIN - UNIX

Add Record(s) Remotely, Using a Definition File Redirected from STDIN for UNIX

In this example, a definition load file named is used to add one or more records to the databases of a remote UEM Server. Theuemadd.txt
contents of the file resemble those shown in .Definition File Format - UNIX

Universal Command is used to execute UEMLoad on the remote UEM Server's system. The definition load file is redirected from standard input
(stdin), which eliminates the step of copying the load file to the remote system before executing UEMLoad.

ucmd -cmd "uemload -add" -host rmthost -encryptedfile rmtacctinfo.enc <uemadd.txt

Command Line Options

The command line options used in this example are:

Option Description

-cmd Remote command to execute.

-add Writes one or more new event definition and/or event handler records to the appropriate database.

-host List of one or more hosts upon which a command may run.

-encryptedfile Encrypted command file.

Components

Universal Command Manager for UNIX

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+UNIX
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user438

Add Record(s) Remotely Redirected from STDIN (for zOS) - UNIX

Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for UNIX

In this example, a definition load file named is used to add one or more records to the databases of a remote UEMMY.UEM.DATA(UEMDEF)
Server. The contents of the file resemble those shown in .Definition File Format - UNIX

Universal Command is used to execute UEMLoad on the remote UEM Server's system. It redirects standard input (stdin) from a data set allocated
to the UNVIN ddname. This eliminates the step of copying the data set to the remote system before executing UEMLoad.

//STEP1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=MY.UEM.DATA(UEMDEF)
//SYSIN DD *
-host dallas
-userid joe
-pwd ahzidaeh
-cmd "/opt/universal/bin/uemload -add"
/*

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host List of one or more hosts upon which a command may run.

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-cmd Remote command to execute.

-add Writes one or more new event definition and/or event handler records to the appropriate database.

Components

Universal Command Manager for zOS

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ACTION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Monitor+Server+for+UNIX

Universal Agent 6.6.x User Guide

 / ua-66x-user439

Definition File Format - UNIX

Definition File Format for UNIX

The format of the definition load file for events and event handlers follows the keyword / value-pair convention used for Universal Agent
configuration files. However, because more than one definition can be specified in a load file, some additional conventions are used.

The and keywords are used to mark the beginning and end, respectively, of each event definition entry.begin_event end_event
The and keywords are used to mark the beginning and end, respectively, of each event handler entry.begin_handler end_handler
The and keywords are used to mark the beginning and end, respectively, of any user script contained in thebegin_script end_script
definition load file.

Lines that belong to the script must begin with the keyword. Long values that have to be split across lines can be done so using the stmt stmt +
and line continuation characters (as described in). These lines will be accepted verbatim, and no script syntax- Configuration File Syntax
validation will be done. Lines will continue to be added to the script until an , , , or keywordend_script end_handler begin_handler begin_event
is read, or the end of the file is reached.

If a parameter's value contains spaces, it must be enclosed in single () or double () quotation marks.' "

If quotes are to be saved as part of the parameter's value, enclose the value in single () quotation marks quotes, and use a set of double ()' "
quotation marks to enclose the quoted value (for example,).optname 'optval1 "optval2 optval2a" optval3'

The keyword can be used in lieu of a block, in which case the contents of the specified file will be written to thescript begin_script/end_script
event handler.

A sample definition file for UNIX is shown in the following figure.

Universal Agent 6.6.x User Guide

 / ua-66x-user440

Indented lines are for illustration only. Leading spaces are
ignored by UEMLoad. Defaults will be used for any omitted
values.

Start of parameters for an event definition with an ID of
"unix_event_sample".

begin_event
 event_id unix_event_sample
 event_type FILE
 comp_name uems
 state enable
 inact_date_time 2011.12.31,23:59
 triggered_id unix_script_sample
 filespec 'uem*.dat'
 rename_file yes
 rename_filespec '$(compname).$(compid).$(date).$(seqno)'
end_event

End of parameters for event definition "unix_event_sample".

Start of parameters for an event handler with an ID of
"unix_script_sample".

begin_handler
 handler_id unix_script_sample
 handler_type SCRIPT
 maxrc 0
 userid uemuser
 begin_script
 stmt "#!/bin/sh"
 stmt ""
 stmt 'ls -al "/home/uem user"'
 end_script
 script_type bat
end_handler

End of parameters for event handler "unix_script_sample".

Start of parameters for an event definition with an ID of
"unix_cmd_sample".

begin_handler
 handler_id unix_cmd_sample
 maxrc 0
 userid uemuser
 cmd 'homeuem usersomeapp'
end_handler

End of parameters for event definition "unix_cmd_sample".

Definition File Options

The Definition File options used in this example are:

Option Description

event_id Identifier that uniquely identifies an event definition record.

event_type Type of system event represented by the event definition record.

comp_name Event-driven UEM Server responsible for monitoring the event.

state Event definitions that should be processed or ignored by UEM.

https://www.stonebranch.com/confluence/display/UA66/EVENT_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ASSIGNED_COMPONENT_NAME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/EVENT_STATE+-+UEMLoad+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user441

inact_date_time Date and time at which UEM will stop monitoring an event definition.

triggered_id ID of an event handler record that UEM will execute when an event occurrence is triggered.

filespec Name of a file to monitor.

rename_file Specification for whether or not UEM should rename a monitored file when an event occurrence is
triggered.

rename_filespec Specification for how a file should be renamed when an event occurrence is triggered.

handler_id Identifier that uniquely identifies an event handler record.

handler_type Type of process executed for the event handler, based on the contents of the and USER_COMMAND
 parameters.USER_SCRIPT

maxrc Highest value with which a handler can exit to still be considered as having executed successfully.

userid ID of a user account in whose security context the handler process will be executed.

script_type Type of script statements contained in the action field of the event handler record.

cmd Command to execute on behalf of the event handler.

Components

UEMLoad Utility for UNIX

https://www.stonebranch.com/confluence/display/UA66/INACTIVE_DATE_TIME+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRIGGERED_HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RENAME_FILE_SPECIFICATION+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/HANDLER_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MAXIMUM_RETURN_CODE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_SCRIPT_TYPE+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_COMMAND+-+UEMLoad+configuration+option
https://www.stonebranch.com/confluence/display/UA66/UEMLoad+Utility

Universal Agent 6.6.x User Guide

 / ua-66x-user442

Fault Tolerance Implementation

Fault Tolerance Implementation

For Universal Agent, fault tolerance is the capability of its Universal Agent components to recover or restart from an array of error conditions that
can occur in any large IT organization.

Errors occur as a result of human, software, or hardware conditions. The more resilient a product is to errors, the greater value it offers.

Currently, fault tolerance is implemented in three Universal Agent components:

Universal Command
Universal Connector
Universal Data Mover

Detailed Information

The following pages provide detailed information for Fault Tolerance Implementation:

Network Fault Tolerance - Universal Command
Network Fault Tolerance - Universal Connector
Network Fault Tolerance - Universal Data Mover
Manager Fault Tolerance - Universal Command
Client Fault Tolerance - Universal Connector
Implementing Fault Tolerance - Examples

Additional Information

The following pages provide detailed information about terminating a z/OS job in a fault tolerant system:

z/OS CANCEL Command Support

Universal Agent 6.6.x User Guide

 / ua-66x-user443

Network Fault Tolerance - Universal Command

Overview
Network Fault Tolerant Protocol
Universal Command Manager
Universal Command Server

Overview

Universal Command uses the TCP/IP protocol for communications over a data network. The TCP/IP protocol is a mature, robust protocol capable
of resending packets and rerouting packets when network errors occur. However, data networks do have problems significant enough to prevent
the TCP/IP protocol from recovering. As a result, the TCP/IP protocol terminates the connection between the application programs.

As with any application using TCP/IP, Universal Command is subject to these network errors. Should they occur, a product can no longer
communicate and must shut down or restart. These types of errors normally show themselves as premature closes, connection resets, time-outs,
or broken pipe errors.

Network Fault Tolerant Protocol

Universal Command provides the ability to circumvent network errors with its Network Fault Tolerant protocol. By using this protocol, Universal
Command traps the connection termination caused by the network error and reestablishes the network connections. When connections have
been reestablished, processing resumes automatically from the location of the last successful message exchange. No program restarts are
required and no data is lost.

The Network Fault Tolerant protocol acknowledges successfully received messages and checkpoints successfully sent messages. This reduces
data throughput. Consequentially, the use of network fault tolerance should be weighed carefully in terms of increased execution time versus the
probability of network errors and cost of such errors. For example, it may be easier to restart a program then to incur increased execution time.

When a network connection terminates, the Universal Command Manager enters a network reconnect phase. In this phase, the Manager
attempts to connect to the Universal Command Server and reestablish its network connections. The condition that caused the network error can
persist only for seconds, or it can persist for days.

The Manager attempts Server reconnection for a limited amount of time, as specified by the following configuration options:

RECONNECT_RETRY_COUNT (number of retry attempts)
RECONNECT_RETRY_INTERVAL (frequency of retry attempts)

If all attempts fail, the Manager ends with an error.

When a network connection terminates, the Server's action depends on whether or not it is executing with .Manager Fault Tolerance

Without Manager Fault Tolerance, the Server enters a disconnected state and waits for the Manager to reconnect. The user process continues
running. However, if the user process attempts any I/O on the standard files, it will block. The Server waits for the Manager to reconnect for a
period of time defined by the Manager's and configuration options. WhenRECONNECT_RETRY_COUNT RECONNECT_RETRY_INTERVAL
that time has expired, the Server terminates the user process and exits.

With Manager Fault Tolerance, the Server continues executing in a disconnected state. The Server satisfies all user process standard I/O
requests. The user process does not block. It continues to execute normally. When the user process ends, the Server waits for a Manager
reconnect for a period of time defined by the configuration option.JOB_RETENTION

Universal Command Manager

You can configure Universal Command Manager to request the use of the Network Fault Tolerant protocol via its
 configuration option.NETWORK_FAULT_TOLERANT

If the Server does not support the protocol or is not configured to accept the protocol, the Manager continues without using the protocol.

Universal Command Server

You can configure Universal Command Server with or without the Network Fault Tolerant protocol via its NETWORK_FAULT_TOLERANT
configuration option.

If the Server is configured with the protocol off, the Manager cannot override it. If the Server is configured with the protocol on, the Manager
 configuration option specifies whether or not the protocol is actually used.NETWORK_FAULT_TOLERANT

https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_COUNT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_INTERVAL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_COUNT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_INTERVAL+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_RETENTION+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/NETWORK_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/NETWORK_FAULT_TOLERANT+-+UCMD+Server+configuration+option
https://www.stonebranch.com/confluence/display/UA66/NETWORK_FAULT_TOLERANT+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user444

Network Fault Tolerance - Universal Connector

Overview
Points of Failure
Network Fault Tolerance Configuration Parameters

Overview

Universal Connector commands are processed by calling appropriate BAPI functions in the SAP system. The BAPI function calls are issued over
an RFC connection. Universal Connector provides fault tolerance at the RFC level. If an RFC call fails, the call is retried until it completes
successfully or exceeds a user-definable retry limit.

If an RFC call fails, Universal Connector will close the current RFC connection and establish a new RFC connection in order to continue
processing. The process of establishing and preparing an RFC connection is referred to here as the RFC logon process. The RFC logon process
involves establishing an RFC connection, logging on to the XMI interface and setting the XMI audit level. If the RFC logon process fails, it will be
retried until it completes successfully, or exceeds a user definable retry limit. When the new RFC connection is established successfully, Universal
Connector will reissue the failed RFC call.

The entire process of establishing a new RFC session and reissuing the failed RFC call will be retried until either:

RFC call completes successfully.
User-definable RFC retry limit is exceeded.

Some BAPI functions should not be retried in an unknown state; they are points of failure within the Universal Connector fault tolerant solution.

Points of Failure, below, lists the points of failure and their relationship to Universal Connector commands.

Points of Failure

The points of failure within Universal Connector fault tolerant architecture are:

Job Submission
Job Modification
Job Start

Some BAPI functions called in these processes cannot be restarted in an unknown state without possible negative consequences. If an RFC call
fails issuing those BAPIs, Universal Connector will end unsuccessfully.

Network Fault Tolerance Configuration Parameters

The following set of Universal Connector configuration options can be used to fine-tune the fault tolerance support for a particular environment:

LISTEN_INTERVAL (-rfc_listen_interval)
LOGON_RETRY_COUNT (-rfc_logon_retry_count)
LOGON_RETRY_INTERVAL (-rfc_logon_retry_interval)
SECURE_CFT (-rfc_retry_count)
RETRY_CALL_INTERVAL (-rfc_retry_interval)
TIMEOUT_INTERVAL (-rfc_timeout)

See for details concerning the use of these parameters.RFC (Remote Function Call) Options

https://www.stonebranch.com/confluence/display/UA66/LISTEN_INTERVAL+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/LOGON_RETRY_COUNT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/LOGON_RETRY_INTERVAL+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RETRY_CALL_INTERVAL+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT_INTERVAL+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RFC+%28Remote+Function+Call%29+Options+-+Universal+Connector+for+SAP

Universal Agent 6.6.x User Guide

 / ua-66x-user445

Network Fault Tolerance - Universal Data Mover

Overview
Network Fault Tolerance

Open Retry
Component Management
Communication State Values

Overview

For Universal Data Mover, fault tolerance is the capability of its components to recover or restart from an array of error conditions that occur in
any large IT organization.

Errors occur as a result of human, software, or hardware conditions. The more resilient a product is to errors, the greater value it offers.

Currently, network fault tolerance is implemented in one Universal Data Mover component:

Universal Data Mover

Network Fault Tolerance

UDM uses the TCP/IP protocol for communications over a data network. The TCP/IP protocol is a mature, robust protocol capable of resending
and rerouting packets when network errors occur. However, data networks do have problems significant enough to prevent the TCP/IP protocol
from recovering. As a result, the TCP/IP protocol terminates the connection between the application programs. Like any application using TCP/IP,
UDM is subject to these network errors. Should they occur, a product can no longer communicate and must shutdown or restart. These types of
errors normally show themselves as premature closes, connection resets, time-outs, or broken pipe errors.

UDM provides the ability to circumvent these types of errors with its Network Fault Tolerant protocol. By using the network fault tolerant protocol,
UDM traps the connection termination caused by the network error and it reestablishes the network connections. Once connections are
reestablished, processing automatically resumes from the location of the last successful message exchange. No program restarts are required
and no data are lost.

The Network Fault Tolerant protocol acknowledges and checkpoints successfully received and sent messages, respectively. The network fault
tolerant protocol does reduce data throughput. Consequentially, the use of network fault tolerance should be carefully weighed in terms of
increased execution time versus the probability of network errors and cost of such errors. For example, it may be easier to restart a program then
to incur increased execution time.

When a network connection terminates, the UDM Manager will enter a network reconnect phase. In the reconnect phase, the Manager attempts
to connect to the UDM Server and reestablish its network connections. The condition that caused the network error can persist for seconds or
days. The Manager will attempt Server reconnection for a limited amount of time (configured with the and RECONNECT_RETRY_COUNT

 configuration options). These two options specify, respectively, how many reconnect attempts are made andRECONNECT_RETRY_INTERVAL
how often they are made. After all attempts have failed, the Manager ends with an error.

When a network connection terminates, the Server enters a disconnected state and waits for the Manager to reconnect. The user process
continues running; however, if the user process attempts any I/O on the standard files, it will block. The Server waits for the Manager to reconnect
for a period of time defined by the Manager's and configuration options.RECONNECT_RETRY_COUNT RECONNECT_RETRY_INTERVAL
Once that time has expired, the Server terminates the user process and exits.

UDM can request the use of the Network Fault Tolerant protocol. If the Server does not support the protocol or is not configured to accept the
protocol, the Manager continues without using the protocol.

The and option is used to request the protocol.NETWORK_FAULT_TOLERANT RECONNECT_RETRY_INTERVAL

Open Retry

Open Retry is a type of fault tolerance used at the session-establishment level.

(Network fault tolerance is used from the time that a session has been fully established until the session has terminated.)

Open Retry is used during the establishment phase of a session. UDM tries to establish a session when the command is issued. If the open
 configuration option value is , and UDM fails to establish the session due to a network error, timeout, or the inability to start aOPEN_RETRY yes

transfer server, it will retry the command based on the settings of the and configurationopen OPEN_RETRY_COUNT OPEN_RETRY_INTERVAL
options.

Component Management

https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_COUNT+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_INTERVAL+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_COUNT+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_INTERVAL+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/NETWORK_FAULT_TOLERANT+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RECONNECT_RETRY_INTERVAL+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/OPEN_RETRY+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/open+-+UDM+Command
https://www.stonebranch.com/confluence/display/UA66/OPEN_RETRY_COUNT+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OPEN_RETRY_INTERVAL+-+UDM+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user446

In order to fully understand UDM fault tolerant features, some understanding of how the Universal Broker manages components is necessary.

Universal Broker manages component start-up, execution, and termination. Universal Broker and its components have the ability to communicate
service requests and status information between each other.

Universal Broker maintains a database of components that are active or have completed and waiting for restart or reconnection. The component
information maintained by Universal Broker determines the current state of the component. This state information is required by Universal Broker
to determine whether or not a restart or reconnect request from a Manager is acceptable. The ;Universal Broker component information can be
viewed with the utility.Universal Query

One bit of component information maintained by Universal Broker is the component's communication state. The communication state primarily
determines what state the Universal Data Mover Server is in regarding its network connection with a Manager and the completion of the user
process and its associated spooled data.

Communication State Values

The following table describes the communication state values.

Reconnect column indicates whether or not a network reconnect request is valid.
Restart column indicates whether or not a restart request is valid.

State Reconnect Restart Description

COMPLETED NO NO Server and manager have completed. All standard output and standard error files have been sent
to the manager and the user process's exit status.

DISCONNECTED YES YES Server is not connected to the Manager. This occurs when a network error has occurred, the
Manager halted, or the Manager host halted.

The Server is either executing with the Network Fault Tolerant protocol, is restartable, or both.

Note
The Server cannot tell if the Manager is still executing or not, since it cannot
communicate with the Manager.

ESTABLISHED NO NO Server and Manager are connected and processing normally. This is the most common state when
all is well.

RECONNECTING NO NO Server has received a reconnect request from the Manager to recover a lost network connection.

This state should not remain long, only for the time it takes to re-establish the network connections.

STARTED NO NO Server has started.

If the Server is restartable it is receiving the standard input file from the Manager and spooling it.

https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user447

Manager Fault Tolerance - Universal Command

Overview

Distributed applications are comprised of many independent components running on host systems, throughout the enterprise, connected with a
data network. Many of the host systems are in different physical locations, in different organization groups, and have different system
management policies. It can be difficult to schedule individual host downtime when there are so many overlapping requirements.

Host systems must be shut down at scheduled intervals and, unfortunately, at unscheduled intervals. The impact of a system being down must be
minimized by a distributed application.

With the Manager Fault Tolerant feature, Universal Command components (Managers and Servers) can be shut down and restarted at a later
time. After a Manager has been started, it can be terminated and restarted at a later time. It can be shut down for any period of time: seconds,
days, or even months.

Detailed Information

The following pages provide detailed information for Manager Fault Tolerance - Universal Command:

Functionality
Component Management

Universal Agent 6.6.x User Guide

 / ua-66x-user448

1.
2.
3.

Manager Fault Tolerance - Universal Command - Functionality

Manager Fault Tolerance Functionality
Command Identifier
Standard I/O Files
Requesting Restart
Case Example 1 - Normal Execution

Components
Sequence of Events

Case Example 2 - Restart when User Process is Executing
Sequence of Events

Case Example 3 - Restart when User Process has Ended
Sequence of Events

Manager Fault Tolerance Functionality

The basic functionality of Manager fault tolerance is:

Manager requests the execution of a command on a remote system.
Command executes on the remote system, optionally reading and writing data.
Manager redirects:

Its standard input data to the standard input of the remote command.
Standard output file and standard error file of the remote command to its own standard output and standard error.

If the Manager is terminated or the Manager's host system is shut down, the remote command cannot read the Manager's standard input or write
its standard output and error files. Without Manager fault tolerance, the remote command must terminate, since its data source and destination
are now gone. Otherwise, it would wait forever.

Manager fault tolerance provides an execution environment in which the Manager is not required in order for the user process to continue
execution on the remote system. The user process can execute to completion with or without a Manager connected.

When the Manager starts a user process, the Manager executes as normal; standard output and standard error files are redirected back to the
Manager as the user process produces the data. The difference is data spooling. In order for the user process to have real-time access to its input
and output, the data is spooled in the Universal Spool Database. The spool provides complete independence from the Manager. The spool
subsystem satisfies all data requirements for the user process via the Universal Command Server.

The Manager can terminate and a new Manager can restart and reconnect to the user process. If the user process has completed, the new
Manager receives the user processes standard files and its exit status. The restarted Manager behaves in all ways as if it was the originating
Manager .

Command Identifier

A Manager requests Manager fault tolerance with the configuration option and by providing a commandMANAGER_FAULT_TOLERANT
identifier (command ID) using the configuration option. The command ID identifies the unit of work being executed. In this context,COMMAND_ID
a unit of work includes the Manager, Server, and user process.

The Manager indicates to the Server that this request is restartable. The configuration option provides a command identifier thatCOMMAND_ID
uniquely identifies the Server and user process on the remote host. When a Manager is restarted, it must provide the same command ID
identifying the Server and user process with which it wants to reconnect.

Providing a unique command ID is not trivial. Many Managers may be executing on many different hosts, and all executing work on the same
Server host. It is possible for a Manager to start a restartable command from one host, terminate, and restart on a completely different host.

The command ID value can be any text value of unrestricted length. In practical terms, the character set and limits on command line length of the
Manager host impose restrictions on the value.

Standard I/O Files

The Universal Spool system satisfies all user process data requests via the Universal Command Server. When the user process reads from its
standard input file, the Server reads it from the spool and provides it to the user process. When the user process writes to standard output or
error, the Server receives the data and writes it to the spool.

A Manager requesting restart capability (Manager fault tolerance) first transfers its entire standard input file to the Server, which it in turns writes
to the spool. When all data has been received, the Server creates the user process. This provides complete Manager independence for the entire
life of the user process.

As long as the Manager is connected, the standard output and standard error files are transferred to the Manager, as the user process produces
the data, all in real-time. The data also is written to the spool. If the Manager terminates, the data is written to the spool only.

https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user449

A restarted Manager is sent all of the standard output and standard error files, from the beginning, that currently is spooled. If the user process
still is executing, the restarted Manager will receive all of the data currently spooled. When it has caught up with the data being produced, the
Manager starts to receive the data from the user process as it is written.

Requesting Restart

When a restartable Manager is initiated, it is either an initial instance or a restarted instance of a command ID. The command ID identifies a unit
of work represented by the Manager, Server, and user process. See , above, for more information on the command ID.Command Identifier

The configuration option specifies whether or not the Manager instance is requesting a restart of a previous command ID. Possible RESTART
 values are , , and .RESTART yes no auto

The value specifies:auto

If there is no existing command ID executing on the remote host, consider this Manager execution the first instance.
If there is an existing command ID, and it is not connected to any Manager, consider this a restart of the command ID.

The value permits automatic restart by eliminating the need to modify the value for the initial instance and restarted instance.auto RESTART

Note
The value cannot be used with a configuration option value of , which specifies that the UCMD Managerauto COMMAND_ID *
will generate a unique command ID for each run.

Case Example 1 - Normal Execution

The following figure diagrams the sequence of events that occur when a restartable Manager requests the execution of a command on a remote
host. In this case, the Manager and Server remain executing and connected until normal completion of the user process.

https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user450

The Local Host is the host on which the Manager is being executed.

The Remote Host is the host on which the Manager is requesting command execution.

Components

The components involved are:

Universal Command Manager
The Manager requests remote execution of a command or script. The Manager executes the remote command in a manner such that the
command appears to be executed locally.
Universal Broker
The Broker manages Universal Agent component execution.
Universal Command Server
The Server executes the Manager requested command and processes the user process's standard I/O requests.
User Process
The user process represents the Manager requested command.

Sequence of Events

The diagram demonstrates the sequence of events that occur when a restartable Manager requests command execution on a remote host. The
numbers enclosed in circles represent the sequence of events and correspond to the listed descriptions below.

Universal Agent 6.6.x User Guide

 / ua-66x-user451

Step 1 The Manager connects to the Broker and sends a request to start a Server. The start request from the Manager requests Manager
fault tolerance and includes the command ID to identify the unit of work.

Step 2 The Broker records the unit of work in the Broker Component Database as restartable for possible future restarts.

Step 3 The Broker starts an instance of the Server.

Step 4 The Manager and Server exchange messages that specify all options used to carry out the request.

Step 5 The Server records the unit of work in the Universal Command Server Database for possible future restarts.

Step 6 The Manager sends all standard input data to the Server, and the Server writes the standard input data to the Universal Spool
database.

Step 7 Once all standard input is spooled, the Server starts the user process.

Step 8 As the user process writes standard output and standard error data, the Server writes the data to the Universal Spool database. If the
Manager is connected to the Server, the data is written to the Manager as well.

Step 9 The user process executes until completion. Once the user process completes, the Server writes the exit status of the user process
to the Universal Command Server Database.

Step 10 The Server sends the exit status to the Manager. This completes the unit of work.

Case Example 2 - Restart when User Process is Executing

The following figure diagrams the sequence of events that occur when a Manager requests a restart of a currently executing unit of work. In this
case the initial instance of the Manager terminated. A restarted instance of the Manager is started and requests to be reconnected to the unit of
work.

This example continues from ; please refer to that example for details of the component descriptions includedCase Example 1 - Normal Execution
in the following diagram.

Universal Agent 6.6.x User Guide

 / ua-66x-user452

Sequence of Events

The diagram demonstrates the sequence of events that occur when a Manager requests to be restarted with a unit of work identified by a
command ID. The numbers enclosed in circles represent the sequence of events and correspond to the listed descriptions below.

Step 1 The restarted instance of the Manager sends a restart request to the Broker. The restart request contains the command ID specified
as part of the invocation of the Manager.

Step 2 The Broker verifies that the component is restartable and that the components communication state is acceptable for a restart request.
If the Server component were currently connected to a Manager, its communication state would not permit a restart request.

Step 3 The Broker sends the restart request to the Server corresponding to the command ID.

Step 4 The Server authenticates the request with the Manager-supplied user ID and password. The password must be the same as the initial
Manager instance.

Step 5 The Manager and Server exchange options that are used to carry out the request.

Step 6 The Server records the restart in the Universal Command Server Database.

Step 7 The Server sends spooled standard output and error files to the Manager. This is performed while the user process may still be writing
standard output and error to the spool. Once all spooled output is sent to the Manager, the Server will send standard output and error
from the user process as it is being produced.

Step 8 The user process executes to completion. The Server records the user process exit status in the Universal Command Server
Database.

Universal Agent 6.6.x User Guide

 / ua-66x-user453

Step 9 The Server sends the exit status to the Manager. This completes the unit of work.

Case Example 3 - Restart when User Process has Ended

The following figure diagrams the sequence of events that occur when a Manager requests a restart of a unit of work that has completed. In this
case, the initial instance of the Manager has terminated, the user process completed normally, and a restarted instance of the Manager is started
and requests to be reconnected to the completed unit of work.

This example continues from ; please refer to that example for details of the component descriptions includedCase Example 1 - Normal Execution
in the following diagram.

Sequence of Events

The diagram demonstrates the sequence of events that occur when a Manager requests to be restarted with a unit of work identified by a
command ID. The user process in this case has completed execution. The numbers enclosed in circles represent the sequence of events and
correspond to the following descriptions:

Step 1 The restarted instance of the Manager sends a restart request to the Broker. The restart request contains the command ID specified
as part of the invocation of the Manager.

Step 2 The Broker verifies that the component is restartable and that the components communication state is acceptable for a restart request.
If the Server component were currently connected to a Manager, its communication state would not permit a restart request.

Universal Agent 6.6.x User Guide

 / ua-66x-user454

Step 3 Since the user process has completed, the Broker starts a new Server to process the restart request. The Server authenticates the
request with the Manager-supplied user ID and password. The password must be the same as the initial Manager instance.

Step 4 The Manager and Server exchange options that are used to carry out the request.

Step 5 The Server records the restart in the Universal Command Server Database.

Step 6 The Server sends spooled standard output and error files to the Manager.

Step 7 The Server sends the user process exit status to the Manager. This completes the unit of work.

Universal Agent 6.6.x User Guide

 / ua-66x-user455

Manager Fault Tolerance - Universal Command - Component Management

Overview

In order to fully understand Universal Command fault tolerant features, some understanding of how the Universal Broker manages components is
necessary.

Universal Broker manages component start-up, execution, and termination. The Broker and its components have the ability to communicate
service requests and status information between each other.

The Broker maintains a database of components that are active or have completed and waiting for restart or reconnection. The component
information maintained by the Broker determines the current state of the component. This state information is required by the Broker to determine
if a restart or reconnect request from a Manager is acceptable or not. The Broker's component information can be viewed with the Universal

 utility.Query

One piece of component information maintained by the Broker is the component's communication state. The communication state primarily
determines what state the Server is in regarding its network connection with a Manager and the completion of the user process and its associated
spooled data.

Communication State Values

The following table describes the communication state values.

Reconnect column indicates whether or not a network reconnect request is valid.
Restart column indicates whether or not a restart request is valid.

State Reconnect Restart Description

STARTED NO NO Server has started.

If the Server is restartable, it is receiving the standard input file from the Manager and spooling it.

ESTABLISHED NO NO Server and Manager are connected and processing normally. This is the most common state when
all is well.

DISCONNECTED YES YES Server is not connected to the Manager. This occurs when a network error has occurred, the
Manager halted, or the Manager host halted.

The Server is either executing with the Network Fault Tolerant protocol, is restartable, or both.

Note
The Server cannot tell whether or not the Manager is still executing, since it
cannot communicate with the Manager.

ORPHANED NO YES Manager has terminated after sending a termination message to the Server to notify it of its
termination.

This state only occurs if the Server is restartable.

RECONNECTING NO NO Server has received a reconnect request from the Manager to recover a lost network connection.

This state should not remain long; only for the time it takes to re-establish the network connections.

RESTARTING NO NO Server has received a restart request from the Manager.

This state should not remain long; only for the time it takes to re-establish network connections.

PENDING NO YES A restartable Server and its user process have completed. The user process standard output and
error files are in the spool.

A Manager has not been restarted to pick up the spooled files and user process exit status. The
Server remains in this state until a Manager is restarted.

COMPLETED NO NO Server and Manager have completed. All standard output and standard error files have been sent
to the Manager and the user process's exit status.

https://www.stonebranch.com/confluence/display/UA66/Universal+Query
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user456

Universal Agent 6.6.x User Guide

 / ua-66x-user457

Client Fault Tolerance - Universal Connector

Introduction

The Client Fault Tolerance feature allows the Universal Connector client application to be shut down and restarted at a later time.

The following pages provide detailed information for Client Fault Tolerance - Universal Connector:

Client Fault Tolerance - Universal Connector Jobs
Modes
Parameters
Command ID Job Step
Command Identifier
Requesting Restart

Client Fault Tolerance - Universal Connector Process Chains
Modes
Parameters
Command ID Job Step
Command Identifier
Requesting Restart

Universal Agent 6.6.x User Guide

 / ua-66x-user458

Client Fault Tolerance - Universal Connector Jobs

Overview

The Client Fault Tolerance feature allows the Universal Connector client application to be shut down and restarted at a later time.

This functionality helps avoid problems that can result if the Universal Connector application terminates unexpectedly while processing an SAP
job. In such an instance, the Client Fault Tolerance restart capability allows Universal Connector to reconnect to a running (or completed) job
while preventing the unintentional start of a new instance of the original SAP job.

To achieve Client Fault Tolerance, Universal Connector must be able to associate the SAP jobs it defines and starts with a particular unit of work.
In this context, a unit of work includes the Universal Connector client and SAP job instance.

To associate an SAP job with a particular unit of work, the user must be able to specify some identifying characteristic that is specific to that unit
of work. The SAP system uniquely identifies job instances by a job name/job ID pair. Since the job name must be reusable and the job ID is
assigned by the SAP system at the time of definition, Universal Connector must use an alternative job characteristic. This alternative job
characteristic is the Universal Connector command Identifier.

Universal Connector references a particular unit of work by a job name/Command Identifier combination. The Universal Connector command
identifier is tied to the SAP job by appending a Command ID Job Step to the SAP job associated with the Universal Connector command
instance. The Command ID job step is required for identification purposes only. Therefore, the program used for the Command ID step is intended
to add minimum overhead to the job. The Command ID used for the job is included in the definition of the Command ID job step.

Detailed Information

The following pages provide detailed information for Client Fault Tolerance - Universal Connector Jobs:

Modes
Parameters
Command ID Job Step
Command Identifier
Requesting Restart

Universal Agent 6.6.x User Guide

 / ua-66x-user459

1.
2.

Client Fault Tolerance - Universal Connector Jobs - Modes

Overview
Secure Client Fault Tolerance (Secure CFT) Mode
Pre-XBP 2.0 Client Fault Tolerance (CFT) Mode

Overview

Universal Connector supports two modes of client fault tolerance:

Secure Client Fault Tolerance (Secure CFT)
Pre-XBP 2.0 Client Fault Tolerance (CFT)

The mode of client fault tolerance to be used by Universal Connector is determined by the value of the option.SECURE_CFT

Valid values for this option are and :yes no

yes will cause Universal Connector to use the Secure CFT mode.
no will cause Universal Connector to use the original Pre-XBP 2.0 CFT mode.

The default value is .yes

Both modes of CFT follow the same basic process flow. When Universal Connector is requested to restart a particular command ID job, it queries
the SAP system for all jobs with the specified job name. The list of jobs returned by the SAP system is scanned for a job that contains an
appropriate Command ID Job Step. If found, Universal Connector will re-connect to the SAP job instance and satisfy the command line
requirements.

Universal Connector is capable of restarting a command ID as long as the associated command ID job remains in the SAP system.

Secure Client Fault Tolerance (Secure CFT) Mode

This mode is an enhancement of the original implementation. The secure CFT mode requires XBP 2.0 to be installed on the SAP side of the
Universal Connector connection. In this mode, an ABAP program step is used for the command ID job step.

Using an ABAP program step as the Command ID job step eliminates the security and ease of use drawbacks mentioned above for external
program job steps.

Security
The execution of ABAP programs and the resources required by them are secured by SAP authorization checks.
Ease of Use
ABAP program job steps do not require a target host. They run on whichever application server the job runs on. Therefore, there are no
target specific parameters required for secure CFT mode.

Pre-XBP 2.0 Client Fault Tolerance (CFT) Mode

This mode is the original implementation of client fault tolerance used prior to the release of XBP 2.0. Due to limitations in the XBP 1.0 interface,
Universal Connector client fault tolerance on pre-XBP 2.0 SAP systems uses an external program step as the command ID job step.

Using an external program step as the command ID job step has the following security and ease of use drawbacks:

Security drawback
Using an external program job step requires the SAP user ID to have authority to run external programs. This authority cannot be given
lightly for the following reason: When running an external job step, the SAP system first performs an authorization check to see if the user
ID has the right to run an external program. If so, the external program is run under the user ID of the user who started the SAP system
Ease of use drawback
Using an external program job step requires a target host be specified for the external program to run on. This requires information about
the SAP landscape that may not be readily available. Also, this presents the possibility of the Universal Connector job's parameters
becoming out of sync with the SAP landscape.

https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user460

Client Fault Tolerance - Universal Connector Jobs - Parameters

Client Fault Tolerance Target Host
Client Fault Tolerance Command Prefix
Secure Client Fault Tolerance Option
Client Fault Tolerance ABAP Program

Client Fault Tolerance Target Host

The client fault tolerance target host parameter is only required for pre-XBP 2.0 client fault tolerance mode. If the secure CFT mode is being used,
the client fault tolerance target host parameter is ignored.

As part of an external program command ID job step definition, SAP requires a target host on which to run the external program (echo). Universal
Connector provides the client fault tolerance target host parameter to specify the target host for the command ID job step.

The Client Fault Tolerance Target Host is specified with the option.CFT_TARGET_HOST

Client Fault Tolerance Command Prefix

The client fault tolerance command prefix parameter is only required for pre-XBP 2.0 client fault tolerance mode. If the secure CFT mode is being
used, the client fault tolerance command prefix parameter is ignored.

The external program command ID job step has the potential to be run on any operating system reachable by the SAP system. The operating
system that the Command ID Job Step runs on is that which exists on the host system specified by the Client Fault Tolerance Target Host
parameter. Different operating systems may require commands to be called in different ways. Therefore, the Client Fault Tolerance Command
Prefix parameter allows the user to specify the prefix necessary to run the echo command on the host system specified by the Client Fault
Tolerance Target Host parameter.

For example, to run the echo command on a Windows system, the following command line entry would be required for an SAP external job step:
. Therefore, the Client Fault Tolerance Command Prefix for this system would be: .cmd /C echo cmd /C

The Client Fault Tolerance Command Prefix parameter is specified with the option.CFT_COMMAND_PREFIX

Secure Client Fault Tolerance Option

The mode of client fault tolerance to be used by Universal Connector is determined by the value of the option.SECURE_CFT

Valid values for this option are and :yes no

yes will cause Universal Connector to use the mode.Secure CFT
no will cause Universal Connector to use the original mode.Pre-XBP 2.0 CFT

The default value is .yes

Client Fault Tolerance ABAP Program

The client fault tolerance ABAP program parameter is only required for secure CFT mode. If the pre-XBP 2.0 CFT mode is being used, the client
fault tolerance ABAP program parameter is ignored.

The client fault tolerance ABAP program parameter is used to specify the ABAP program to use for the command ID job step. Any ABAP program
can be specified. The Universal Connector internal default ABAP program to use is BTCTEST. BTCTEST is a standard SAP ABAP program that
should be available on all SAP systems. It does no real processing and can be considered a dummy program that does not interfere with job
processing and places little overhead on the system.

https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user461

Client Fault Tolerance - Universal Connector Jobs - Command ID Job Step

Overview
Pre-XBP 2.0 CFT Mode
Secure CFT Mode

Overview

Universal Connector creates Command ID jobs by appending a job step to the user's SAP job being defined to the system. This appended job
step is the Universal Connector Command ID Job Step.

Pre-XBP 2.0 CFT Mode

In pre-XBP 2.0 CFT mode, the Universal Connector Command ID Job Step executes the external program echo. A string containing the
command ID is inserted in the parameter field of the job step. The echo command is lightweight, does not interfere with the original job, and
results in the command ID being printed to the joblog.

Secure CFT Mode

In secure CFT mode, the Universal Connector command ID job step executes an ABAP program. The ABAP program defined to the command id
step is user configurable with the covetable parameter. Any ABAP program can be specified. The Universal Connector internal default ABAP
program to use is BTCTEST. BTCTEST is a standard SAP ABAP program that should be available on all SAP systems. It does no real
processing and can be considered a dummy program that does not interfere with job processing and places little overhead on the system.

Universal Agent 6.6.x User Guide

 / ua-66x-user462

Client Fault Tolerance - Universal Connector Jobs - Command Identifier

Command Identifier

Universal Connector requests client fault tolerance by providing a command identifier. The command identifier is specified on the command line
with parameter . The command ID/job name pair identifies the unit of work being executed.-cmdid

The command ID option provides a command identifier that (paired with job name) uniquely identifies the SAP job on the SAP system. When a
Universal Connector job is restarted, it must provide the same command ID identifying the SAP job with which it wants to reconnect.

Providing a unique command ID is not trivial. Many Universal Connector clients may be executing on many different hosts, all executing work on
the same SAP system. It is possible for a Universal Connector client to start a restartable job from one host, terminate, and restart on a
completely different host.

The command ID value can be any text value up to 245 characters in length. In practical terms, the character set and limits on command line
length of the Universal Connector host may impose further restrictions on the value.

Universal Agent 6.6.x User Guide

 / ua-66x-user463

Client Fault Tolerance - Universal Connector Jobs - Requesting Restart

Requesting Restart
Controlling Auto Restart

Requesting Restart

When a restartable Universal Connector command is initiated, it is either an initial instance or a restarted instance of a command ID.

The option is specified on the command line with parameter . RESTART specifies whether or not the Universal ConnectorRESTART -restart
command instance is requesting a restart of a previous command ID. Possible RESTART values are , , or .yes no auto

The value specifies that if there is no existing command ID job on the SAP system, consider this Universal Connector execution the firstauto
instance. If there is an existing command ID job, consider this a restart of the command ID. The value permits automatic restart byauto
eliminating the need to modify the RESTART value for the initial instance and restarted instance.

It is important to note that when using the RESTART value, Universal Connector will not start a new instance of a job on the SAP system if aauto
job matching the job name/command ID exists in the SAP system. Universal Connector will continue to reconnect to the existing SAP job.

Without considering the behavior resulting from the use of RESTART , it may be possible for one to assume that a job has been run multipleauto
times when, in fact, Universal Connector has been reconnecting to the same job instance. Informational messages are printed by Universal
Connector to standard error to indicate the reconnected status but, if the message level is not set to , the messages will not be seen.info

Controlling Auto Restart

Misunderstanding the auto restart behavior described above can potentially have serious consequences. For this reason, the
 lets you allow or disallow the use of auto restart. You can make this specification in the Universal ConnectorALLOW_AUTO_RESTART

configuration file and override it on the command line.

https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ALLOW_AUTO_RESTART+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user464

Client Fault Tolerance - Universal Connector Process Chains

Overview

The Client Fault Tolerance feature allows the Universal Connector client application to be shut down and restarted at a later time.

This functionality helps avoid problems that can result if the Universal Connector application terminates unexpectedly while processing an SAP
process chain. In such an instance, the Client Fault Tolerance restart capability allows Universal Connector to reconnect to a running (or
completed) process chain while preventing the unintentional start of a new process chain instance.

To achieve Client Fault Tolerance, Universal Connector must be able to associate an SAP process chain instance with a particular unit of work. In
this context, a unit of work includes the Universal Connector client and SAP process chain instance.

To associate an SAP process chain instance with a particular unit of work, the user must be able to specify some identifying characteristic that is
specific to that unit of work. The SAP system uniquely identifies process chains by a log ID. However, since the process chain log ID is assigned
by the SAP system at the time of instantiation, Universal Connector must use an alternative characteristic; the Universal Connector command
Identifier.

Universal Connector references a particular unit of work by a chain ID/Command Identifier combination. The Universal Connector command
identifier is associated with the SAP process chain by creating a dummy job in the SAP system with a log ID step and a Command ID Step. The
log ID step stores the value of the process chain log ID that is generated by the SAP system. The Command ID step stores the value of the
Universal Command ID. The dummy job that is created for client fault tolerant process chains is never actually run. It is just used to associate a
Universal Connector Command ID with an SAP process chain log ID within the SAP system. After successful processing of the process chain, the
dummy job is removed from the system.

Detailed Information

The following pages provide detailed information for Client Fault Tolerance - Universal Connector Process Chains:

Modes
Parameters
Command ID Job Step
Command Identifier
Requesting Restart

Universal Agent 6.6.x User Guide

 / ua-66x-user465

1.
2.

Client Fault Tolerance - Universal Connector Process Chains - Modes

Overview
Secure Client Fault Tolerance (Secure CFT) Mode
Pre-XBP 2.0 Client Fault Tolerance (CFT) Mode

Overview

Universal Connector supports two modes of client fault tolerance:

Secure Client Fault Tolerance (Secure CFT)
Pre-XBP 2.0 Client Fault Tolerance (CFT)

The mode of client fault tolerance to be used by Universal Connector is determined by the value of the option.SECURE_CFT

Valid values for this option are and :yes no

yes will cause Universal Connector to use the Secure CFT mode.
no will cause Universal Connector to use the original Pre-XBP 2.0 CFT mode.

The default value is .yes

Both modes of CFT follow the same basic process flow. When Universal Connector is requested to restart a particular command ID process
chain, it queries the SAP system for all jobs with the specified job name (the chain ID is used for the job name). The list of jobs returned by the
SAP system is scanned for a job that contains an appropriate Command ID Job Step. If found, Universal Connector will re-connect to the SAP
process chain instance associated with the job and satisfy the command line requirements.

Universal Connector is capable of restarting a command ID as long as the associated command ID job remains in the SAP system.

Secure Client Fault Tolerance (Secure CFT) Mode

This mode is an enhancement of the original implementation. The secure CFT mode requires XBP 2.0 to be installed on the SAP side of the
Universal Connector connection. In this mode, an ABAP program job step is used for the log ID step and the command ID step.

Using an ABAP program job step as the log ID and Command ID steps eliminates the security and ease of use drawbacks mentioned above for
external program steps.

Security
The execution of ABAP programs and the resources required by them are secured by SAP authorization checks.
Ease of Use
ABAP program job steps do not require a target host. They run on whichever application server the job runs on. Therefore, there are no
target specific parameters required for secure CFT mode.

Pre-XBP 2.0 Client Fault Tolerance (CFT) Mode

This mode is the original implementation of client fault tolerance used prior to the release of XBP 2.0. Due to limitations in the XBP 1.0 interface,
Universal Connector client fault tolerance on pre-XBP 2.0 SAP systems uses an external program step as the log ID and command ID steps.

Using external program steps as the log ID and command ID steps has the following security and ease of use drawbacks:

Security drawback
The dummy job used for client fault tolerance with process chains is never actually run by the Universal Connector so, there is no security
drawback.
Ease of use drawback
Using an external program step requires a target host be specified for the external program to run on. This requires information about the
SAP landscape that may not be readily available. Also, this presents the possibility of the Universal Connector job's parameters
becoming out of sync with the SAP landscape.

https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user466

Client Fault Tolerance - Universal Connector Process Chains - Parameters

Client Fault Tolerance Target Host
Client Fault Tolerance Command Prefix
Secure Client Fault Tolerance Option
Client Fault Tolerance ABAP Program

Client Fault Tolerance Target Host

The client fault tolerance target host parameter is only required for pre-XBP 2.0 client fault tolerance mode. If the secure CFT mode is being used,
the client fault tolerance target host parameter is ignored.

As part of an external program command ID step definition, SAP requires a target host on which to run the external program (echo). Universal
Connector provides the client fault tolerance target host parameter to specify the target host for the command ID step.

The Client Fault Tolerance Target Host is specified with the option.CFT_TARGET_HOST

Client Fault Tolerance Command Prefix

The client fault tolerance command prefix parameter is only required for pre-XBP 2.0 client fault tolerance mode. If the secure CFT mode is being
used, the client fault tolerance command prefix parameter is ignored.

The external program command ID step has the potential to be run on any operating system reachable by the SAP system. The operating system
that the Command ID Job Step runs on is that which exists on the host system specified by the Client Fault Tolerance Target Host parameter.
Different operating systems may require commands to be called in different ways. Therefore, the Client Fault Tolerance Command Prefix
parameter allows the user to specify the prefix necessary to run the echo command on the host system specified by the Client Fault Tolerance
Target Host parameter.

For example, to run the echo command on a Windows system, the following command line entry would be required for an SAP external step: cmd
. Therefore, the Client Fault Tolerance Command Prefix for this system would be: ./C echo cmd /C

The Client Fault Tolerance Command Prefix parameter is specified with the option.CFT_COMMAND_PREFIX

Secure Client Fault Tolerance Option

The mode of client fault tolerance to be used by Universal Connector is determined by the value of the option.SECURE_CFT

Valid values for this option are and :yes no

yes will cause Universal Connector to use the mode.Secure CFT
no will cause Universal Connector to use the original mode.Pre-XBP 2.0 CFT

The default value is .yes

Client Fault Tolerance ABAP Program

The client fault tolerance ABAP program parameter is only required for secure CFT mode. If the pre-XBP 2.0 CFT mode is being used, the client
fault tolerance ABAP program parameter is ignored.

The client fault tolerance ABAP program parameter is used to specify the ABAP program to use for the command ID step. Any ABAP program
can be specified. The Universal Connector internal default ABAP program to use is BTCTEST. BTCTEST is a standard SAP ABAP program that
should be available on all SAP systems. It does no real processing and can be considered a dummy program that does not interfere with job
processing and places little overhead on the system.

https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user467

1.
2.

Client Fault Tolerance - Universal Connector Process Chains - Dummy Job with Log ID and Command
ID Job Steps

Overview
Pre-XBP 2.0 CFT Mode
Secure CFT Mode

Overview

Universal Connector creates a dummy Command ID job using the process chain's chain ID as a job name.

Two steps are created for the job:

Log ID step to store the log ID of the associated process chain instance.
Command ID step to store the Universal Connector Command ID.

The dummy job is never started by Universal Connector. It is just used to associate the Universal Command ID process chain Unit of work with a
specific SAP process chain instance.

Pre-XBP 2.0 CFT Mode

In pre-XBP 2.0 CFT mode, the Universal Connector Log ID and Command ID Job Steps are defined as external program steps. A string
containing the process chain log ID is inserted in the parameter field of the log ID step and a string containing the command ID is inserted in the
parameter field of the Command ID step.

Secure CFT Mode

In secure CFT mode, the Universal Connector log ID and command ID steps are defined as ABAP job steps. The ABAP program defined to the
log ID and command ID steps is user configurable. Any ABAP program can be specified. The Universal Connector internal default ABAP program
to use is BTCTEST. BTCTEST is a standard SAP ABAP program that should be available on all SAP systems. It does no real processing and can
be considered a dummy program that does not interfere with job processing and places little overhead on the system.

Universal Agent 6.6.x User Guide

 / ua-66x-user468

Client Fault Tolerance - Universal Connector Process Chains - Command Identifier

Command Identifier

Universal Connector requests client fault tolerance by providing a command identifier. The command identifier is specified on the command line
with parameter . The command ID/chain ID pair identifies the unit of work being executed.-cmdid

The command ID option provides a command identifier that (paired with chain ID) uniquely identifies the SAP process chain on the SAP system.
When a Universal Connector job is restarted, it must provide the same command ID identifying the SAP process chain with which it wants to
reconnect.

Providing a unique command ID is not trivial. Many Universal Connector clients may be executing on many different hosts, all executing work on
the same SAP system. It is possible for a Universal Connector client to start a restartable job from one host, terminate, and restart on a
completely different host.

The command ID value can be any text value up to 245 characters in length. In practical terms, the character set and limits on command line
length of the Universal Connector host may impose further restrictions on the value.

Universal Agent 6.6.x User Guide

 / ua-66x-user469

Client Fault Tolerance - Universal Connector Process Chains - Requesting Restart

Requesting Restart
Controlling Auto Restart

Requesting Restart

When a restartable Universal Connector command is initiated, it is either an initial instance or a restarted instance of a command ID.

The option is specified on the command line with parameter . RESTART specifies whether or not the Universal ConnectorRESTART -restart
command instance is requesting a restart of a previous command ID. Possible RESTART values are , , or .yes no auto

The value specifies that if there is no existing command ID job on the SAP system, consider this Universal Connector execution the firstauto
instance. If there is an existing command ID job, consider this a restart of the command ID. The value permits automatic restart byauto
eliminating the need to modify the RESTART value for the initial instance and restarted instance.

It is important to note that when using the RESTART value, Universal Connector will not start a new instance of a process chain on the SAPauto
system if a job matching the chain ID/command ID exists in the SAP system. Universal Connector will continue to reconnect to the existing SAP
process chain.

Without considering the behavior resulting from the use of RESTART , it may be possible for one to assume that a process chain has beenauto
run multiple times when, in fact, Universal Connector has been reconnecting to the same process chain instance. Informational messages are
printed by Universal Connector to standard error to indicate the reconnected status but, if the message level is not set to , the messages willinfo
not be seen.

It is also important to note that in the context of client fault tolerant process chain commands, the term refers to the logical unit of workRESTART
that involves the Universal Connector and the SAP process chain instance. A restart of this logical unit of work does not necessarily restart the
process chain instance on the SAP system. The restart alone is actually a "reconnect" to the process chain instance. In order to actually restart
the process chain instance on the SAP system, the configuration option must be added to the command line (-force yes).FORCE

Controlling Auto Restart

Misunderstanding the auto restart behavior described above can potentially have serious consequences. For this reason, the
 lets you allow or disallow the use of auto restart. You can make this specification in the Universal ConnectorALLOW_AUTO_RESTART

configuration file and override it on the command line.

https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/FORCE+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/ALLOW_AUTO_RESTART+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user470

Sample Command Lines For Working With Client Fault Tolerance

Sample Command Lines For Working With Client Fault Tolerance

Working With Job Definition Files
Working With Pre-defined SAP Jobs

Universal Agent 6.6.x User Guide

 / ua-66x-user471

Working With Job Definition Files

Initial Run of a Command ID Job
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Restart of a Command ID Job
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Run a Command ID Job Using Restart AUTO
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Initial Run of a Command ID Job

The following examples will submit, start, and wait for the command ID job defined in job definition file . Because the RESTART option isjobdef
set to , Universal Connector will scan the SAP system to ensure that a command ID job with the same job name/command ID pair does notno
already exist on the system.

If a matching command ID job is found on the SAP system, Universal Connector will exit with an error code before performing the job submission.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cft_secure_cft no
 -cft_target_host pwdf0196 -cft_cmd_prefix "cmd /C" -cmdid E8E8E80001 -restart no

Note
The Client Fault Tolerance Command ID Prefix () is set up for a Windows host. In many user environments, the-cft_cmd_prefix
Client Fault Tolerance Command ID Prefix option can be specified in the configuration file and will never need to be specified on
the command line. The same is true for the Client Fault Tolerance Target Host option (). The secure CFT option-cft_target_host
() also would be set in the configuration file in most cases.-cft_secure_cft

Secure CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cft_secure_cft yes
 -cft_abap BTCTEST -cmdid E8E8E80001 -restart no

Note
In secure CFT mode, the () and () parameters would most likely be specified in the Universal Connector-cft_secure_cft -cft_abap
configuration file.

Command Line Options

Command line options used in these examples are:

Command Options Description

-userid Remote user ID with which to execute the command.

https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_ABAP_PROGRAM+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user472

-pwd Password for the user ID.

-submit Defines a job to the SAP system.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

-cft_target_host In pre-XBP 2.0 CFT mode, the target host to use for the command ID job step when the command ID
option is used.

-cft_cmd_prefix In pre-XBP 2.0 CFT mode, the prefix command required for the operating system of the target host.

-cft_abap ABAP program to use for the command ID job step.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

Restart of a Command ID Job

In the following examples, Universal Connector is requested to restart command ID job E8E8E80001. Universal Connector will first parse the
 file to determine the jobname, and then scan the SAP system for a matching command ID job.jobdef

If a matching command ID job is found, Universal Connector reconnects to that job and satisfies the command line requirements. In this case, that
means that if the job has not yet been started, it will be started, Universal Connector will wait for the job to complete (if it has not already), and the
output will be returned.

If no matching command ID job is found, Universal Connector will terminate with an error code. Appropriate informational messages will be
printed to standard error.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cmdid E8E8E80001 -restart yes
 -cft_secure_cft no

Secure CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cmdid E8E8E80001 -restart yes
 -cft_secure_cft yes

Command Line Options

Command line options used in these examples are:

Command Options Description

https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_ABAP_PROGRAM+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user473

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-submit Defines a job to the SAP system.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

Run a Command ID Job Using Restart AUTO

In the following examples, Universal Connector will first scan the SAP system to determine if a matching command ID job exists.

If no matching command ID job is found, Universal Connector considers this to be the initial instance of this command ID job and defines the new
command ID job to the SAP system. If a matching command ID job is found, Universal Connector reconnects with the existing SAP job.

After determining if the command ID job is initial or a restart, Universal Connector satisfies the command line requirements.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cft_target_host pwdf0196
 -cft_cmd_prefix "cmd /C" -cmdid E8E8E80001 -restart auto -cft_secure_cft no

Secure CFT Mode

usap -userid bob -pwd secret -submit jobdef -start -wait -cmdid E8E8E80001 -restart auto
 -cft_secure_cft yes

Command Line Options

Command line options used in these examples are:

Command Options Description

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user474

-submit Defines a job to the SAP system.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

-cft_target_host In pre-XBP 2.0 CFT mode, the target host to use for the command ID job step when the command ID
option is used.

-cft_cmd_prefix In pre-XBP 2.0 CFT mode, the prefix command required for the operating system of the target host.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user475

Working With Pre-defined SAP Jobs

Initial Run of a Command ID Job
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Restart of a Command ID Job
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Run a Command ID Job Using Restart AUTO
Pre-XBP 2.0 CFT Mode
Secure CFT Mode
Command Line Options

Initial Run of a Command ID Job

The following examples will submit, start, and wait for the command ID job defined in the pre-existing SAP job with job name 'JOB_A' and job ID
19561301. Because the RESTART option is set to , Universal Connector will scan the SAP system to ensure that a command ID job with theno
same job name/command ID pair does not already exist on the system.

If a matching command ID job is found on the SAP system, Universal Connector will exit with an error code before performing the job submission.

Note that the Client Fault Tolerance Command ID Prefix is set up for a Windows host. In many user environments, the Client Fault Tolerance
Command ID Prefix parameter can be specified in the configuration file and will never need to be specified on the command line. The same may
be true for the Client Fault Tolerance Target Host parameter.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cft_target_host pwdf0196 -cft_cmd_prefix "cmd /C" -cmdid E8E8E80001 -restart no
 -cft_secure_cft no

Note
The Client Fault Tolerance Command ID Prefix is set up for a Windows host. In many user environments, the Client Fault
Tolerance Command ID Prefix parameter can be specified in the configuration file and will never need to be specified on the
command line. The same may be true for the Client Fault Tolerance Target Host parameter.

Secure CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cft_secure_cft yes -cft_abap BTCTEST -cmdid E8E8E80001 -restart no

Note
In secure CFT mode, the and parameters would most likely be specified in the Universal Connectorcft_secure_cft cft_abap
configuration file.

Command Line Options

Command line options used in these examples are:

Command Options Description

Universal Agent 6.6.x User Guide

 / ua-66x-user476

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-submit Defines a job to the SAP system.

-jobname Name of the SAP job.

-jobid Job ID of the SAP job.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cft_target_host In pre-XBP 2.0 CFT mode, the target host to use for the command ID job step when the command ID
option is used.

-cft_cmd_prefix In pre-XBP 2.0 CFT mode, the prefix command required for the operating system of the target host.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

Restart of a Command ID Job

In the following example, Universal Connector is requested to restart command ID job E8E8E80001. Universal Connector will scan the SAP
system for a matching command ID job.

If a matching command ID job is found, Universal Connector reconnects to that job and satisfies the command line requirements. In this case, that
means that if the job has not yet been started, it will be started, Universal Connector will wait for the job to complete (if it hasn't already), and the
output will be returned.

If no matching command ID job is found, Universal Connector will terminate with an error code. Appropriate informational messages will be
printed to standard error.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cmdid E8E8E80001 -restart yes -cft_secure_cft no

Secure CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cmdid E8E8E80001 -restart yes -cft_secure_cft yes

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user477

Command Line Options

Command line options used in these examples are:

Command Options Description

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-submit Defines a job to the SAP system.

-jobname Name of the SAP job.

-jobid Job ID of the SAP job.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

Run a Command ID Job Using Restart AUTO

In the following examples, Universal Connector will first scan the SAP system to determine if a matching command ID job exists.

If no matching command ID job is found, Universal Connector considers this to be the initial instance of this command ID job and defines the new
command ID job to the SAP system. If a matching command ID job is found, Universal Connector reconnects with the existing SAP job.

After determining if the command ID job is initial or a restart, Universal Connector satisfies the command line requirements.

Pre-XBP 2.0 CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cft_target_host pwdf0196 -cft_cmd_prefix "cmd /C" -cmdid E8E8E80001 -restart auto
 -cft_secure_cft no

Secure CFT Mode

usap -userid bob -pwd secret -submit -jobname JOB_A -jobid 19561301 -start -wait
 -cmdid E8E8E80001 -restart auto -cft_secure_cft yes

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user478

Command Line Options

Command line options used in these examples are:

Command Options Description

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

-submit Defines a job to the SAP system.

-jobname Name of the SAP job.

-jobid Job ID of the SAP job.

-start Starts the newly defined job.

-wait Wait for the SAP job to complete processing.

-cft_target_host In pre-XBP 2.0 CFT mode, the target host to use for the command ID job step when the command ID
option is used.

-cft_cmd_prefix In pre-XBP 2.0 CFT mode, the prefix command required for the operating system of the target host.

-cmdid Identifier used to identify the unit of work represented by a USAP command and the associated SAP job.

-restart Specification for whether or not this execution of Universal Connector is a restart of a previous client fault
tolerant Universal Connector command.

-cft_secure_cft Mode of client fault tolerance to be used for the command invocation.

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/PASSWORD+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SUBMIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_NAME+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/JOB_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/WAIT+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_TARGET_HOST+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/CFT_COMMAND_PREFIX+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SECURE_CFT+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user479

Implementing Fault Tolerance - Examples

Implementing Fault Tolerance - Examples

Implementing Manager Fault Tolerance for Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user480

Implementing Manager Fault Tolerance for Windows

Implementing Manager Fault Tolerance for Windows
Command Line Options
Components

Implementing Manager Fault Tolerance for Windows

The following figure illustrates how to activate manager fault tolerance. A unique command id is always required for manager fault tolerance.

ucmd -script script.file -host dallas -encryptedfile encrypted.file
 -managerft yes -cmdid uniquejobname -restart auto

The command is sent to a remote system, , for execution. The output of the script is redirected back to the UCMD process. Additionaldallas
command line options are read from the encrypted file, . Manager fault tolerance is turned on. A unique command ID, encrypted.file

, is coded to identify the process.uniquejobname

Restart is detected automatically. If an executing or pending command ID exists, a reconnect is performed. If not, the process is started as if new.

Command Line Options

The command line options used in this example are:

Options Description

-script File from which to read a script file. The script file is sent to the remote system for execution.

-host Directs the command to a computer with a host name of .dallas

-encryptedfile File from which to read an encrypted command options file.

-managerft Specification for whether or not the manager fault tolerant feature is used.

-cmdid Unique command ID associated the unit of work.

-restart Specification for whether or not the manager is requesting restart.

Components

Universal Command Manager for Windows

https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MANAGER_FAULT_TOLERANT+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/RESTART+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+Windows

Universal Agent 6.6.x User Guide

 / ua-66x-user481

1.
2.
3.

Monitoring and Alerting

Overview
Monitoring of All Agents

Monitored Information
Polling
Alerts

Querying for Job Status and Activity
Additional Information

Overview

The Monitoring and Alerting feature of Universal Agent provides for the monitoring the status and activity of all Universal Automation Center
Agents in an enterprise and the posting of alerts regarding the statuses.

Monitoring is provided through continuous or by of a specific Agent.Monitoring of All Agents Querying for Job Status and Activity

Monitoring of All Agents

Universal Agent provides for the continuous monitoring of all Agents in an enterprise through its component.Universal Enterprise Controller

Monitored Information

Universal Agent monitors for three types of information:

Alerts for all Agents and SAP systems being monitored
Jobs (active, completed, and failed) for all Agents being monitored
Systems (Agents and SAP systems) being monitored

This information can be viewed via the UEC client application.I-Activity Monitor

Polling

Universal Agent periodically polls each Agent and SAP system in an enterprise in order to retrieve its status information.

It determines whether or not a change in status of the Agent or SAP system has occurred since the last poll. If the status has changed, it sends
this information to the .I-Activity Monitor

Alerts

Universal Agent sends out alerts to any connected Agent-monitoring applications whenever:

Agent is unreachable.
Agent is not responding.
Agent component enters an orphaned or disconnected state.

These alerts are posted to the:

Event Log (when running under Windows)
Console (when running under z/OS)

Automation tools can be used in conjunction with these messages to perform operations based on agent failures.

Querying for Job Status and Activity

Universal Agent has the ability to query any specific in an enterprise for Broker-related, and active component-related, activityUniversal Broker
via the utility.Universal Query

Universal Query returns information for a Universal Broker that is installed on the host, as specified by configuration options on the command line
or in a configuration file. Information regarding the components managed by a particular Universal Broker also can be requested.

https://www.stonebranch.com/confluence/display/UA66/Universal+Enterprise+Controller+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/I-Activity+Monitor
https://www.stonebranch.com/confluence/display/UA66/I-Activity+Monitor
https://www.stonebranch.com/confluence/display/UA66/Universal+Broker+6.6.x+Reference+Guide
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user482

Universal Query registers with a locally running Universal Broker. Consequentially, a Universal Broker must be running in order for a Universal
Query to execute.

Additional Information

The following pages provide additional detailed information for Monitoring and Alerting:

Monitoring and Alerting - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user483

Universal Query - zOS

Universal Query for z/OS

The Universal Query utility is used to list all active components on a remote server.

The output will be written to the DD statement.SYSPRINT

//S1 EXEC UQRYPRC
//SYSIN DD *
-host dallas
/*

All active component information for server will be written to DD statement .dallas SYSOUT

SYSIN Option

The SYSIN option used in this example is:

Option Description

-host Directs the command to a computer with a host name of .dallas

Components

Universal Query

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UQUERY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user484

Universal Query - UNIX and Windows

Universal Query for UNIX and Windows

The Universal Query utility is used to list all active components on a remote server.

The output will be written to stdout.

uquery -host localhost

All active component information for the server will be written to stdout.localhost

Command Line Option

The command line option used in this example is:

Option Description

-host Directs the command to the .localhost

Components

Universal Query

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UQUERY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user485

Universal Query - IBM i

Universal Query for IBM i

The Universal Query utility is used to list all active components on a remote server.

The output will be written to stdout.

STRUQR HOST(localhost) PORT(4990)

This command provides active component information for the server listening on port 4990 will be written to stdout.localhost

STRUQR HOST(fortworth)

This command provides active component information from the server listening on the default port 7887.fortworth

Command Line Options

The command line options used in these examples are:

Option Description

HOST Directs the command to the .localhost

PORT TCP port on the remote server.

Components

Universal Query

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UQUERY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_PORT+-+UQUERY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user486

Universal Query - HP NonStop

Universal Query for HP NonStop

The Universal Query utility is used to list all active components on a remote server.

The output will be written to stdout.

run $SYSTEM.UNVBIN.uquery -host localhost

All active component information for the server will be written to stdout.localhost

Command Line Option

The command line option used in this example is:

Option Description

-host Directs the command to the .localhost

Components

Universal Query

https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UQUERY+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user487

Universal Query - Output

Universal Query - Output

The following figure illustrates an example of the output generated by the execution of the Universal Query utility.

This sample output is from the execution of Universal Query to host using a NORMAL report.dallas.domain.com

 Universal Query Report
 for
 Thu 06 Sep 2018 05:54:00 PM EDT

 host: 10.20.30.40 port: 7887 ping: NO report: NORMAL

 Ubroker Host Name.....:
 Ubroker IP Address....: *
 Ubroker Host Port.....: 7887
 Ubroker Description...: Universal Broker
 Ubroker Version.......: 6.5.0 Level 0 Release Build 108
 Ubroker Service.......: ubroker
 Ubroker Status........: Active
 Ubroker Managed.......: NO
 Ubroker Start Time....: 03:35:52 PM
 Ubroker Start Date....: 09/06/2018
 UAG Netname(s)........: LX3RH7X64

 Component ID..............: 1121367481
 Component Name............: ucmd
 Component Description.....: Universal Command Server
 Component Version.........: 6.5.0 Level 0 Release Build 108
 Component Type............: ucmd
 Component Process ID......: 773
 Component Start Time......: 05:53:39 PM
 Component Start Date......: 09/06/2018
 Component Command ID......: sleep 60
 Component State...........: REGISTERED
 Component MGR UID.........: ucuser
 Component MGR Work ID.....: PID12890
 Component MGR Host Name...: dallas.domain.com
 Component MGR IP Address..: 10.20.30.34
 Component MGR Port........: 49082
 Component Comm State......: ESTABLISHED
 Component Comm State Time.: 05:53:41 PM
 Component Comm State Date.: 09/06/2018
 Component MGR Restartable.: NO
 Component Comment.........: Sleep for 60 secs on dallas

Components

Universal Query

https://www.stonebranch.com/confluence/display/UA66/Universal+Query

Universal Agent 6.6.x User Guide

 / ua-66x-user488

Monitoring and Alerting - Examples

Examples

Universal Query - Output
Universal Query - z/OS
Universal Query - UNIX and Windows
Universal Query - IBM i
Universal Query - HP NonStop

Note
The IBM i example references the IBM i command by its untagged name. If you are using commands with tagged names to run

, substitute the tagged name for this untagged name. (For information on tagged names, see Universal Query UCHGRLS
.)(Change Release Tag) Program

https://www.stonebranch.com/confluence/display/UA66/Universal+Query
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user489

1.
2.

Messaging and Auditing

Overview

All Universal Agent components have the same message facilities. Messages — in this context — are text messages written to a console, file, or
system log that:

Document the actions taken by a program.
Inform users of error conditions encountered by a program.

These pages describe the message and audit facilities that are common to all Universal Agent components. (See the individual Universal Agent
component documentation for detailed technical information.)

Detailed Information

The following pages provide detailed information for Messaging and Auditing::

Messaging
Auditing
Creating Write-to-Operator Messages - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user490

Messaging

Message Types
Message ID
Message Levels
Message Destinations

z/OS Message Destinations
Windows Message Destinations
UNIX Message Destinations
IBM i Message Destinations
HP NonStop Message Destinations

Message Types

There are six types (or severity levels) of Universal Agent messages. (The severity level is based on the type of information provided by those
messages.)

Audit Document the configuration options used by the program's execution and resource allocation details. They provide complete
description of the program execution for auditing and problem resolution.

Informational Document the actions being taken by a program. They help determine the current stage of processing for a program. They also
document statistics about data processed.

Warning Document unexpected behavior that may cause or indicate a problem.

Error Document program errors. They provide diagnostic data to help identify the cause of the problem.

Diagnostic Document diagnostic information for problem resolution.

Alert Document a notification that a communications issue, which does not disrupt the program or require action, has occurred.

The MESSAGE_LEVEL configuration option in each Universal Agent component lets you specify which messages are written (see Message
, below).Levels

For a description of all Universal Agent messages, see .Messages and Codes

Message ID

Each message is prefixed with a message ID that identifies the message.

The message ID format is pppnnnnl, where:

ppp is the product category identifier:
UAG (Universal Automation Center Agent Components)
UNV (Universal Components)

nnnn is the message number.
l is the message type (severity level):

A (Audit)
I (Informational)
W (Warning)
E (Error)
D (Diagnostic)
T (alerT)

Message Levels

Each Universal Agent component includes a MESSAGE_LEVEL configuration option that lets you select which types (severity levels) of
messages are to be written.

Audit specifies that all audit, informational, warning, and error messages are to be written.
Informational specifies that all informational, warning, and error messages are to be written.
Warning specifies that all warning and error messages are to be written.
Error specifies that all error messages are to be written.
Trace specifies that a trace file is created, to which data used for program analysis will be written. The trace file name and location are
component-dependent (see the appropriate Universal Agent component documentation for details).
(Trace should be used only at the request of Stonebranch, Inc. Customer Support.)

https://www.stonebranch.com/confluence/display/UA66/Universal+Agent+6.6.x+Messages+and+Codes

Universal Agent 6.6.x User Guide

 / ua-66x-user491

Note
Diagnostic and Alert messages always are written, regardless of the level selected in the MESSAGE_LEVEL option.

Message Destinations

The location to which messages are written is the message destination.

Some Universal Agent components have a MESSAGE_DESTINATION configuration option that specifies the message destination. If a program
is used only from the command line or batch job, it may have only one message destination, such as standard error.

Valid message destination values depend on the host operating system.

z/OS Message Destinations

Universal Agent on z/OS run as batch jobs or started tasks. Batch jobs do not provide the MESSAGE_DESTINATION option. All messages are
written to the ddname.SYSOUT

Started task message destinations are listed in the following table.

Destination Description

LOGFILE Messages are written to ddname UNVLOG.

All messages written to log files include a date and time stamp and the program's USS process ID.

SYSTEM Messages are written to the console log as WTO messages.

Windows Message Destinations

Message destinations are listed in the following table.

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.

Log files are written to product specific log directories, which can be modified with the LOG_DIRECTORY option. All messages
written to log files include a date and time stamp and the program's process ID.

SYSTEM Messages are written to the Windows Application Event Log.

UNIX Message Destinations

Message destinations are listed in the following table.

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.

The recommended directory for log files is . This can be changed with the LOG_DIRECTORY/var/opt/universal/log
option. All messages written to log files include a date and time stamp and the program's process ID.

SYSTEM Messages are written to the daemon. Not all programs provide this destination.syslog

Universal programs that execute as daemons write to the 's daemon facility. All messages include the programs processsyslog
ID. If an error occurs writing to the , the message is written to the system console.syslog

IBM i Message Destinations

Message destinations are listed in the following table.

Universal Agent 6.6.x User Guide

 / ua-66x-user492

Destination Description

STDERR Messages are written to standard error. A batch job's standard error file is allocated to the print file QPRINT.

LOGFILE Messages are written to the job's job log.

SYSTEM Messages are written to the system operator message queue QSYSOPR.

HP NonStop Message Destinations

Message destinations are listed in the following table.

Destination Description

STDERR Messages are written to standard error.

LOGFILE Messages are written to a log file. Not all programs provide this destination.

Log files are written the subvolume. All messages written to log files include a date and time stamp and the$SYSTEM.UNVLOG
program's process ID.

Universal Agent 6.6.x User Guide

 / ua-66x-user493

Auditing

Auditing

Within Universal Agent, an event is the occurrence of some action or condition at a particular location in the computer network and at a particular
time at that location. There are a number of different types of events, such as the start of a Universal Agent component, a user authentication
failure, or a file transfer completion.

The (UES) provides the means by which Universal Agent components generate data about those events and, in aUniversal Event Subsystem
single repository, have those events recorded. This collection of recorded events (that is, the event records) is maintained in the UES database
and archived to external storage. It represent the work and activity of all distributed workload managed by Universal Agent components.

Universal Agent consists of a set of components distributed across a computer network. The components work together to perform some unit of
work. The components that are working together have an association that must be maintained in the event data. For that reason, UES event
records not only include information about the event, but also information about associations between the components reporting the events.

Universal Enterprise Controller (UEC) maintains a central UES database for all event data within its domain of responsibility. The UES database
contains all UES event records collected by UEC from Universal Broker components that are defined to it. The UES database provides
medium-term persistent storage for the UES events. Periodically, the UES database events must be exported to long-term storage in order to
maintain a historical record of events. If the export is not performed periodically, the UES database will continue to grow and eventually exhaust
all disk space available to it.

Examples of components and their associations are:

Universal Command Manager is associated with a remote Universal Command Server, and the Universal Command Server is associated
with the job process it has started on behalf of the Universal Command Manager.
Universal Data Mover Manager is associated with a remote Universal Data Mover Server, and the Universal Data Mover Server is
associated with a file being transferred on behalf of the Universal Data Mover Manager.

The components and their associations partly define the Universal Agent architecture. This section provides the necessary understanding of the
Universal Agent architecture as presented by the UES event data.

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Subsystem

Universal Agent 6.6.x User Guide

 / ua-66x-user494

Creating Write-to-Operator Messages - Examples

Creating Write-to-Operator Messages - Examples

Issue WTO Message to z/OS Console
Issue WTO Message to z/OS Console and Wait for Reply

Universal Agent 6.6.x User Guide

 / ua-66x-user495

Issue WTO Message to zOS Console

Issue WTO Message to z/OS Console

The following illustrates the issuing of a WTO message to the z/OS console.

No reply is required.

uwto -msg "This message is written to the Console"

The message text " " will be written to the default z/OS consoles.This message is written to the Console

SYSIN Options

The SYSIN option used in this example is:

Option Description

-msg Text to write to the z/OS operator console. The text is written as a single-line WTO or WTOR message.

Components

Universal Write-to-Operator

https://www.stonebranch.com/confluence/display/UA66/MESSAGE+-+UWTO+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Write-to-Operator

Universal Agent 6.6.x User Guide

 / ua-66x-user496

Issue WTO Message to zOS Console and Wait for Reply

Issue WTO Message to z/OS Console and Wait for Reply

The following illustrates the issuing of a WTOR message to the z/OS console.

A reply is required.

uwto -msg "This message is written to the Console" -reply yes -timeout 120

The message text " " will be written to the default z/OS consoles.This message is written to the Console

The process will wait 120 seconds for a required reply. If a reply is not received within this time, the WTOR message is deleted and Universal
WTO ends with exit code 2. The reply length is limited to 119 characters. The reply is written to UWTO's standard output file.

Note
A valid operator reply to a WTOR message can be zero characters. In this case, nothing is written to stdout.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-msg Text to write to the z/OS operator console. The text is written as a single-line WTO or WTOR message.

-reply Directs Universal WTO to issue a WTOR message and wait for an operator reply to the message.

-timeout Number of seconds to wait for a WTOR operator reply.

If a reply is not received within this time, the WTOR message is deleted and UWTO ends with exit code 2.

Default is 0 (wait indefinitely).

Components

Universal Write-to-Operator

https://www.stonebranch.com/confluence/display/UA66/MESSAGE+-+UWTO+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REPLY+-+UWTO+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TIMEOUT+-+UWTO+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Write-to-Operator

Universal Agent 6.6.x User Guide

 / ua-66x-user497

1.
2.

1.
2.
3.

Message Translation

Overview
Usage

Translation Table
Matching Algorithm

Additional Information

Overview

Universal Agent component error messages are translated - by the (UMET) utility - into return (exit) codes basedUniversal Message Translator
on a user-defined translation table.

Every command ends with a return code that indicates the success or failure of the command execution. Typically, a return code of 0 indicates
success; all other codes indicate failure.

However, a small number of commands do not set their return code under failure conditions; instead, they issue error messages. Based on the
user-defined translation table, Universal Message Translator translates these error messages into return codes.

Usage

Universal Message Translator requires two input files:

Message Input file (user-specified or standard input) containing the error messages that are to be translated into a return codes.
Translation Table file containing the user-defined translation table that controls the error message-to-return code translation process.

To perform a translation, Universal Message Translator:

Reads the messages in the input file.
Matches each line against the translation table entries.
Exits with an return code from the best match in the translation table.

If no match is found, Universal Message Translator ends with return code 0.

Universal Message Translator performs operations specified by the configuration options. This section describes each option and their syntax.

Translation Table

The translation table specifies:

Text to search for.
Return code associated with the text.
Precedence when multiple matches are found.

Translation Table Format

The translation table consists of one or more lines.

Each line is either:

Comment line (# in column one)
Blank line (ignored)
Translation table entry

Translation table entries consist of two fields separated by spaces or tabs. An entry cannot be continued onto multiple lines.

Translation Table Fields

Field Description

https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user498

Message
Mask

Selects which messages to match in the input file. The mask must be enclosed in double () quotation marks."

Mask characters include the asterisks () and the question mark (). The asterisk matches 0 or more characters and the question* ?
mark matches one character.

If an asterisk, question mark, or quotation mark is required in the message text, it must be preceded with a back slash (). If a back\
slash is required in the message text, it must be preceded by another back slash.

Exit
Code

Specifies an integer value that UMET exits with if this entry is the resulting match.

The exit code is in the range of -99999 to 99999.

Matching Algorithm

The input file is read line by line. For each line, the line is compared to each entry in the translation table. All the matching entries are saved.

After the entire input file is read, the matched entries from the translation table are sorted in ascending order by their line number in the translation
table. The first entry in this sorted list is the resulting translation table entry. The exit code from the resulting translation table entry is used as the
return code of UMET. If no matching entry is found, UMET exits with 0.

IBM i

The resulting return code from the translation process is converted into an IBM i escape message.

The escape message ID and message severity depend on the return code value as identified in the following table.

Return Code Message ID Message Severity

1 - 10 UNV0344 10

11 - 20 UNV0345 20

21 - 30 UNV0346 30

31 and higher UNV0347 40

Additional Information

The following pages provide additional detailed information for Message Translation:

Message Translation - Examples

Universal Agent 6.6.x User Guide

 / ua-66x-user499

Message Translation - Examples

Examples

Examples

Translating Error Messages
Execute Universal Message Translator from zOS
Execute UMET from zOS Manager (with Table on Remote Server)
Execute UMET from zOS Manager (with Table on zOS)
Execute Universal Message Translator from Windows
Execute Universal Message Translator from UNIX
Execute Universal Message Translator from IBM i
Execute Universal Message Translator from HP NonStop

Note
The IBM i example references the IBM i command by its untagged name. If you are using commands with tagged names to run

, substitute the tagged name for this untagged name. (For information on tagged names, see Universal Message Translator
.)UCHGRLS (Change Release Tag) Program

https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator
https://www.stonebranch.com/confluence/display/UA66/IBM+i+Installation+-+UCHGRLS+%28Change+Release+Tag%29+Program

Universal Agent 6.6.x User Guide

 / ua-66x-user500

Translating Error Messages

Example 1
Example 2

Components

Note
These examples are not specific to any particular operating system.

Example 1

In this example, a command generates the following file.stderr

Error opening rc file /etc/arc.rc
No rc file opened.
Ending due to error.

From the contents of the message file, we can see that the program failed to open a resource configuration file.

Either of the following translation tables could match error messages in the message file. Message masks should be general enough to match a
set of error messages.

Translation Table 1

UMET Translation Table 1
#
Message Mask Exit Code
------------ ---------
 "*error*" 8

Translation Table 1 will result in a match if any input line contains the word . The resulting exit code will be if a match occurs.error 8

Translation Table 2

UMET Translation Table 2
#
Message Mask Exit Code
------------ ---------
 "Ending due to error." 8

Translation Table 2 will result in a match only if the exact message text appears as a line in the input file. This is less"Ending due to error."
general, but may be sufficient for this command.

Example 2

(This example continues from Example 1.)

In this example, the command now generates the following file.stderr

Error opening rc file /etc/arc.rc
Processing rc file /usr/etc/arc.rc
Ending successfully

From the contents of the message file, we can see that the program failed to open a resource configuration file , but successfully/etc/arc.rc
opened file ./usr/etc/arc.rc

Translation table

Universal Agent 6.6.x User Guide

 / ua-66x-user501

The following translation table is one of many that could match error messages in the message file.

UMET Translation Table 1
#
Message Mask Exit Code
------------ ---------
 "Ending due to error." 8
 "Processing rc file *" 0
 "Error opening rc file *" 8

Translation Table 1 contains three entries:

First entry matches against a specific error message that always indicates an error if present.
Second and third entries match messages produced by resource configuration file processing.

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user502

Execute Universal Message Translator from zOS

Execute Universal Message Translator from z/OS
PARM Options
Components

Execute Universal Message Translator from z/OS

The following figure illustrates the execution of Universal Message Translator from z/OS.

//S1 EXEC PGM=UMET,PARM='-table tabledd -level verbose'
//STEPLIB DD DISP=SHR,DSN=hlq.UNV.SUNVLOAD
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//TABLEDD DD *
"*ERROR*" 8
"*WARN*" 4
"*ERROR*" 7
/*
//SYSIN DD *
THIS IS AN ERROR MESSAGE RESULTING IN RETURN CODE 8.
/*

The option points to the DD statement , which defines the return codes to end this process based on matching text. The first-table TABLEDD
column defines the text to match; the second defines the return code to set if the matching text exists in the DD.SYSIN

The option turns on messaging. All messages will be written to . The DD statement points to the text file to be-level SYSPRINT SYSIN
interrogated.

PARM Options

The PARM options used in this example are:

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user503

Execute UMET from zOS Manager (with Table on Remote Server)

Execute Universal Message Translator from z/OS Manager (in a Script with Table Housed on Remote Server)
Script Options
SYSIN Options
Components

Execute Universal Message Translator from z/OS Manager (in a Script with Table Housed on Remote
Server)

The following figure illustrates the execution of Universal Message Translator from a z/OS Universal Command Manager.

//S1 EXEC UCMDPRC
//SCRIPTDD DD *
/opt/universal/ucmdsrv-2.2.0/bin/umet -file /home/log.file -table\
/home/umet.table -level verbose
/*
//SYSIN DD *
-host dallas
-script SCRIPTDD
-userid joe
-pwd abcdefg
/*

Universal Message Translator is executed in order to interrogate a log file and set the return code based on the translation table.

Since the command spans two lines, the native operating system continuation character must be used:

\ for UNIX
¬ for Windows

The full path to the Universal Message Translator executable must be specified for UNIX if the path is not part of the user's profile.

Script Options

The script options used in this example are:

Option Description

-file Input message file name. If the option is not specified, UMET reads its input from .stdin

-table Translation table file name.

-level Level of messages that will be displayed.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD

https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user504

Manager for execution

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

Universal Command Manager for z/OS

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user505

Execute UMET from zOS Manager (with Table on zOS)

Execute Universal Message Translator from z/OS Manager (in a Script with Table Housed on z/OS)
Script Options
SYSIN Options
Components

Execute Universal Message Translator from z/OS Manager (in a Script with Table Housed on z/OS)

The following figure illustrates the execution of Universal Message Translator from a z/OS Universal Command Manager.

//S1 EXEC UCMDPRC
//UNVIN DD DISP=SHR,DSN=hlq.umet.table
//SCRIPTDD DD *
UCOPY > c:\temp\umet.table
umet -table c:\temp\umet.table -file c:\temp\bkup.log -level verbose
/*
//SYSIN DD *
-host dallas
-script SCRIPTDD
-userid joe
-pwd abcdefg
/*

The message table is stored and maintained on z/OS and copied down to the server upon execution. The option points to the table of-table
defined return codes based on text. The option points to the text file to be interrogated.-file

The first command copies the messages table from the DD of the manager process to a server file named . TheUNVIN c:\temp\umet.table
UMET program then is executed to interrogate the log file and set the return code based on the translation table.

Script Options

The script options used in this example are:

Option Description

-table Translation table file name.

-file Input message file name. If the option is not specified, UMET reads its input from .stdin

-level Level of messages that will be displayed.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-host Host name or IP address of the remote system on which to execute the script.

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD
Manager for execution

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user506

-userid Remote user ID with which to execute the command.

-pwd Password for the user ID.

Components

[Universal Command Manager for z/OS

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/USER_ID+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/USER_PASSWORD+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user507

Execute Universal Message Translator from Windows

Execute Universal Message Translator from Windows
Command Line Options
Components

Execute Universal Message Translator from Windows

The following figure illustrates the execution of Universal Message Translator from Windows.

-table c:\umettable.txt -file c:\umetfile.txt -level verbose

The option points to the file that defines the return codes with which to end this process, based on matching text.-table

The first column of the file defines the text to match; the second defines the exit code to set if the matching text exists in the file defined by the -file
option.

The option turns on messaging. All messages will be written to .-level stdout

Command Line Options

The command line options used in this example are:

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

-file Input message file name. If the option is not specified, UMET reads its input from .stdin

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user508

Execute Universal Message Translator from UNIX

Execute Universal Message Translator from UNIX
Command Line Options
Components

Execute Universal Message Translator from UNIX

The following figure illustrates the execution of Universal Message Translator from UNIX.

Although the command is shown on two lines, it should be entered on one line at the command prompt or within a script, or it can be continued
within the script with the UNIX continuation character .\

/opt/universal/ucmdsrv-2.2.0/bin/umet -table /tmp/umettable.txt -file /tmp/umetfile.txt -level verbose

The option points to the file, which defines the return codes with which to end this process, based on matching text.-table

The first column of the file defines the text to match; the second defines the return code to set if the matching text exists in the file defined by the
 option.-file

The option turns on messaging. All messages will be written to .-level stdout

Command Line Options

The command line options used in this example are:

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

-file Input message file name. If the option is not specified, UMET reads its input from .stdin

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user509

Execute Universal Message Translator from IBM i

Execute Universal Message Translator from IBM i
Command Line Options
Components

Execute Universal Message Translator from IBM i

The following example illustrates the execution of Universal Message Translator from IBM i.

STRUME MSGFILE(input_file) MSGMBR(member) TBL(table_file) TBLMBR(member) MSGLEVEL(*VERBOSE)

The option points to the file, which defines the exit codes with which to end this process, based on matching text. The first columnTBL [TBLMBR]
of the file defines the text to match; the second defines the return code to set if the matching text exists in the file defined by the MSGFILE

 option.[MSGMBR]

Diagnostic message UNV0383 and Informational message CPF9815 are issued if an error occurs during execution of the STRUME command. All
other informational messages will be written to STDOUT. To avoid messages written to stdout, either allow to default to * orMSGLEVEL warn
specify as * .MSGLEVEL error

Command Line Options

The command line options used in this example are:

Option Description

TBL [TBLMBR] Translation table file name.

MSGLEVEL Level of messages that will be displayed.

MSGFILE [MSGMBR] Input message file name. If the option is not specified, UMET reads its input from , which isstdin
allocated to the terminal for interactive jobs and to QINLINE for non-interactive jobs.

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user510

Execute Universal Message Translator from HP NonStop

Execute Universal Message Translator from HP NonStop
Command Line Options
Components

Execute Universal Message Translator from HP NonStop

The following figure illustrates the execution of Universal Message Translator from HP NonStop.

run $SYSTEM.UNVBIN.umet -table umettable -file umetfile -level verbose

The option points to the file, which defines the exit codes with which to end this process, based on matching text. The first column of the file-table
defines the text to match; the second defines the return code to set if the matching text exists in the file defined by the option. All messages-file
will be written to stdout.

Command Line Options

The command line options used in this example are:

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

-file Input message file name. If the option is not specified, UMET reads its input from .stdin

Components

Universal Message Translator

https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/TRANSLATION_TABLE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_LEVEL+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/MESSAGE_FILE+-+UMET+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Message+Translator

Universal Agent 6.6.x User Guide

 / ua-66x-user511

Network Data Transmission for Universal Agent

Introduction
Network Protocols
Detailed Information

Introduction

Distributed systems, such as Universal Agent, communicate over data networks. All Universal Agent components communicate using the TCP/IP
protocol; they do not use the UDP protocol for any product data communication over a network.

Network Protocols

Universal Agent can utilize either of two network protocols:

Secure Socket Layer Protocol
Secure Socket Layer version 3 () provides the highest level of security available. SSL is a widely used and accepted networkSSLv3
protocol for distributed software applications that are required to address all aspects of secure data transfer on private and public
networks. All Universal Agent components (version 3.x and later) use .SSLv3
Universal V2 Protocol
Universal V2 (version 2) legacy protocol, , is provided for backward compatibility with Universal Agent (formerly UniversalUNVv2
Products) versions earlier than 3.x, and when the SSL protocol resource utilization is considered too high. To ensure backward
compatibility, this protocol is still supported by version 3.x components.

In addition to the network protocol used to transmit data, Universal Agent components use an application-layer protocol, Universal Application
, to exchange data messages.Protocol

Detailed Information

The following pages provide detailed information for Network Data Transmission:

SSL (Secure Socket Layer) Protocol
Universal V2 Protocol
Universal Application Protocol
Network Data Transmission Tuning
Network Data Transmission Configurable Options

Universal Agent 6.6.x User Guide

 / ua-66x-user512

SSL (Secure Socket Layer) Protocol

Overview
Data Privacy and Integrity

Encryption Algorithms
Message Digest Algorithms
Supported SSL Cipher Suites

Peer Authentication

Overview

Universal Agent implements the SSL protocol using the OpenSSL library or the IBM z/OS System SSL library, available on the z/OS operating
system. The most recent SSL standard is version3. A subsequent version was produced, changing the name to Transport Layer Security version
1 (). is the actual protocol used by Universal Agent. is more commonly referred to simply as SSL and the term SSL is usedTLSv1 TLSv1 TLSv1
throughout the rest of this documentation to mean , unless otherwise noted.TLSv1

Subsequent SSL protocol versions have been produced. This includes Transport Layer Security version 1.2 (). is the currentTLSv1.2 TLSv1.2
default agent protocol used. However, the agent still supports and will negotiate down to to communicate with older versions of theTLSv1 TLSv1
agent. For enhanced security constraints, the agent provides ways to restrict the SSL protocol used to a minimum level and impose more strict
rules around the SSL protocol that is allowed.

The SSL protocol addresses the major challenges of communicating securely over a potentially insecure data network. This page discusses the
issue of data privacy and integrity, and peer authentication.

Data Privacy and Integrity

People with sufficient technical knowledge and access to network resources can watch or capture data transmitting across the network. What they
do with the data is up to them.

Data sent over the network that should remain private must be encrypted in a manner that unauthorized persons cannot determine what the
original data contained regardless of their level of expertise, access to network resources, amount of data captured, and amount of time they
have. The only party that should be able to read the data is the intended recipient.

As data is transmitted over the network, it passes through media and hardware of unknown quality that may erroneously change bits of data
without warning. Additionally, although data may be encrypted, there is nothing stopping a malicious person from changing the data while it is
transmitted over the network. The changed data may or may not be detected by the recipient depending on what changed and how it is
processed. It may be accepted as valid data, but the information it represents is now erroneous

Data integrity must be protected from errors in transmission and malicious users. Data integrity checks insures that what was sent is exactly what
is received by the recipient. Without integrity checks, there is no guarantee.

Encryption Algorithms

Encryption algorithms are used to encrypt data into an unreadable format. The encryption process is computationally expensive. There are a
variety of encryption algorithms, some of which perform better than others. Some algorithms offer a higher level of security than others. Typically,
the higher level of security requires more computational resources.

Message Digest Algorithms

Message digest algorithms are used to produce a Message Authentication Code (MAC) that uniquely identifies a block of data. The sender
computes a MAC for the data being sent based on a shared secret key the sender and receiver hold. The sender sends the data and the MAC to
the receiver. The receiver computes a new MAC for the received data based on the shared secret key. If the two MACs are the same, data
integrity is maintained, else the data is rejected as it has been modified.

Message digest algorithms are often referred to as MACs and can be used synonymously in most contexts.

Supported SSL Cipher Suites

The SSL standard defines a set of encryption and message digest algorithms, referred to as cipher suites, that insure data privacy and data
integrity. Cipher suites pair encryption algorithms with appropriate message digest algorithms. The two algorithms cannot be specified individually.

Universal Agent supports a subset of the complete SSL cipher suites defined by the standard. The cipher suite name is formatted as an
encryption algorithm abbreviation followed by the message digest algorithm abbreviation.

New Installations

Universal Agent 6.6.x User Guide

 / ua-66x-user513

For new installations of Universal Agent 6.3.0.1 or later, the following table identifies the supported SSL cipher suites and the default order in
which they are selected (see , below).Selecting an SSL Cipher Suite

Cipher Suite Name Description

AES256-GCM-SHA384 256-bit AES encryption in Galois Counter Mode, SHA-2 384-bit message digest.

AES256-SHA 256-bit AES encryption with SHA-1 message digest.

AES128-GCM-SHA256 128-bit AES encryption in Galois Counter Mode, SHA-2 256-bit message digest.

AES128-SHA 128-bit AES encryption with SHA-1 message digest.

RC4-SHA 128-bit RC4 encryption with SHA-1 message digest.

RC4-MD5 128-bit RC4 encryption with MD5 message digest.

DES-CBC3-SHA 128-bit Triple-DES encryption with SHA-1 message digest.

DES-CBC-SHA 128-bit DES encryption with SHA-1 message digest.

NULL-SHA256 No encryption and SHA-2 256-bit message digest.

NULL-SHA No encryption and SHA-1 message digest.

NULL-MD5 No encryption and MD5 message digest.

NULL-NULL No encryption, no data authentication, SSL is not used; instead, () is used.Universal V2 Protocol UNVv2

The NULL-* ciphers are valid for most components, with these exceptions:

Universal Broker does not offer NULL-* options for its ciphers list, but it does accept NULL-NULL when no encryption is desired.
UCTL Server and UEM Server do not allow NULL-* ciphers to be selected for their control sessions.
UDM Manager ignores the NULL-NULL cipher suite.

Upgrade Installations

For upgrade installations to Universal Agent 6.3.0.1 or later, any configured SSL cipher suite values will remain as is. The following table identifies
the supported SSL cipher suites for Agent 6.3.0.0 and earlier, and the default order in which they are selected (see Selecting an SSL Cipher Suite
, below).

Cipher Suite Name Description

AES256-SHA 256-bit AES encryption with SHA-1 message digest

AES128-SHA 128-bit AES encryption with SHA-1 message digest

RC4_SHA 128-bit RC4 encryption with SHA-1 message digest

RC4_MD5 128-bit RC4 encryption with MD5 message digest

DES_CBC3_SHA 128-bit Triple-DES encryption with SHA-1 message digest

DES_CBC_SHA 128-bit DES encryption with SHA-1 message digest

Universal Agent supports one additional cipher suite name that is not part of the SSL protocol. The NULL-NULL cipher suite turns SSL off
completely and instead uses the ().Universal V2 Protocol UNVv2

We'll continue to offer NULL-* values (i.e., no encryption, message authentication only) at the end of any default lists that currently offer them.

SSL Cipher Suites to be Deprecated

RC4_* and DES_* SSL cipher suites will be deprecated in a future release of Universal Agent.

Selecting an SSL Cipher Suite

When two Universal Agent components (for example, a UEM Manager and a UEM Server) first connect, they perform an SSL handshake that
negotiates the cipher suite to use for the session. The Manager presents a list of cipher suites (in descending order of preference) that it would
like to use. This is compared against a list of ciphers that the Server supports. The first cipher suite in common is the one used for the session.

Universal Agent 6.6.x User Guide

 / ua-66x-user514

Lists of cipher suites are helpful where a distributed software solution may cross many organizational and application boundaries, each with its
own security requirements. Instead of having to choose one cipher suite for all distributed components, the software components can be
configured with their own list of acceptable cipher suites based on their local security requirements.

When a high level of security is required, the higher CPU consuming cipher suite is justified. When lower level of security is acceptable, a lower
CPU consuming cipher suite can be used. As long as the Manager has both cipher suites in its list, it can negotiate either cipher suite with servers
of different security levels.

Peer Authentication

When communicating with a party across a data network, how do you insure that the party you are communicating with (your peer) is who you
believe? A common form of network attack is a malicious user representing themselves as another user or host.

Peer authentication insures that the peer is truly who they identify themselves as. Peer authentication applies to users, computer programs and
hardware systems.

SSL uses X.509 certificates and public and private keys to identify an entity. An entity may be a person, a program, or a system. A complete
description of X.509 certificates is beyond the scope of this documentation. provides an overview to help get the readerX.509 Certificates
oriented to the concepts, terminology and benefits.

For additional details, the following web site is recommended:

http://www.faqs.org/rfcs/rfc3280.html

https://www.stonebranch.com/confluence/display/UA66/X.509+Certificates
http://www.faqs.org/rfcs/rfc3280.html

Universal Agent 6.6.x User Guide

 / ua-66x-user515

Universal V2 Protocol

Universal V2 Protocol

The Universal V2 protocol, , is a proprietary protocol that securely and efficiently transports data across data networks. was theUNVv2 UNVv2
only supported protocol in Universal Agent (formerly Universal Products) prior to version 3 and will be available in future versions.

 addresses data privacy and integrity. It does not address peer authentication.UNVv2

Data Privacy and Integrity

Data privacy is insured with data encryption algorithms. utilizes 128-bit RC4 encryption for all data encryption.UNVv2

Data integrity is insured with message digest algorithms. utilizes 128-bit MD5 MACs for data integrity. referred to data integrity asUNVv2 UNVv2
data authentication.

Encryption and integrity may be enabled and disabled on an individual bases.

Encryption keys are generated using a proprietary key agreement algorithm. A new key is created for each and every network session.

Universal Agent 6.6.x User Guide

 / ua-66x-user516

1.

2.

1.
2.

Universal Application Protocol

Universal Application Protocol
Low-Overhead
Secure
Extensible

Universal Application Protocol

Universal Agent components use an application-layer protocol to exchange data messages. The protocol has the following characteristics:

Low-Overhead
Secure
Extensible
Configurable Options

The following information refers to two categories of data transmitted by Universal Agent:

Control data (or messages) consists of messages generated by Universal Agent components in order to communicate with each other.
The user of the product has no access to the control data itself.
Application data (or messages) consists of data that is transmitted as part of the requested work being executed. For example, standard
input and output data of jobs Universal Command executes. The data is created by the job and read or written by Universal Command on
behalf of the job.

Low-Overhead

The protocol is lightweight, in order to minimize its use of network bandwidth. The product provides application data compression options, which
reduces the amount of network data even further.

There are two possible compression methods:

ZLIB method offers the highest compression ratios with highest CPU utilization.
HASP method offers the lowest compression ratios with lowest CPU utilization.

Note
Control data is not compressed. Compression options are available for application data only.

Secure

When used by Universal Agent Managers prior to version 3.x, and when communicating with Universal Agent Servers that force encryption on,
the UNVv2 protocol is secure.

All control data exchanged between Universal Agent components are encrypted with a unique session key and contain a MAC. The encryption
prevents anyone from analyzing the message data and attempting to circumvent product and customer policies. Each session uses a different
encryption key to prevent "play back" types of network attacks, where messages captured from a previous session are replayed in a new session.
This applies to both network protocols: and .SSL UNVv2

In versions prior to Universal Agent, the security features used in the control messages are not optional. They cannot be turned off. The security
features are optional for application data sent over the network.

Starting with Universal Agent, the UNVv2 protocol is used only when SSL is disabled on the control session by specifying the NULL-NULL cipher
suite. In this case, the UNVv2 encryption or MACs are not used for control messages.

As of Universal Agent, the SSL protocol must be used if data privacy and integrity is required for control messages. For this reason, UNVv2
should only be used when the resource utilization of SSL is considered too high and data privacy is not required. It is Stonebranch's
recommendation that SSL should be used if at all possible to insure data privacy and data integrity.

Backward compatibility is still maintained with Universal Agent (formerly Universal Products) versions prior to 3.x such that encryption and MAC's
are still utilized for the control session.

Extensible

The message protocol used between the Universal Agent components is extensible. New message fields can be added with each new release

Universal Agent 6.6.x User Guide

 / ua-66x-user517

without creating product component incompatibilities. This permits different component versions to communication with each other with no
problems. This is a very important feature for distributed systems, since it is near impossible to upgrade hundreds of servers simultaneously.

New encryption and compression algorithms can be added in future releases without loosing backward compatibility with older releases. After a
network connection is made, connection options are negotiated between the two Universal Agent programs. The options negotiated include which
encryption and compression algorithms are used for the session. Only algorithms that both programs implement are chosen in the negotiation
process. The negotiation process permits two different program versions to communicate.

Universal Agent 6.6.x User Guide

 / ua-66x-user518

Network Data Transmission Tuning

Overview
Bandwidth Delay Product
TCP High Performance Extensions
TCP Buffers

TCP Buffer Configuration

Overview

TCP/IP tuning is considered an advanced subject. The background information necessary for a complete understanding of the subject is beyond
the scope of this document. If misconfigured, the product configuration options for data transmission tuning can have a negative impact on the
network performance of product components as well as on the TCP/IP network.

Product components that support bulk data transfers benefit the most from the network tuning described in this section. For example, Universal
Data Mover provides the ability to transfer very large files between systems, so it would be a candidate for network tuning.

The network tuning technique described in this section addresses the problem of transferring data over certain types of transmission links,
primarily large bandwidth, high latency transmission links. Today's transmission links can exceed 1 Gbit/s with a round trip time of 50 ms or more.
The default TCP/IP buffers are not suitable for optimized data transmission over such links.

Bandwidth Delay Product

The bandwidth delay product (BDP) measures the amount of data that a transmission link holds. The BDP is used to help tune specific TCP/IP
configuration options.

The BDP is calculated as the product of the maximum bandwidth and the round trip time (RTT) of the transmission link. BDP is expressed in
bytes. The maximum bandwidth of a link is limited by the slowest part, or bottleneck, of the network route. As an example, consider a network
route that starts on a server with a 100 Mbit/s network interface card that is connected to a 1 Gbit/s network and ends on a server with a 1 Gbit/s
network interface card. The maximum bandwidth is the slowest part of the route, which is the 100 Mbit/s network interface card. There is no
reliable way to measure bandwidth in all cases. A knowledge of the network topology is required to know the slowest part of a network route. The
RTT is measurable using the ping command. Simply use the ping command to "ping" the remote destination and it will report the RTT in
milliseconds.

The BDP formula is shown below.

(/ 8) * (/ 1000)B T

where, is the bandwidth measured in bits per second and is the RTT measured in milliseconds.B T

As an example, if the maximum bandwidth is 1 Gbit/s and the RTT is 60 ms, the BDP is calculated as

(1,000,000,000 / 8) * (60 / 1000) = 7,500,000 bytes = 7.5 MB

TCP High Performance Extensions

Originally, TCP/IP was not optimized for transmission links with a high bandwidth delay product (BDP). RFC 1323 TCP Extensions for High
 introduced changes to the TCP protocol to improve performance over high BDP links. RFC 1323 includes a number of TCPPerformance

changes, but the most relevant one for this discussion is the window scaling option.

The TCP receive window size is negotiated by the TCP implementations during the three-way handshake when the connection is opened. The
window specifies the amount of buffer space the receiving TCP has available for data. The TCP sender does not send any more data then the
receiver's available window. The TCP window is a form of flow control to prevent the sender from sending more data then the receiver has buffer
space available.

The TCP receive window is defined in the TCP header as a 16 bit field, so the maximum window size is 65 KiB. For a transmission link with a
large BDP, this is only a fraction of the amount of data the transmission link will hold. Consequentially, the transmission link will never fill to
capacity and maximum bandwidth never achieved. RFC 1323 added the window scaling option so that a larger TCP window can be negotiated.
The window scaling option makes the TCP window size effectively a 32-bit value, however RFC 1323 does limit it to 1 GiB. The TCP
implementations on both sides of the socket connection must support window scaling for it to be used.

http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc1323.txt

Universal Agent 6.6.x User Guide

 / ua-66x-user519

TCP Buffers

The TCP receive window used by the TCP on the receiving end of a connection is typically determined from the size of the TCP receive buffer
used for the connection. The default TCP receive buffer can typically be configured as part of the TCP configuration. However the default is not
typically large enough for high BDP transmission links. The TCP socket API provides an interface for the application to request specific TCP
receive and send buffer sizes. The application can request any buffer size and TCP will determine what size it actually uses based on its
configuration limits. If TCP on both ends of the socket connection support RFC 1312 window scaling, the TCP window may be as large as 1 GiB if
the TCP configuration permits.

TCP Buffer Configuration

In general, the optimum TCP buffer size matches the BDP for the transmission link. However, TCP buffers are maintained by TCP in virtual
storage. Very large buffer sizes may actually reduce transmission rates if the virtual storage requirements exceed the system memory capabilities.

Some product components provide configuration options to specify the TCP send and receive buffer sizes. Configuration options
TCP_RECV_BUFFER and TCP_SEND_BUFFER specify the TCP receive and send buffer sizes, respectively. The product components on both
ends of the TCP socket connection must be configured using the TCP_RECV_BUFFER and TCP_SEND_BUFFER options. Product components
typically consist of a Manager component (such as UDM Manager) and a Server component (such as UDM Server). The actual connection
between the Manager and Server is established first with the Universal Broker component. A Manager component first establishes a socket
connection with the Broker which then starts the Server component and passes the socket connection to the Server. Consequentially, the
Universal Broker will always require TCP buffer configuration changes in order to tune network performance of product components.

Universal Agent 6.6.x User Guide

 / ua-66x-user520

Network Data Transmission Configurable Options

Configurable Options
CODE_PAGE
CTL_SSL_CIPHER_LIST
DATA_AUTHENTICATION
DATA_COMPRESSION
DATA_ENCRYPTION
DATA_SSL_CIPHER_LIST
DEFAULT_CIPHER
ENCRYPT_CONTROL_SESSION
KEEPALIVE_INTERVAL
NETWORK_DELAY
SIO_MODE

Configurable Options

The network protocol can be configured in ways that affect compression, encryption, code pages, and network delays.

The following configuration options are available on many Universal Agent components:

CODE_PAGE

The CODE_PAGE option specifies the code page translation table used to translate network data from and to the local code page for the system
on which the program is executing.

A codepage table is text file that contain a two-column table. The table maps local single byte character codes to two-byte UNICODE character
codes.

Code pages are located in the product National Language Support (NLS) directory or library. New code pages may be created and added to the
NLS directory or library. The CODE_PAGE option value is simply the name of the code page file without any file name extension if present.

CTL_SSL_CIPHER_LIST

The CTL_SSL_CIPHER_LIST option specifies one or more SSL cipher suites that are acceptable to use for network communications on the
control session, which is used for component internal communication.

The SSL protocol uses cipher suites to specify the combination of encryption and message digest algorithms used for a session. An ordered list of
acceptable cipher suites can be specified in a most-to-least order of preference.

An example cipher suite list is RC4-MD5,RC4-SHA,AES128-SHA. The RC4-MD5 cipher suite is the most preferred and AES128-SHA is the least
preferred.

When two Universal Agent components (Manager and a Server) first connect, they perform an SSL handshake that negotiates the cipher suite to
use for the session. The Manager presents a list of cipher suites (in descending order of preference) that it would like to use. This is compared
against a list of ciphers that the Server supports. The first cipher suite in common is the one used for the session.

DATA_AUTHENTICATION

The DATA_AUTHENTICATION option specifies whether or not the network data is authenticated. Data authentication verifies that the data did not
change from the point it was sent to the point it was received.

Data authentication also is referred to as a data integrity in this document.

Data authentication occurs for each message sent over the network. If a message fails authentication, the network session is terminated and both
programs end with an error.

The DATA_AUTHENTICATION option is applicable to the protocol only. SSL always performs authentication.UNVv2

DATA_COMPRESSION

The DATA_COMPRESSION option specifies that network data be compressed.

Compression attempts to reduce the amount of data to a form that can be decompressed to its original form. The compression ratio is the original
size divided by the compressed size. The compression ratio value will depend on the type of data. Some data compress better than others.

Universal Agent 6.6.x User Guide

 / ua-66x-user521

1.
2.

Two methods of compression are available:

ZLIB method provides the highest compression ratio with the highest use of CPU
HASP method provides the lowest compression ratio with the lowest use of CPU.

Whether or not compression is used and which compression method is used depends on several items:

Network bandwidth. If network bandwidth is small, compression may be worth the cost in CPU.
CPU resources. If CPU is limited, the CPU cost may not be worth the reduced bandwidth usage.
Data compression ratio. If the data does not compress well, it is probably not worth CPU cost. If the data ratio is high, the CPU cost may
be worth it.

DATA_ENCRYPTION

The DATA_ENCRYPTION option specifies whether or not network data is encrypted.

Encryption translates data into a format that prevents the original data from being determined. Decryption translates encrypted data back into its
original form.

The type of encryption performed depends on the network protocol being used, SSL or .UNVv2

Data encryption does increase CPU usage. Whether or not encryption is used depends on the sensitivity of the data and the security of the two
host systems and the data network between the hosts.

DATA_SSL_CIPHER_LIST

The DATA_SSL_CIPHER LIST option specifies one or more SSL cipher suites that are acceptable to use for network communications on the data
session, which is used for standard I/O file transmission.

(See .)CTL_SSL_CIPHER_LIST

DEFAULT_CIPHER

The DEFAULT_CIPHER option specifies the SSL cipher suite to use (since SSL protocol requires a cipher suite) if the DATA_ENCRYPTION
option is set to . The default DEFAULT_CIPHER is NULL-MD5 (no encryption, MD5 message digest).no

All SSL cipher suites have a message digest for good reasons. The message digest ensures that the data sent are the data received. Without a
message digest, it is possible for bits of the data packet to get changed without being noticed.

ENCRYPT_CONTROL_SESSION

The ENCRYPT_CONTROL_SESSION option is a server-only option that enforces encryption on the control session. When the option is set to a
value of no, the server will accept a control session protocol without encryption and message authentication codes (MACs). The default is yes.

Starting with Universal Agent, a manager can request that the UNVv2 protocol be used without encryption or MACs. Considering that host
systems may require differing security policies, this option allows for each server to be configured appropriately based on its security policy.

KEEPALIVE_INTERVAL

The KEEPALIVE_INTERVAL option specifies how often, in seconds, a keepalive message (also commonly known as a heartbeat message) is
sent between a manager and server.

A keepalive message ensures that the network and both programs are operating normally. Without a keepalive message, error conditions can
arise that place one or both programs in an infinite wait.

A keepalive message is sent from the server to the manager. If the server does not receive a keepalive acknowledgement from the manager in a
certain period of time (calculated as the maximum of 2 x or the KEEPALIVE_INTERVAL), the server considers the managerNETWORK_DELAY
or network as unusable.

How the server processes a keepalive time-out depends on what fault tolerant features are being used. If no fault tolerant features are being
used, the server ends with an error. The manager expects to receive a keepalive message in a certain period of time (calculated as the
KEEPALIVE_INTERVAL + 2 x .NETWORK_DELAY

NETWORK_DELAY

The NETWORK_DELAY option provides the ability to fine tune Universal Agent network protocol. When a data packet is sent over a TCP/IP
network, the time it takes to reach the other end depends on many factors, such as, network congestion, network bandwidth, and the network
media type. If the packet is lost before reaching the other end, the other end may wait indefinitely for the expected data.

In order to prevent this situation, Universal Agent components time out waiting for a packet to arrive in a specified period of time. The delay option

Universal Agent 6.6.x User Guide

 / ua-66x-user522

specifies this period of time.

NETWORK_DELAY specifies the maximum acceptable delay in transmitting data between two programs. Should a data transmission take longer
than the specified delay, the operation ends with a time out error. Universal Agent components will consider a time out error as a network fault.

The default NETWORK_DELAY value is 120 seconds. This value is reasonable for most networks and operational characteristics. If the value is
too small, false network time outs could occur. If the value is too large, programs will wait a long period of time before reporting a time out
problem.

SIO_MODE

The SIO_MODE option specifies whether the data transmitted over the network is processed as text data or binary data.

Text data is translated between the remote and local code pages. Additionally, end of line representations are converted

Text translation operates in two modes: direct and UCS. The default is direct. The direct translation mode exchanges code pages between
Universal Agent components to build direct translation tables. Direct translation is the fastest translation method when a significant amount
(greater then 10K) of text data is transmitted. The code page exchange increases the amount of data sent over the network as part of the network
connection negotiation.

UCS translation does not require the exchange of code pages. For transactions that have little text data transmission, this is the fastest.

Binary data is transmitted without any data translation.

Universal Agent 6.6.x User Guide

 / ua-66x-user523

Event Log Dump for Windows

Overview

Universal Agent provides the ability to select records from a Windows event log and write them to a specified output file via its Universal Event
 utility.Log Dump

All records from a log can be dumped, or event records can be selected according to the date and time that they were generated.

Universal Event Log Dump can be run any time as a stand-alone application. It also is designed to work with Universal Command, which provides
centralized control from any operating system and additional options for redirecting output.

Universal Event Log Dump consists of the command line program () followed by a list of configuration options.ueld

Examples

Execute Universal Event Log Dump from z/OS Manager
Execute Universal Event Log Dump from a Windows Server

https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Log+Dump
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Log+Dump

Universal Agent 6.6.x User Guide

 / ua-66x-user524

Windows Event Log Dump - Examples

Examples

Execute Universal Event Log Dump from z/OS Manager
Execute Universal Event Log Dump from a Windows Server

Universal Agent 6.6.x User Guide

 / ua-66x-user525

Execute Universal Event Log Dump from zOS Manager

Execute Universal Event Log Dump from z/OS Manager
Script Options
SYSIN Options
Components

Execute Universal Event Log Dump from z/OS Manager

The following figure illustrates the execution of Universal Event Log Dump from a z/OS Universal Command Manager.

The application log, from the previous day at 15:00 until current time, will be dumped to the stdout of the manager process to be archived.

//S1 EXEC UCMDPRC
//LOGONDD DD DISP=SHR,DSN=hlq.userid(userid)
//SCRIPTDD DD *
ueld -logtype APPLICATION -stime "*-1,15:00 PM"
//SYSIN DD *
 -script SCRIPTDD
 -encryptedfile LOGONDD
 -host dallas
/*

The JCL procedure is used to execute the command. The command is sent to a remote system named for execution.UCMDPRC ueld dallas
The DD in the points to sysout, and is where the stdout of the remote command will be written. Additional command lineUNVOUT UCMDPRC
options are read from the encrypted file allocated to DD .LOGONDD

Script Options

The script options used in this example are:

Option Description

-logtype Event log to be dumped.

-stime Starting date and time.

SYSIN Options

The SYSIN options used in this example are:

Option Description

-script ddname from which to read a script file. The script file is sent to the remote system by UCMD
Manager for execution

-encryptedfile File from which to read an encrypted command options file.

-host Host name or IP address of the remote system on which to execute the script.

Components

https://www.stonebranch.com/confluence/display/UA66/LOG_TYPE+-+UELD+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UELD+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/COMMAND_FILE_ENCRYPTED+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/REMOTE_HOST+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user526

Universal Command Manager for zOS

Universal Event Log Dump

https://www.stonebranch.com/confluence/display/UA66/Universal+Command+Manager+for+zOS
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Log+Dump

Universal Agent 6.6.x User Guide

 / ua-66x-user527

Execute Universal Event Log Dump from a Windows Server

Execute Universal Event Log Dump from a Windows Server

The following example illustrates the execution of Universal Event Log Dump from a Windows server.

The application log, from the previous day at 15:00 until current time, will be dumped to a file on the server.

ueld -logtype APPLICATION -stime "*-1,15:00 PM" -file c:\application.log

Command Line Options

The command line options used in this example are:

Command Options Description

-logtype Event log to be dumped.

-stime Starting date and time.

-file Complete path to the file that will be used to store the selected event log records.

Components

Universal Event Log Dump

https://www.stonebranch.com/confluence/display/UA66/LOG_TYPE+-+UELD+configuration+option
https://www.stonebranch.com/confluence/display/UA66/START_TIME+-+UELD+configuration+option
https://www.stonebranch.com/confluence/display/UA66/OUTPUT_FILE+-+UELD+configuration+option
https://www.stonebranch.com/confluence/display/UA66/Universal+Event+Log+Dump

Universal Agent 6.6.x User Guide

 / ua-66x-user528

zOS CANCEL Command Support

Overview

Universal Agent provides network fault tolerance and, in some cases, manager fault tolerance (see). TheseFault Tolerance Implementation
features provide users with the ability to execute jobs that will continue to run when the network is down and when a manager is terminated.

However, there are scenarios in which the user may want to cancel an executing job that supports manager and/or network fault tolerance and
have processes terminate immediately. Because of fault tolerance, when the manager is terminated, the server side would begin a connection
reestablishment protocol and continue to execute. This would allow the started user job to continue running.

In particular, z/OS supports a CANCEL command that will terminate a job executing on the z/OS operating system.

Detailed Information

The following pages provide detailed information for z/OS CANCEL command support:

zOS CANCEL Command Support - Universal Command
zOS CANCEL Command Support - Universal Connector
zOS CANCEL Command Support - Universal Data Mover

Universal Agent 6.6.x User Guide

 / ua-66x-user529

zOS CANCEL Command Support - Universal Command

Overview
Exit Codes
Security Token

Overview

A user may want to cancel an executing Universal Command job that supports manager and/or network fault tolerance and have both the
manager and server processes terminate immediately. Because of fault tolerance, when the manager is terminated, the server side would begin a
connection reestablishment protocol and continue to execute. This would allow the started user job to continue running.

When a Universal Command job is cancelled via the z/OS CANCEL command, the job terminates with either of these exit codes:

Exit code S122, if it is cancelled with a dump.
Exit code S222, if it is cancelled without a dump.

Part of the responsibility of a Universal Broker executing on a particular host is to monitor the status of all locally running manager processes on
that machine. So, when instructed, that Universal Broker could issue a STOP command to the Universal Command Server process associated
with the stopped/ended manager process.

Exit Codes

Through the use of the configuration option, the Universal Command Manager process notifies the locallySERVER_STOP_CONDITIONS
running Universal Broker of the exit codes that should cause it to terminate the running Server process. With this option, the user can specify a list
of exit codes that should trigger the locally running Universal Broker to issue the STOP command to the manager's Universal Command
server-side process.

 can specify a single exit code or a comma-separated list of exit codes. These stop conditions are passed fromSERVER_STOP_CONDITIONS
the manager to the locally running Universal Broker, which store this and other component-specific data about the executing manager component.
When this executing Universal Command Manager process is cancelled or stopped, the locally running Universal Broker detects the ending of the
manager process and retrieves its process completion information, which includes the exit code of the manager.

The Universal Broker then compares this exit code with the list of exit codes provided by . If a match is found, andSERVER_STOP_CONDITIONS
either network fault tolerance or manager fault tolerance is enabled, the Universal Broker will execute a command to STOP the runninguctl
Universal Command Server component.

Security Token

For security purposes, Universal Agent passes around a security token that is used by the locally running Universal Broker to STOP associated
Universal Command Server process.

This security token is generated on a component-by-component basis by the Universal Broker process that starts the Universal Command Server.
Upon generation, this token is returned to the Universal Command Manager which, in turn, updates its locally running Universal Broker with this
token. The locally running Universal Broker then uses this token with the issued STOP command to cancel the running Universal Command
Server process.

When this token is received by the Universal Broker processes with the request to STOP the server component, the Broker authenticates the
received token with the stored token for the running Universal Command Server process. When the token is authenticated, the Universal
Command Server process is STOPPED.

https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UCMD+Manager+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user530

zOS CANCEL Command Support - Universal Connector

Overview

A user may want to cancel an executing Universal Connector job that supports client and / or network fault tolerance and have both the Universal
Connector and SAP processes terminate immediately. Because of the separation of work between Universal Connector and SAP, when the
Universal Connector client is terminated, the SAP job continues to execute.

In particular, z/OS supports a CANCEL command that will terminate a job executing on the z/OS operating system. When a Universal Connector
job is cancelled via the z/OS CANCEL command, the job terminates with either of these exit codes:

S122, if job is cancelled with a dump.
S222, if job is cancelled without a dump.

Part of the responsibility of a Universal Broker executing on a particular host is to monitor the status of all locally running manager processes on
that machine. So, when instructed, that Universal Broker could invoke a new instance of Universal Connector and issue a CANCEL command to
terminate the associated SAP job.

Exit Codes

Through the use of the configuration option, the Universal Connector process notifies the locally runningSERVER_STOP_CONDITIONS
Universal Broker of the exit codes that should cause it to terminate the running SAP job. With this option, you can specify a list of exit codes that
should trigger the locally running Universal Broker to invoke a Universal Connector process to terminate the SAP job.

 can specify a single exit code or a comma-separated list of exit codes. These stop conditions are passed fromSERVER_STOP_CONDITIONS
the manager to the locally running Universal Broker, which stores this and other component-specific data about the executing manager
component. When this executing Universal Connector process is cancelled or stopped, the locally running Universal Broker detects the ending of
the manager process and retrieves its process completion information, which includes the exit code of the manager.

The Universal Broker then compares this exit code with the list of exit codes provided by . If a match is found, theSERVER_STOP_CONDITIONS
Universal Broker will invoke a new instance of the Universal Connector to execute a CANCEL command to terminate the running SAP job.

https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+USAP+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+USAP+configuration+option

Universal Agent 6.6.x User Guide

 / ua-66x-user531

zOS CANCEL Command Support - Universal Data Mover

Overview
Exit Codes
Security Token

Overview

When a Universal Data Mover job is cancelled via the z/OS CANCEL command, the job terminates with either of these exit codes:

Exit code S122, if it is cancelled with a dump.
Exit code S222, if it is cancelled without a dump.

Part of the responsibility of a Universal Broker executing on a particular host is to monitor the status of all locally running manager processes on
that machine. So, when instructed, that Universal Broker could issue a STOP command to the Universal Data Mover Server process associated
with the stopped / ended manager process.

In the case of a Universal Data Mover three-party transfer, both the primary and secondary servers need to be cancelled. The Universal Broker
running locally with the cancelled Universal Data Mover Manager process will send a STOP command to the primary server. This primary server
will, in turn, forward the STOP command to the secondary server, thus cancelling both servers of the three-party transfer.

Exit Codes

Through the use of the configuration option, the Universal Data Mover Manager process notifies the locallySERVER_STOP_CONDITIONS
running Universal Broker of the exit codes that should cause it to terminate the running Server process. With this option, the user can specify a list
of exit codes that should trigger the locally running Universal Broker to issue the STOP command to the manager's Universal Data Mover
server-side process.

 can specify a single exit code or a comma-separated list of exit codes. These stop conditions are passed fromSERVER_STOP_CONDITIONS
the manager to the locally running Universal Broker, which store this and other component-specific data about the executing manager component.
When this executing Universal Data Mover Manager process is cancelled or stopped, the locally running Universal Broker detects the ending of
the manager process and retrieves its process completion information, which includes the exit code of the manager.

The Universal Broker then compares this exit code with the list of exit codes provided by . If a match is found, andSERVER_STOP_CONDITIONS
network fault tolerance is enabled, the Universal Broker will execute a uctl command to STOP the running Universal Data Mover Server
component.

Security Token

For security purposes, Universal Agent pass around a security token that is used by the locally running Universal Broker to STOP associated
Universal Data Mover Server process.

This security token is generated on a component-by-component basis by the Universal Broker process that starts the Universal Data Mover
Server. Upon generation, this token is returned to the Universal Data Mover Manager which, in turn, updates its locally running Universal Broker
with this token. The locally running Universal Broker then uses this token with the issued STOP command to cancel the running Universal Data
Mover Server process.

When this token is received by the Universal Broker processes with the request to STOP the server component, the Broker authenticates the
received token with the stored token for the running Universal Data Mover Server process. When the token is authenticated, the Universal Data
Mover Server process is STOPPED.

https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UDM+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA66/SERVER_STOP_CONDITIONS+-+UDM+Manager+configuration+option

	Universal Agent 6.6.x User Guide
	Universal Command Overview
	Universal Data Mover Overview
	Universal Agent Features
	Universal Agent Components
	Remote Execution via Universal Command and Universal Data Mover
	Universal Command - Remote Execution
	Remote Execution via Universal Command - Primer
	Remote Execution via Universal Command - Examples
	Back up UNIX Directory to zOS Dataset
	Restore UNIX Directory Backup from zOS Dataset to UNIX Directory
	Directory Listing for UNIX Server from zOS
	Directory Listing for Windows Server from zOS
	Provide Network Status of Remote UNIX from zOS
	Use UNIX tee Command to Store stdout to Local Server and zOS
	Use an Encrypted Command File for User ID and Password on zOS
	Override Standard zOS IO File ddnames
	Override zOS Standard Files with Procedure Symbolic Parameters
	Specifying UCMD for zOS Options with the EXEC PARM
	Executing an Existing Windows .bat File from zOS
	Using Manager Fault Tolerance from zOS
	Restarting a Manager Fault Tolerant UCMD Manager on zOS
	Automatically Create a Unique zOS Command ID Using CA-Driver Variables
	Automatically Create a Unique zOS Command ID Using Zeke Variables
	Automatically Create a Unique zOS Command ID Using OPC Variables
	Universal Submit Job from zOS to IBM i Using Remote Reply Facility
	Executing Universal Return Code within a Script via UCMD Manager for zOS
	Executing URC and UMET within a Script via UCMD Manager for zOS
	Back up UNIX Directory to Windows
	Restore UNIX Directory Backup from Windows to UNIX
	Provide Network Status of Remote UNIX from Windows
	Redirect Standard Out and Standard Error to Windows
	Start UNIX Background Process from Windows
	Redirect Standard Input from Initiating System on Windows
	Universal Submit Job from Windows to IBM i
	Provide Network Status of Remote Windows from UNIX
	Redirect Standard Out and Standard Error to UNIX
	Redirect Standard Input from Initiating System to UNIX
	Redirect Standard Input in UNIX Background Process
	Issue Universal Submit Job from UNIX to IBM i
	Provide Network Status of Remote Windows from IBM i
	Execute Script to Provide Network Status of Remote Windows from IBM i
	Display Library with Manager Fault Tolerance Active Using USBMJOB
	Universal Submit Job from zOS to IBM i
	Provide Network Status of Remote Windows from HP NonStop
	Execute Script to Provide Network Status of Remote Windows from HP NonStop

	Universal Data Mover - Remote Execution
	Remote Execution via Universal Data Mover - Primer
	Remote Execution via Universal Data Mover - Examples
	Windows Directory Listing Using a Batch File - Default Directory
	Windows Directory Listing Using a Batch File - Returned File
	UNIX - Listing Using a Shell Script
	UNIX - Integrating UDM with FTP Using a Shell Script
	UNIX - Integrating UDM with FTP Using a Command Reference
	IBM i from Windows, UNIX, or IBM i - exec Command Return Codes

	Remote Execution for SAP Systems
	Remote Execution for SAP Systems - Examples
	Define Job, Run Job, Get Output, and Purge Job
	Submitting Job to SAP Using SAP Job as Template - zOS
	Submitting Job to SAP Using Job Definition File - zOS
	Running Job on SAP Using SAP Job - zOS
	Running Job on SAP Using Job Definition File - zOS
	Running an SAP Job on a Specific SAP Server - zOS
	Variant Substitution - zOS
	Creating a Variant Substitution Using GENERATE VARDEF Command - zOS
	Creating a Job Definition Using GENERATE JOBDEF Command - zOS
	Submitting an SAP Job Using SAP Job as Template - UNIX
	Submitting an SAP Job Using Job Definition File - UNIX
	Running an SAP Job Using SAP Job as Template - UNIX
	Running an SAP Job Using a Job Definition File - UNIX
	Running an SAP Job on a Specific SAP Server - UNIX
	Variant Substitution - UNIX
	Creating a Variant Definition Using GENERATE VARDEF Command - UNIX
	Creating Job Definition Using GENERATE JOBDEF Command - UNIX

	Mass Activities Support Example for zOS
	Batch Input Monitoring Example for zOS
	Mass Activities Support in Universal Connector
	Batch Input Monitoring in Universal Connector
	Universal Data Mover - Remote Execution for SAP Systems
	Remote Execution for SAP Systems via UDM - Examples
	Raising an SAP Event for zOS Example
	Raising an SAP Event for UNIX Example

	Web Services Execution
	Universal Agent - Web Services Examples
	Using Universal Agent to Publish to a SOA Workload - Windows and UNIX
	Message Payload for SOAP - Windows and UNIX
	Logging Configuration - Windows and UNIX
	UAC HTTP Form - Windows and UNIX
	Outbound SOAP Implementation - zOS
	Inbound SOAP Implementation - Windows and UNIX
	Inbound JMS Implementation - Windows and UNIX

	Universal Data Mover - Web Services Execution
	Web Services Execution (Inbound Implementation) - Examples
	Inbound Implementation - JMS
	Inbound Implementation - SOAP

	Copying Files to and from Remote Systems
	Copy from Local zOS to Remote Windows
	Copy from Remote Windows to Local zOS
	Copy from Local zOS to Remote UNIX
	Copy from Remote UNIX to Local zOS
	Copy from Local zOS to Remote IBM i
	Copy from Remote IBM i to Local zOS
	Copy from Local zOS to Remote HP NonStop
	Copy from Remote HP NonStop to Local zOS
	Third-Party Copy via Local zOS, from Windows to UNIX
	Third-Party Copy via Local zOS, from UNIX to Windows
	Third-Party Copy via Local zOS, from Windows to Windows
	Third-Party Copy via Local zOS, from UNIX to UNIX
	Copy from Local zOS to Remote System (in Binary)
	Copy from Remote System to Local zOS (in Binary)
	Copy from Local zOS to Remote zOS
	Copy from Remote zOS to Local zOS
	Copy from Local zOS to Remote Windows (with Windows Date Variables)
	Copy from Local zOS to Remote UNIX (with UNIX Date Variables)
	Copy from Remote UNIX to Local zOS Using cat Command
	Copy from Remote UNIX to Local Windows
	Copy From Local Windows to Remote UNIX
	Copy from Remote UNIX to Local Windows Using the UNIX cat Command
	Copy from Local UNIX to Remote Windows
	Copy Encrypted File from Local UNIX to Remote Windows
	Copy from Remote Windows to Local UNIX
	Copy Encrypted File from Remote Windows to Local UNIX
	Copy from Remote Windows to Local IBM i via UCMD Manager
	Copy from Remote IBM i to Local Windows via UCMD Manager
	Copy from Local Windows to Remote IBM i via UCMD Manager
	Copy from Local IBM i to Remote Windows via UCMD Manager
	Copy from Remote Windows to Local HP NonStop via UCOPY
	Copy from Local HP NonStop to Remote Windows via UCOPY
	Copy from Remote Windows to Local HP NonStop (using STDOUT) - 1
	Copy from Remote Windows to Local HP NonStop (using STDOUT) - 2
	Copy from Local HP NonStop to Remote Windows (using STDIN) - 1
	Copy from Local HP NonStop to Remote Windows (using STDIN) - 2

	Transferring Files to and from Remote Systems
	Transfer Sessions
	Transferring Files to and from Remote Systems - Examples
	Copy a File to an Existing zOS Sequential Data Set
	Copy a File to a New zOS Sequential Data Set
	Copy a zOS Sequential Data Set to a File
	Copy a Set of Files to an Existing zOS Partitioned Data Set
	Copy a Set of Files to a New zOS Partitioned Data Set
	Simple File Copy to the Manager - Windows and UNIX
	Simple File Copy to the Server - Windows and UNIX
	Copy a Set of Files - Windows and UNIX
	Copy a File to an Existing IBM i File
	Copy an IBM i Data Physical File to a File
	Copy a Set of Files to an Existing Data Physical File
	Copy a File to a New IBM i Data Physical File
	Copy a File to a New IBM i Source Physical File
	Copy a Set of Files to a New Data Physical File on IBM i
	Copy Different Types of IBM i Files Using forfiles and $(_file.type)
	Invoke a Script from an IBM i Batch Job

	Encryption
	Encryption - Examples
	Creating Encrypted Command File - zOS
	Using Encrypted Command File - zOS
	Creating Encrypted Command File - Windows
	Using Encrypted Command File - Windows
	Creating Encrypted Command File - UNIX

	Using Encrypted Command File - UNIX
	Creating Encrypted Command File - IBM i
	Using Encrypted Command File - IBM i
	Creating Encrypted Command File - HP NonStop

	Configuration Management for Universal Agent
	Configuration Methods
	Configuration Methods - Command Line
	Configuration Methods - Command File
	Configuration Methods - Environment Variables
	Configuration Methods - Configuration File

	Remote Configuration
	Universal Configuration Manager
	Universal Configuration Manager - Installed Components

	Configuration Refresh
	Refreshing via Universal Control Examples
	Refreshing via Universal Control Examples - Overview
	Refreshing Universal Broker from zOS
	Refreshing a Component from zOS
	Refreshing Universal Broker from Windows
	Refreshing a Component from Windows
	Refreshing Universal Broker from UNIX
	Refreshing a Component from UNIX
	Refreshing Universal Broker from IBM i
	Refreshing a Component from IBM i
	Refreshing Universal Broker from HP NonStop
	Refreshing a Component from HP NonStop

	Merging Configuration Options
	Files Used in UPI Merge Examples
	Merge Configuration Files Using Program Defaults
	Merge Configuration Files Introducing New Options
	Merge Configuration Files Using Installation-Dependent Values

	Configuration Options

	Component Management
	Component Definition
	Component Definition Options
	Starting and Stopping Agent Components
	Starting and Stopping Agent Components - Examples
	Starting and Stopping Universal Broker - zOS
	Starting Universal Broker - Windows
	Starting Universal Broker - UNIX
	Starting, Ending, Working with Universal Broker - IBM i
	Starting Universal Broker - HP NonStop
	Starting and Stopping Universal Enterprise Controller - zOS
	Starting and Stopping Universal Enterprise Controller - Windows
	Starting a zOS Component via Universal Control
	Stopping a zOS Component via Universal Control
	Starting a Windows Component via Universal Control
	Stopping a Windows Component via Universal Control
	Starting a UNIX Component via Universal Control
	Stopping a UNIX Component via Universal Control
	Starting an IBM i Component via Universal Control
	Stopping an IBM i Component via Universal Control
	Stopping an HP NonStop Component via Universal Control

	Maintaining Universal Broker Definitions in UEC Database
	Maintaining Broker Definitions in UEC Database - zOS and Windows
	Maintaining Broker Definitions in UEC Database - zOS
	Maintaining Broker Definitions in UEC Database - Windows

	Event Monitoring and File Triggering
	Event Monitoring and File Triggering - Universal Event Monitor
	Event Monitoring and File Triggering - UEMLoad
	Event Monitoring and File Triggering - Examples
	Starting an Event-Driven UEM Server - zOS
	Refreshing an Event-Driven UEM Server - zOS
	Using a Stored Event Handler Record - zOS
	Handling an Event with a Script - zOS
	Handling an Expired Event - zOS
	Continuation Character (-) in zOS Handler Script
	Continuation Character (+) in zOS Handler Script
	Continuation Characters (- and +) in zOS Handler Script
	Using a Stored Event Handler Record - Windows
	Execute Script for Triggered Event Occurrence - Windows
	Handling an Expired Event - Windows
	Add a Single Event Record - Windows
	Add a SIngle Event Handler Record - Windows
	List All Event Definitions - Windows
	Export Event Definition and Handler Databases - Windows
	List a Single Event Handler Record - Windows
	List Event Definitions and Handlers Using Wildcards - Windows
	Add Record(s) Using Definition File - Windows
	Add Records Remotely Redirected from STDIN - Windows
	Add Records Redirected from STDIN (for zOS) - Windows
	Definition File Format - Windows
	Using a Stored Event Handler Record - UNIX
	Execute Script for Triggered Event Occurrence - UNIX
	Handling an Expired Event - UNIX
	Add a Single Event Record - UNIX
	Add a Single Event Handler Record - UNIX
	List All Event Definitions - UNIX
	List a Single Event Handler Record - UNIX
	Export Event Definition and Handler Databases - UNIX
	List Event Definitions and Handlers Using Wildcards - UNIX
	Add Record(s) Using Definition File - UNIX
	Add Record(s) Remotely Redirected from STDIN - UNIX
	Add Record(s) Remotely Redirected from STDIN (for zOS) - UNIX
	Definition File Format - UNIX

	Fault Tolerance Implementation
	Network Fault Tolerance - Universal Command
	Network Fault Tolerance - Universal Connector
	Network Fault Tolerance - Universal Data Mover
	Manager Fault Tolerance - Universal Command
	Manager Fault Tolerance - Universal Command - Functionality
	Manager Fault Tolerance - Universal Command - Component Management

	Client Fault Tolerance - Universal Connector
	Client Fault Tolerance - Universal Connector Jobs
	Client Fault Tolerance - Universal Connector Jobs - Modes
	Client Fault Tolerance - Universal Connector Jobs - Parameters
	Client Fault Tolerance - Universal Connector Jobs - Command ID Job Step
	Client Fault Tolerance - Universal Connector Jobs - Command Identifier
	Client Fault Tolerance - Universal Connector Jobs - Requesting Restart

	Client Fault Tolerance - Universal Connector Process Chains
	Client Fault Tolerance - Universal Connector Process Chains - Modes
	Client Fault Tolerance - Universal Connector Process Chains - Parameters
	Client Fault Tolerance - Universal Connector Process Chains - Dummy Job with Log ID and Command ID Job Steps
	Client Fault Tolerance - Universal Connector Process Chains - Command Identifier
	Client Fault Tolerance - Universal Connector Process Chains - Requesting Restart

	Sample Command Lines For Working With Client Fault Tolerance
	Working With Job Definition Files
	Working With Pre-defined SAP Jobs

	Implementing Fault Tolerance - Examples
	Implementing Manager Fault Tolerance for Windows

	Monitoring and Alerting
	Universal Query - zOS
	Universal Query - UNIX and Windows
	Universal Query - IBM i
	Universal Query - HP NonStop
	Universal Query - Output
	Monitoring and Alerting - Examples

	Messaging and Auditing
	Messaging
	Auditing
	Creating Write-to-Operator Messages - Examples
	Issue WTO Message to zOS Console
	Issue WTO Message to zOS Console and Wait for Reply

	Message Translation
	Message Translation - Examples
	Translating Error Messages
	Execute Universal Message Translator from zOS
	Execute UMET from zOS Manager (with Table on Remote Server)
	Execute UMET from zOS Manager (with Table on zOS)
	Execute Universal Message Translator from Windows
	Execute Universal Message Translator from UNIX
	Execute Universal Message Translator from IBM i
	Execute Universal Message Translator from HP NonStop

	Network Data Transmission for Universal Agent
	SSL (Secure Socket Layer) Protocol
	Universal V2 Protocol
	Universal Application Protocol
	Network Data Transmission Tuning
	Network Data Transmission Configurable Options

	Event Log Dump for Windows
	Windows Event Log Dump - Examples
	Execute Universal Event Log Dump from zOS Manager
	Execute Universal Event Log Dump from a Windows Server

	zOS CANCEL Command Support
	zOS CANCEL Command Support - Universal Command
	zOS CANCEL Command Support - Universal Connector
	zOS CANCEL Command Support - Universal Data Mover

