

Stonebranch

Solutions

Indesca for SOA: JMS Connector
Proof of Concept

indesca-soa-jms-poc

indesca-soa-jms-poc Confidential & Proprietary 2

indesca-soa-jms-poc Confidential & Proprietary 3

Document Name Indesca for SOA: JMS Connector Proof of Concept

Document ID indesca-soa-jms-poc

Products Universal Command Agent for SOA

Copyright © 2011 by Stonebranch, Inc.

This document contains proprietary information that is protected by copyright. All rights
reserved. No part of this publication may be reproduced, transmitted or translated in any

form or language or by any means, electronic or mechanical, including photocopy,
recording, or any information storage and retrieval system, without permission, in writing,
from the publisher. Requests for permission to make copies of any part of this publication

should be mailed to:

Stonebranch, Inc.
950 North Point Parkway, Suite 200

Alpharetta, GA 30005 USA
Tel: (678) 366-7887
Fax: (678) 366-7887

Stonebranch, Inc.® makes no warranty, express or implied, of any kind whatsoever,
including any warranty of merchantability or fitness for a particular purpose or use

The information in this documentation is subject to change without notice.

Stonebranch shall not be liable for any errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this

document.

All products mentioned herein are or may be trademarks of their respective owners.

 Contents

indesca-soa-jms-poc Confidential & Proprietary 4

Contents

Contents .. 4

List of Figures ... 5

Concept ... 6

Challenge .. 6

Solution ... 6

POC Environment ... 7

POC Process Workflow .. 8

POC Installation .. 9

MQ Setup and Configuration ... 10
Create Queues and Channels .. 10

Set up JMS using JMSAdmin ... 11

Universal Command Agent for SOA Set-up .. 12

Running the Job ... 13
Control JCL UACJMS1 ... 13

Script SCRJMSRR ... 14

Payload PYLJMS1.. 14

 Contents

indesca-soa-jms-poc Confidential & Proprietary 5

List of Figures

Figure 1 POC Deployment Topology ... 7

Figure 2 POC Workflow .. 8

Concept JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 6

Concept
Using Stonebranch’s Indesca for SOA : JMS Connector to send and receive messages with
an MQ Infrastructure.

Challenge
To make Indesca for SOA : JMS Connector communicate with an MQ infrastructure;
specifically, the ability to read and write MQ messages to MQ queues.

The business scenario related to the request involves a three-step job initiated out of TWS,
described as follows:

1. JDA Batch Job – A shell script is executed in the JDA environment. After the shell
script is complete the return code is passed back to TWS via Universal Command.

2. SAP via Messaging – Upon successful completion of step 1, a message is placed on
an inbound MQ Series queue that is used as an event to trigger pre-processing by
an MQ Message Broker Workflow prior to delivering an iDoc to the SAP
environment. Once SAP has completed its processing, a message is placed on an
outbound MQ Series queue that contains the return code of the MQ Message Broker
Workflow.

3. Mainframe Batch Job - Upon successful completion of step 2, a batch job is run on
the mainframe.

The basic challenge is that TWS does not have a way to execute step 2 of the described
job. Thus, this Proof of Concept regarding the Universal Command Agent for SOA and its
possible use in this scenario.

Solution
There are two possible solutions for this scenario:

1. Use the Universal Command Agent for SOA : MQ Connector.
This would solve the communication challenge with the MQ Message Broker
environment.

2. Use the Universal Command Agent for SOA : JMS Connector.
The challenge is that JMS to MQ communication requires some specific knowledge
about the MQ Series infrastructure and how it can work with JMS.

It was decided to implement a proof-of-concept to provide exact details on how this solution
would work in a specific environment, utilizing the following Indesca components:

 Universal Command

 Universal Command Agent for SOA

POC Environment JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 7

POC Environment
The POC environment was set up using the following components:

 WebSphere MQ v6.0 installed on AIX 6.1

 Universal Command Manager v3.2 installed on MVS

 Universal Command Agent v3.2 installed on Linux

 Universal Command Agent for SOA : JMS Connector v3.2 on Linux

 IBM Client Jar Files for JMS to MQ Operation

 Quasar SOA Test Workbench

The deployment topology is illustrated in the following diagram.

Figure 1 POC Deployment Topology

POC Process Workflow JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 8

POC Process Workflow
The workflow for the POC includes the following steps:

1. A job is manually submitted on MVS that invokes Universal Command.

2. Universal Command validates request and sends it to the Universal Agent.

3. The Universal Agent starts a UCMD Server that submits the command options and
payload for the JMS message to the Universal Command Agent for SOA : JMS
Connector.

4. The JMS Connector connects to the MQ Broker in a synchronous, request/reply
operation, and writes the message to the MQ Request queue.

5. The workflow process, in this case the Quasar SOA Test Workbench, reads the
message from the MQ Request queue and writes a separate message to the MQ
Reply queue. This represents the MQ Message Broker workflow that reads the
message off the request queue, starts its processes, then places a message on the
reply queue.

6. The JMS Connector reads the message from the MQ Reply queue and returns it
back to the UCMD Server.

7. The UCMD Server passes the message back to Universal Command which writes it
to UNVOUT where it is available for use by subsequent MVS jobs.

The POC workflow is illustrated in the following diagram.

Figure 2 POC Workflow

POC Installation JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 9

POC Installation
The installation process for this POC is:

1. If not already installed, install WebSphere MQ v6.0 or v7.0. Please reference the
WebSphere MQ installation guides.

2. Install Stonebranch Solutions . Note that the Universal Command Agent for SOA is
available on three platforms (Linux, AIX, and Windows), so be sure to install
Stonebranch Solutions on the same platform where you will be installing the
Universal Command Agent for SOA. Please reference the Stonebranch Solutions
Installation Guide.

3. Install Universal Command Agent for SOA on the same server that you installed the
Stonebranch Solutions package. If you have not installed the Stonebranch Solutions
package, then you will not be able to install the Universal Command Agent for SOA
package, as there is a dependency.

Please note that for both steps 1 and 2, you can deploy the packages to the server
that the target workload is installed on (in this case WebSphere MQ) or you can
choose an application server approach and install the two products on a Linux, AIX,
or Windows server that has network access to both the Universal Command
Manager host and the target workload.

MQ Setup and Configuration JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 10

MQ Setup and Configuration
You must configure the WebSphere MQ environment to support JMS operations. This
involves defining queues and channels for the WebSphere MQ class for Java and defining
the specific Java information for the WebSphere MQ environment.

This process involves two procedures:

1. Create Queues and Channels

2. Set up JMS using JMSAdmin

Create Queues and Channels

1. Create the queues and channels associated with the WebSphere MQ class for Java.

Note: If you have existing queues you can skip this step, although you will need to
define the java channel. Create a configuration file with a name of your choosing
(MyQueueManager.conf works) and the following commands:

DEFINE QLOCAL (‘MyRequestQ’) + REPLACE
DEF CHL(‘JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP)
MCAUSER(‘mqm’) +
DESCR(‘Sample channel for WebSphere MQ class for Java’) + REPLACE

DEFINE QLOCAL (‘MyReplyQ’) + REPLACE
DEF CHL(‘JAVA.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP)
MCAUSER(‘mqm’) +
DESCR(‘Sample channel for WebSphere MQ class for Java’) + REPLACE

2. Once you have the file created, you need to run the following command from the
prompt:
runmqsc MyQueueManager < MyQueueManager.conf > qcreate.log

MQ Setup and Configuration JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 11

Set up JMS using JMSAdmin

Set up JMS using the JMSAdmin command line utility.

1. Modify the JMSAdmin.config in /usr/mqm/java/bin so that:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fcontext.RefFSContextFactory
PROVIDER_URL=file:/opt/tmp

Note that the initial context factory variable exists and just needs to be
uncommented. Be sure to comment out the default initial context factory value.

2. Make sure you are logged in as the mqm user.
su – mqm
cd /usr/mqm/java/bin

3. Run the jmsenvenv script at the prompt as follows (your syntax may be different and
note the space between the dot and the script name):
. setjmsenv

4. Run the JMSAdmin tool as follows (note that your syntax may be different):
JMSAdmin

5. You will now have a new prompt associated with the JMSAdmin tool. At that prompt
run the following commands (note that each def is it’s own line and there are only
three lines):
def qcf(ConnectionFactory) hostname(yourhostname) port(1414)
channel(JAVA.CHANNEL) transport(CLIENT) qmanager(MyQueueManager)
def q(MyJMSRequestQ) queue(MyRequestQ) qmanager(MyQueueManager)
def q(MyJMSReplyQ) queue(MyReplyQ) qmanager(MyQueueManager)

6. At the command prompt start the listener (don’t forget to background the task):
runmqlsr –m MyQueueManager –t tcp &

Universal Command Agent for SOA Set-up JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 12

Universal Command Agent for SOA Set-up
You must configure the Universal Command Agent for SOA to work with WebSphere MQ.
This includes copying a specific set of MQ jar files, copying the MQ .bindings file, setting up
the properties file for the reply-to address, and starting the components.

The process is:

1. Copy the following list of jar files from /usr/mqm/java/lib to
/opt/universal/uac/container/webapps/axis2/WEB-INF/lib. Verify the file sizes once
the copy is complete. If there are any differences, recopy the files or things will not
go so well in subsequent steps.

 com.ibm.mq.jar

 com.ibm.mqjms.jar

 commonservices.jar

 connector.jar

 dhbcore.jar

 fscontext.jar

 jms.jar

 jta.jar

 providerutil.jar

2. Copy the .bindings from /opt/tmp from the WebSphere MQ host to /opt/universal/uai.
This is a hidden file so you will need to use the command ls –lsa to see the file. Note
that this file was generated when you ran the JMSAdmin utility based on the
PROVIDER_URL=/opt/tmp option.

3. In order for the Universal Command Agent for SOA to retrieve the reply, it needs to
know what the name of the reply-to queue is. This is handled by creating a simple
XML file with the reply-to queue value in it and specifying the path and filename of
this file using the –jmspropertiesfile option.

Here is an example of this file:

<?xml version="1.0" encoding="UTF-8"?>

<sb:JMSProperties

xmlns:sb="http://com.stonebranch/UAC/JMSProperties"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://com.stonebranch/UAC/JMSProperties

JMSProperties.xsd ">

<sb:Property>

<sb:Name>jms.header.JMSReplyTo</sb:Name>

<sb:Value>MyJMSReplyQ</sb:Value>

</sb:Property>

</sb:JMSProperties>

Running the Job JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 13

4. Start the Universal Broker. This will start the Universal Command Agent for SOA.
Use uquery to validate that the Universal Broker and Universal Command Agent for
SOA have started successfully.

Running the Job
Now you can run the job. Create the control JCL, script, and options file for the host you are
using.

The following examples are provided, which should work on most MVS/zOS hosts.

Control JCL UACJMS1

//UACJMS1 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//*

//***

//*MQ queue test for Publish

//*UCMD is the proc that calls UC Manager

//*LOGON is the DD with userid and passwd (can use encrypted)

//*SCR is the script that contains the JMSConnector information

//* to connect to Websphere job scheduler

//*UNVIN provides the payload for the SCRIPT in SCR

//***

//*

//* JCLLIB ORDER=SBI.UNV.SUNVSAMP

//*

//UCMD EXEC UCMDPRC

//LOGON DD DISP=SHR,DSN=SUPPORT.UAC.LOGON(USER1)

//SCR DD DISP=SHR,DSN=SUPPORT.UAC.SCRIPTS(SCRJMSRR)

//UNVIN DD DISP=SHR,DSN=SUPPORT.UAC.SCRIPTS(PYLJMS1)

//UNVOUT DD DISP=SHR,DSN=SUPPORT.UAC.JOBLOGS(JOB1)

//UNVERR DD DISP=SHR,DSN=SUPPORT.UAC.JOBLOGS(JOB2)

//SYSIN DD *

-s scr

-script_type SERVICE

-i 123.45.67.890 -f logon

Running the Job JMS Connector

indesca-soa-jms-poc Confidential & Proprietary 14

Script SCRJMSRR

This script contains the options that will be passed to the

Universal Command Agent for SOA.

protocol is what protocol you are choosing (JMS)

mep is the type of message. In this case Request for a

request/reply operation

serviceurl is the path to the .bindings file in this example

jmsdestination is the Queue alias setup in step 5 of the MQ setup

section

jmsconnectionfactoryname is connection class

jmscontextfactoryname is classname of initial context

jmspropertiesfiles is the path and name to the file that contains

the reply-to

queue information.

#**

-protocol JMS

-mep Request

-serviceurl file:///opt/universal/uai

-jmsdestination MyJMSRequestQ

-jmsconnectionfactoryname ConnectionFactory

-jmscontextfactoryname com.sun.jndi.fscontext.RefFSContextFactory

-jmspropertiesfile /opt/universal/uai/MQReply.properties.xml

Payload PYLJMS1

If the message being placed on the MQ request queue is only acting as an event then
technically you don’t need to include a payload file. If there is data required by the MQ
Message Broker workflow then you will need to create a payload file whose contents will
then be attached to the JMS message. This can be any type of text based file such as XML,
csv, or plain text. See the Universal Command Agent for SOA Reference Guide for
reference. The following example shows a plain text payload file.

==MSG> -Warning- The UNDO command is not available until you change

==MSG> your edit profile using the command RECOVERY ON.

000001 Test of configuration for POC

/opt/universal/uai

950 North Point Parkway, Suite 200

Alpharetta, Georgia 30005

U.S.A.

Figure 74 Figure 73 Figure 72 Figure 71 Figure 70 Figure 69 Figure 68 Figure 67 Figure 66 Figure 65 Figure 64 Figure 63 Figure 62 Figure 61 Figure 60 Figure 59 Figure 58 Figure 57 Figure 56 Figure 55 Figure 54 Figure 53 Figure 52 Figure 51 Figure 50 Figure 49 Figure 48 Figure 47 Figure 46 Figure 45 Figure 44 Figure 43 Figure 42 Figure 41 Figure 40 Figure 39 Figure 38 Figure 37 Figure 36 Figure 35 Figure 34 Figure 33 Figure 32 Figure 31 Figure 30 Figure 29 Figure 28 Figure 27 Figure 26 Figure 25 Figure 24 Figure 23 Figure 22 Figure 21 Figure 20 Figure 19 Figure 18 Figure 17 Figure 16 Figure 15 Figure 14 Figure 13 Figure 12 Figure 11 Figure 10 Figure 9 Figure 8 Figure 7 Figure 6 Figure 5 Figure 4 Figure 3

	Contents
	List of Figures
	Concept
	Challenge
	Solution
	POC Environment
	POC Process Workflow
	POC Installation
	MQ Setup and Configuration
	Create Queues and Channels
	Set up JMS using JMSAdmin

	Universal Command Agent for SOA Set-up
	Running the Job
	Control JCL UACJMS1
	Script SCRJMSRR
	Payload PYLJMS1

