
Universal Data Mover
User Guide

Universal Products

Version 3.2.0

udm-user-3207

Universal Data Mover

User Guide

Universal Products 3.2.0
Document Name Universal Data Mover 3.2.0 User Guide

Document ID udm-user-3207

Products z/OS UNIX Windows OS/400 HP NonStop

Universal Data Mover Manager √ √ √ √

Universal Data Mover Server √ √ √ √
udm-user-3207 Confidential & Proprietary 3

Stonebranch Documentation Policy

This document contains proprietary information that is protected by copyright. All rights reserved.
No part of this publication may be reproduced, transmitted or translated in any form or language or

by any means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission, in writing, from the publisher. Requests for

permission to make copies of any part of this publication should be mailed to:

Stonebranch, Inc.
950 North Point Parkway, Suite 200

Alpharetta, GA 30005 USA
Tel: (678) 366-7887
Fax: (678) 366-7717

Stonebranch, Inc.® makes no warranty, express or implied, of any kind whatsoever, including any
warranty of merchantability or fitness for a particular purpose or use.

The information in this documentation is subject to change without notice.

Stonebranch shall not be liable for any errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this document.

All products mentioned herein are or may be trademarks of their respective owners.

© 2003-2010 by Stonebranch, Inc.

All rights reserved.
udm-user-3207 Confidential & Proprietary 4

Summary of Changes
Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-3207)
February 19, 2010
• Added _execrc built-in variable in Section11.6.8 Built-in Variables.

Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-3206)
September 8, 2009
• Moved Universal Data Mover Manager examples for all operating systems to

Appendix A Examples.

Universal Data Mover 3.2.0.6

• Added LOGON_METHOD configuration option in Chapter 8 Universal Data Mover
Server for Windows.

Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-3205)
July 29, 2009

Universal Data Mover 3.2.0.1 for OS/400

• Modified document for upgrade from Universal Data Mover 3.1.1 for OS/400 to
Universal Data Mover 3.2.0 for OS/400, including:
• Changed the following OS/400 names throughout the document:

• Universal Broker subsystem name from UBROKER to UNVUBR320.
• Universal Broker user profile name from UBROKER to UNVUBR320.
• Universal Products installation library name from UNIVERSAL to UNVPRD320.
udm-user-3207 Confidential & Proprietary 5

Summary of Changes
• Universal Products spool library name from UNVSPOOL to UNVSPL320.
• Universal Products temporary directory from UNVTMP to UNVTMP320.

• Added Section 6.2.1 Universal Products for OS/400 Commands.
• Added the following configuration options in Section 6.2.4 Configuration Options

of Chapter 6 Universal Data Mover Manager for OS/400:
• ACTIVITY_MONITORING
• CA_CERTIFICATES
• CERTIFICATE
• CERTIFICATE_REVOCATION_LIST
• CODEPAGE_TO_CCSID_MAP
• COMMENT
• EVENT_GENERATION
• OPEN_RETRY
• OPEN_RETRY_COUNT
• OPEN_RETRY_INTERVAL
• PLF_DIRECTORY
• PRIVATE_KEY
• PRIVATE_KEY_PWD
• PROXY_CERTIFICATES

• Added the following STRUDM parameters in Figure 6.1 UDM Manager for OS/400
- Command Line Syntax:
• CTLCPHRLST
• DTACPHRLST
• FRAMEINT
• MODETYPE
• MSGLEVEL (time values)
• OUTBOUNDIP

• Added an Invoke a Script from a Batch Job example in Appendix A.4 UDM
Manager for OS/400 Examples.

• Added the following configuration options in Section 10.3.2 Configuration Options
of Chapter 10 Universal Data Mover Server for OS/400:
• ACTIVITY_MONITORING
• CODEPAGE_TO_CCSID_MAP
• EVENT_GENERATION
• TMP_DIRECTORY

• Modified Section 14.4.2 call (Call) Command in Chapter 14 Transfer Operations
(OS/400-Specific).

• Added Caution about Text Mode Transfer of Files with DDS in subsection 14.2.4
Data Physical Files Support of Section 14.2 OS/400 I/O.
udm-user-3207 Confidential & Proprietary 6

Summary of Changes
Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-3204)
April 1, 2009
• Moved the Licenses and Copyrights appendix to the Universal Products 3.2.0

Installation Guide.

Universal Data Mover 3.2.0.3

• Added the TCP_NO_DELAYconfiguration option to the following tables:
• Chapter 3 Universal Data Mover Manager for z/OS
• Chapter 4 Universal Data Mover Manager for Windows
• Chapter 5 Universal Data Mover Manager for UNIX
• Chapter 7 Universal Data Mover Server for z/OS
• Chapter 8 Universal Data Mover Server for Windows
• Chapter 9 Universal Data Mover Server for UNIX

• Added the following commands in Table 11.1 UDM Commands:
• appenddata
• closelog
• echolog
• logdata
• move
• openlog
• savedata

• Added Table 11.4 _file Built-in Variable – Special Attributes.
• Added the following built-in variables to Section 11.6.8 Built-in Variables:

• _uuid
• _lastmsg

• Added sortby parameter information in Section 11.10 forfiles Statement.
• Added _file Variable Attributes section in Section 11.10.1 forfiles Built-In Variables.
• Added Section12.8.2 Move Operation.
• Added the following parameters in Section 15.2 exec Command:

• stdout
• stderr

Changes for Universal Data Mover 3.2.0 User Guide
(udm-ref-3203)
December 17, 2008
• Added Updating the Universal Data Mover Server ACL Entries in Section 8.4.5

Universal Access Control List of Chapter 8 Universal Data Mover Server for Windows.
udm-user-3207 Confidential & Proprietary 7

Summary of Changes
Changes for Universal Data Mover 3.2.0 User Guide
(udm-ref-3202)
October 17, 2008
• Changed JCL SNTYPE value to type for the dsntype attribute in Table 13.1 attrib

Command - Dynamic Allocation Attributes.

Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-3201)
September 5, 2008
• Added toll-free telephone number for North America in Appendix B Customer

Support.

Changes for Universal Data Mover 3.2.0 User Guide
(udm-user-320)
May 16, 2008

Universal Data Mover 3.2.0.0

• Added support for the following features:
• Script Language

UDM has made vast improvements in the power of its scripting language with the
addition of new control structures and built in functions.

• X.509 Certificates
UDM provides full support for X.509 certificates.

• UNIX Permissions
When transferring UNIX files between two UNIX systems, the file permission
modes of the destination files may now be based upon the source file modes.

• z/OS Load Module Copies
UDM on z/OS now supports the transfer of load modules and program objects
between z/OS systems.

• z/OS Relative GDG Delete
Support for deleting z/OS generation data sets based upon a relative number
using the UDM DELETE command.

• z/OS GDG Resolution Method
The method used for resolving for generation data set relative numbers with a
UDM script can be selected between the original job method and the new
reference method.

• Manager Identification in Three-Party Transfers
The UDM manager identity, either user identifier and IP address or X.509
certificate information, is propagated to the primary and secondary UDM servers
and available for UACL processing.

• Deleted the following values in Table 2.3 Component Communication States:
• ORPHANED
udm-user-3207 Confidential & Proprietary 8

Summary of Changes
• PENDING
• RESTARTING

• Added Chapter 2 Features, including:
• Section 2.4 Universal Configuration Manager.
• Section 2.6.2 Open Retry.
• Section 2.7 z/OS CANCEL Command Support.
• Section 2.8.3 Types of UACL Rules.
• Section 2.8.4 Proxy Certificates.

• Added the following UDM Manager configuration options for the z/OS, Windows, and
UNIX operating systems:
• ACTIVITY_MONITORING
• BIF_DIRECTORY (UNIX only)
• CA_CERTIFICATES
• CERTIFICATE
• CERTIFICATE_REVOCATION_LIST
• COMMENT
• EVENT_GENERATION
• OPEN_RETRY_COUNT
• OPEN_RETRY_INTERVAL
• PLF_DIRECTORY (UNIX only)
• PRIVATE_KEY
• PRIVATE_KEY_PASSWORD
• PROXY_CERTIFICATES
• SAF_KEY_RING (z/OS only)
• SAF_KEY_RING_LABEL (z/OS only)
• SERVER_STOP_CONDITIONS (z/OS only)
• SSL_IMPLEMENTATION (z/OS only)
• SYSTEM_ID (z/OS only)
• UCMD_PATH (UNIX and Windows only)

• Added UDM_MGR_ACCESS UACL entry for the z/OS, Windows, and UNIX
operating systems.

• Added the following UDM Server configuration options for the z/OS, Windows, and
UNIX operating systems:
• ACTIVITY_MONITORING
• EVENT_GENERATION
• TMP_DIRECTORY

• Added Nesting / Recursion of Subroutines in Section 11.5 Subroutines of Chapter 11
UDM Scripting Language.

• Changed the _result variable to an attribute of the _lastrc variable in Section 11.6.8
Built-in Variables of Chapter 11 UDM Scripting Language.

• Added information to Chapter 11 UDM Scripting Language:
• Added and modified information in Chapter 16 Return Code Processing:
• Added Section 12.8.6 File Permission Attribute.
• Added Section 13.4 Copying Load Modules.
udm-user-3207 Confidential & Proprietary 9

Summary of Changes
• Consolidated UDM Manager Configuration chapters and UDM Manager Invocation
chapters.

Changes for Universal Data Mover 3.1.1 User Guide
(udm-user-31111)
February 28, 2007
• Added customer support telephone number for Europe to Appendix B Customer

Support.
• Universal Data Mover 3.1.1.7
• Added svropt option to the following sections:

• Section 11.1 exec Command in Section 11 Remote Execution.
• Section 13.10 exec in Section 13 Command Reference.

• Added paragraph about HSM data migration to Section 9.1.4 Allocation of Section 9
z/OS-Specific Transfer Operations.

• Added ASPDEV value for ASPNUM attribute in Table 10 OS/400-Specific LIB File
Attributes for Creating New Files in Section 10.2.1 attrib (Attribute) Command of
Section 10 OS/400-Specific Transfer Operations

• Updated network fault tolerance information for the NETWORK_FAULT_TOLERANT
option in the following sections:
• Section 3.1 Configuring the UDM Manager of Section 3 Configuring UDM under

UNIX
• Section 4.1 Configuring UDM Manager of Section 4 Configuring UDM under z/OS
• Section 5.1 Configuring UDM Manager of Section 5 Configuring UDM under

OS/400
• Section 6.1 Invoking UDM Manager under Windows and UNIX
• Section 6.2 Invoking UDM Manager Under z/OS
• Section 6.3 Invoking UDM Manager Under OS/400

• Added the OPEN_RETRY UDM Manager configuration option in the following
sections:
• Section 3.1 Configuring UDM Manager of Section 3 Configuring UDM under

UNIX.
• Section 4.1 Configuring UDM Manager of Section 4 Configuring UDM under z/OS.
• Section 6.1 Invoking the UDM Manager under Windows and UNIX
• Section 6.2 Invoking the UDM Manager Under z/OS

Changes for Universal Data Mover 3.1.1 User Guide
(udm-user-31110)
December 15, 2006
• Added List of Figures and List of Tables.
• Added Customer Support.
• Universal Data Mover 3.1.1.6
• Added Section 1.4 Configuration File or System Registry.
udm-user-3207 Confidential & Proprietary 10

Summary of Changes
• Added Section 5 Configuring UDM under OS/400.
• Added Section 6.3 Invoking the UDM Manager Under OS/400.
• Added Section 8.5 OS/400 File Systems.
• Added Section 10 OS/400-Specific Transfer Operations.
• Changed name of Configuration File Keyword from receive_buffer_size to

recv_buffer_size (throughout document)
• Added default values for options in Section 2 Configuring UDM under Windows.
• Added Section 2.3.1 Component Definitions to Section 2.3 Configuring Universal

Data Mover Server.
• Added the MERGE_LOG option to the following sections:

• 3.1 Configuring the UDM Manager of Section 3 Configuring UDM under UNIX.
• 4.1 Configuring the UDM Manager of Section 4 Configuring UDM under z/OS.
• 6.1 Invoking the UDM Manager under Windows and UNIX of Section 6 UDM

Manager Invocation.
• 6.2 Invoking the UDM Manager Under z/OS of Section 6 UDM Manager

Invocation.
• Added default value to USER_SECURITY in Section 3.2.2.2 Configuration Options

Reference.
• Added an "If" statement to the sample UDM script in Section 7.2 UDM Command

Format.
• Redefined Section 7.3 Script Files, and renamed and redefined Sections 7.3.1

Invoking UDM in Batch with Commands from a Script File and 7.3.2 Invoking UDM
Interactively with Commands from a Script File.

• Added LIB as a value for the filesys command, and Indicated availability of filesys
value of DD, in the following sections:
• Section 8.2.2 Changing the Current File System of Section 8 UDM Transfer

Operations
• Section 13.13 filesys of Section 13 Command Reference

• Added information about EOL attribute in HFS file system in Section 8.6.3 End of Line
Sequence.

• Added note in Section 8.7.6 Transaction-Oriented Transfers about non-support in
UDM OS/400 LIB file system.

• Added Syntax, Description, and Parameters for Section 13.11 execsap in Section 13
Command Reference.

• Added default value for logical-name parameter in Section 13.13 filesys.
• Modified example in Section 14.1.5 Copy a Set of Files to a New z/OS Partitioned

Data Set.
• Added Section 14.3 OS/400 Examples to Section 14 Samples.

Changes for UDM Release 3.1.1.0
April 30, 2005
• Added information about the EXEC command.
• Added information about the EXECSAP command.
udm-user-3207 Confidential & Proprietary 11

Summary of Changes
• Added information about support for wildcards in data set names for the DSN file
system.

• Added information about the DATA command for in-stream data.
• Added the RENAME command.
• Added information about source allocation attributes being used in MVS to MVS copy

operations.
• Added information about the _DATE and _TIME built-in variables.
• Added documentation of the on-the-fly logical name built-in variables.
• Documentation for the new TYPE variable attribute for the _FILE built-in variable.
• Updated information on configuration options.
• Added information about the REPORT command.
• Added information about transfer operation auditing.
• Added information about monitoring transfer operation progress.

Changes for UDM Release 3.1.0
October 31, 2004
• Removed section on the control session cipher list configuration as this information

now comes from the version 3.1 of the Universal Broker.
• Added information about keep-alive support.
• Added information about console idle timeout.
• Added information about network fault tolerance support in UDM.
• Added information on nested script parameter scope.
• Added z/OS UDM Server.
• Added commands break, copydir and delete.
• Added scripting features of 'IF' logic and 'forfiles'.
• Added section on available built-in variables and reserved variable names.

Changes for UDM Release 1.1.0
February 17, 2004 Release
• Added control and data session cipher list configuration to UNIX UDM Server

configuration section.
• Added information about the NULL-NULL cipher to the documentation for the OPEN

command.
• Added information about the NULL-NULL cipher for the data session in the UDM

Server configuration sections.
• Updated UDM Manager configuration sections with information about setting the

default transfer mode type.
• Updated information about default port in the UDM Manager configuration sections.
• Added information about a message timestamp to the MESSAGE_LEVEL

configuration option for UNIX and z/OS versions of UDM.
• Added documentation on the resetattrib command.
udm-user-3207 Confidential & Proprietary 12

Contents
Summary of Changes . 5

Contents . 13

List of Figures . 25

List of Tables . 27

Preface . 30
Document Structure . 30

Format . 30
Conventions . 31
Vendor References . 32

Document Organization . 33

Chapter 1 Overview . 34
1.1 Introduction to Universal Data Mover . 34

1.2 Transfer Components . 35
1.2.1 Manager . 35
1.2.2 Primary Server . 35
1.2.3 Secondary Server . 35

1.3 Transfer Sessions . 36
1.3.1 Logical Names . 36
1.3.2 Two-Party Transfer Sessions . 36
1.3.3 Three-Party Transfer Sessions . 36
udm-user-3207 Confidential & Proprietary 13

Contents
Chapter 2 Features . 38
2.1 Overview . 38

2.2 Configuration . 39
2.2.1 Configuration Methods . 39
2.2.2 Command Line . 40
2.2.3 Command Line File . 42
2.2.4 Environment Variables . 43
2.2.5 Configuration File . 45
2.2.6 Configuration File Syntax . 47

2.3 Remote Configuration . 48
2.3.1 Unmanaged Mode . 48
2.3.2 Managed Mode . 49

Selecting Managed Mode . 49
2.3.3 Universal Broker Startup . 51

2.4 Universal Configuration Manager . 52
2.4.1 Availability . 52
2.4.2 Accessing the Universal Configuration Manager . 54
2.4.3 Navigating through Universal Configuration Manager 56
2.4.4 Modifying / Entering Data . 56

Rules for Modifying / Entering Data . 56
2.4.5 Saving Data . 57
2.4.6 Accessing Help Information . 57
2.4.7 Universal Data Mover Installed Components . 58

Universal Data Mover Manager . 58
Universal Data Mover Server . 59

2.5 Network Data Transmission . 60
2.5.1 Secure Socket Layer Protocol . 60

Data Privacy and Integrity . 61
Peer Authentication . 62

2.5.2 Universal Products Protocol . 63
Data Privacy and Integrity . 63

2.5.3 Universal Products Application Protocol . 64
Low-Overhead . 64
Secure . 64
Extensible . 65

2.5.4 Configurable Attributes . 66

2.6 Fault Tolerance . 70
2.6.1 Network Fault Tolerance . 70
2.6.2 Open Retry . 71
2.6.3 Component Management . 72

2.7 z/OS CANCEL Command Support . 73
2.7.1 Exit Codes . 73
udm-user-3207 Confidential & Proprietary 14

Contents
2.7.2 Security Token . 74

2.8 Universal Access Control List . 75
2.8.1 UACL Configuration . 76
2.8.2 UACL Entries . 77

Client Identification . 77
Certificate-Based and Non Certificate-Based UACL Entries 81

2.8.3 Types of UACL Rules . 82
udm_access . 82
udm_mgr_access . 82
udm_cert_access . 82

2.8.4 Proxy Certificates . 83

2.9 Message and Audit Facilities . 84
2.9.1 Message Types . 84
2.9.2 Message ID . 85
2.9.3 Message Levels . 85
2.9.4 Message Destinations . 86

2.10 X.509 Certificates . 88
2.10.1 Sample Certificate Directory . 89
2.10.2 Sample X.509 Certificate . 90

Certificate Fields . 91
2.10.3 SSL Peer Authentication . 92

Certificate Verification . 92
Certificate Revocation . 92
Certificate Identification . 93
Certificate Support . 93

Chapter 3 Universal Data Mover Manager for z/OS . 94
3.1 Overview . 94

3.2 Usage . 95
3.2.1 JCL Procedure . 96
3.2.2 DD Statements in JCL . 97
3.2.3 JCL . 98
3.2.4 Configuration . 99
3.2.5 Configuration Options . 100
3.2.6 Command Line Syntax . 103

3.3 Examples of UDM Manager for z/OS . 105

3.4 Security . 106
3.4.1 Data Set Permissions . 106

Chapter 4 Universal Data Mover Manager for Windows . 107
4.1 Overview . 107
udm-user-3207 Confidential & Proprietary 15

Contents
4.2 Usage . 108
4.2.1 Modes of Operation . 108

Running UDM in Interactive Mode . 108
Running UDM in Batch Mode . 108

4.2.2 Configuration . 109
4.2.3 Configuration Options . 110
4.2.4 Command Line Syntax . 112

4.3 Examples of UDM Manager for Windows . 113

Chapter 5 Universal Data Mover Manager for UNIX . 114
5.1 Overview . 114

5.2 Usage . 115
5.2.1 Modes of Operation . 115

Running UDM in Interactive Mode . 115
Running UDM in Batch Mode . 115

5.2.2 Configuration . 116
5.2.3 Configuration Options . 117
5.2.4 Command Line Syntax . 119

5.3 Examples of UDM Manager for UNIX . 120

5.4 Security . 121
5.4.1 File Permissions . 121
5.4.2 Configuration Files . 121

Chapter 6 Universal Data Mover Manager for OS/400 . 122
6.1 Overview . 122

6.2 Usage . 123
6.2.1 Universal Products for OS/400 Commands . 123
6.2.2 Modes of Operation . 124

Running UDM Interactively . 124
Running UDM from a Script . 124
Running UDM in Batch Mode . 125

6.2.3 Configuration . 126
6.2.4 Configuration Options . 127
6.2.5 Command Line Syntax . 129

6.3 Examples of UDM Manager for OS/400 . 130

6.4 Security . 131
6.4.1 Object Permissions . 131

Chapter 7 Universal Data Mover Server for z/OS . 132
7.1 Overview . 132
udm-user-3207 Confidential & Proprietary 16

Contents
7.2 Component Definition . 133

7.3 Configuration . 134
7.3.1 Configuration File . 134
7.3.2 Configuration Options . 135

7.4 Security . 137
7.4.1 File Permissions . 137
7.4.2 Configuration Files . 137
7.4.3 Universal Data Mover Server User ID . 137
7.4.4 User Authentication . 137
7.4.5 Universal Access Control List . 138

UACL Entries . 138
UACL Examples . 139

Chapter 8 Universal Data Mover Server for Windows . 140
8.1 Overview . 140

8.2 Component Definition . 141

8.3 Configuration . 143
8.3.1 Configuration File . 143
8.3.2 Configuration Options . 144

8.4 Security . 145
8.4.1 File Permissions . 145
8.4.2 Configuration Files . 145
8.4.3 Universal Data Mover Server User ID . 145
8.4.4 User Authentication . 146
8.4.5 Universal Access Control List . 146

UACL Entries . 146
Updating the Universal Data Mover Server ACL Entries 147

Chapter 9 Universal Data Mover Server for UNIX . 148
9.1 Overview . 148

9.2 Component Definition . 149

9.3 Configuration . 150
9.3.1 Configuration File . 150
9.3.2 Configuration Options . 151

9.4 Security . 152
9.4.1 File Permissions . 152
9.4.2 Configuration Files . 152
9.4.3 Universal Data Mover Server User ID . 152
9.4.4 User Authentication . 153
9.4.5 Universal Access Control List . 153

UACL Entries . 153
udm-user-3207 Confidential & Proprietary 17

Contents
UACL Examples . 154

Chapter 10 Universal Data Mover Server for OS/400 . 155
10.1 Overview . 155

10.2 Component Definition . 156

10.3 Configuration . 157
10.3.1 Configuration File . 157
10.3.2 Configuration Options . 158

10.4 Security . 159
10.4.1 Object Permissions . 159
10.4.2 Universal Data Mover Server User Profile . 159
10.4.3 User Authentication . 160
10.4.4 Universal Access Control List . 160

UACL Entries . 160
UACL Examples . 161

Chapter 11 UDM Scripting Language . 162
11.1 Overview . 162

11.2 UDM Commands . 163

11.3 UDM Command Format . 165
11.3.1 Basic Rules . 165

Parameters . 165
Spaces . 165
Escape Sequences . 165
Line Continuation . 166
Comments . 166

11.3.2 Sample UDM Script . 166
11.3.3 Expressions . 167

Appearance . 167
Integer Only . 167
Delimiters . 167
Operand / Operator Delimiters . 167
Operator Precedence . 168
Nesting . 168
Operations . 169

11.3.4 Strings in Expressions . 170
Index Position and Sequence . 170

11.3.5 Examples of Expressions . 171

11.4 Script Files . 172
11.4.1 Invoking UDM in Batch Mode with Commands from a Script File 172
11.4.2 Invoking UDM Interactively with Commands from a Script File 173
udm-user-3207 Confidential & Proprietary 18

Contents
11.4.3 Invoking Scripts from within Scripts . 174
11.4.4 Parameter Processing . 174

11.5 Subroutines . 175
11.5.1 Usage . 175

Defining a Subroutine . 175
Invoking a Subroutine . 175
Sequence of Defining / Invoking a Subroutine . 176
Nesting / Recursion of Subroutines . 176

11.5.2 Example . 177
Output . 177

11.6 UDM Variables . 178
11.6.1 Variable Types . 178

Variable Names . 178
11.6.2 Variable Reference . 178
11.6.3 Script Variables . 179
11.6.4 Global Variables . 179
11.6.5 Scope of Script and Global Variables . 180

Variable Scope Scripts . 181
11.6.6 User-Defined Variables . 182
11.6.7 Variable Attributes . 183

exists Attribute . 183
length Attribute . 183

11.6.8 Built-in Variables . 184
_date . 185
_echo . 185
_execrc . 185
_file . 186
_halton . 187
_keepalive . 187
_lastmsg . 187
_lastrc . 188
_lines . 189
_path . 189
_rc . 189
_time . 190
_uuid . 190

11.6.9 Logical Name Built-In Variables . 191
Examples . 191

11.7 if Statement . 192
11.7.1 Comparison Operations . 192

Comparators . 192
EQ - Equal . 193
udm-user-3207 Confidential & Proprietary 19

Contents
 NE - Not Equal . 193
LT - Less Than . 194
GT - Greater Than . 194
LE - Less Than or Equal . 194
GE - Greater Than or Equal . 195

11.7.2 Adding an Alternate Path with else Statement . 196
Alternate Path without else Statement . 196
Alternate Path with else Statement . 197

11.7.3 Nested Conditionals . 198
11.7.4 Returning Early Using the return Command . 199

11.8 while Statement . 200

11.9 fordata Statement . 201
Example . 201

11.10 forfiles Statement . 202
11.10.1 forfiles Built-In Variables . 203

_file Variable Attributes . 204
11.10.2 forfiles File Specification . 205
11.10.3 Breaking Out Using the break Command . 206

11.11 Creating In-Stream Data with the data Command . 207
11.11.1 Creating an In-Stream Data Element . 207

Example . 208
11.11.2 Printing Data Element Information . 208

Chapter 12 UDM Transfer Operations . 209
12.1 Overview . 209

12.2 Transfer Sessions . 210
12.2.1 Opening a Transfer Session . 210

Opening a Two-Party Transfer Session . 210
Opening a Three-Party Transfer Session . 211

12.2.2 Session Options . 211
12.2.3 Closing a Session . 212

12.3 File Systems . 213
12.3.1 File System Overview . 213
12.3.2 Changing the Current File System . 214

12.4 UDM Common File System . 215
12.4.1 Common File System Terminology . 215

12.5 z/OS File System . 217

12.6 OS/400 File Systems . 219
12.6.1 HFS . 219
12.6.2 LIB . 220
udm-user-3207 Confidential & Proprietary 20

Contents
12.7 Transfer Modes and Attributes . 221
12.7.1 Setting the Transfer Type . 221
12.7.2 Transfer Attributes . 222
12.7.3 End of Line Sequence . 223

eol Attribute . 224
12.7.4 Line Length and Line Operations . 225

12.8 Copying Files with UDM . 226
12.8.1 Simple Copy Operation . 226

Examples . 226
12.8.2 Move Operation . 227
12.8.3 Copying Multiple Files Using Wildcards . 228
12.8.4 File Extension Attributes . 229
12.8.5 File Creation Options . 229
12.8.6 File Permission Attribute . 230

Examples . 230
Defaults . 231

12.8.7 Destination umask . 231
12.8.8 Transaction-Oriented Transfers . 231
12.8.9 Changing the Current Directory in UDM . 232

12.9 Auditing Transfer Operations . 233
12.9.1 Logging File Transfer Operations . 233
12.9.2 Reporting Transfer Progress . 234

Chapter 13 Transfer Operations (z/OS-Specific). 235
13.1 Overview . 235

13.2 z/OS I/O . 236
13.2.1 Data Sets . 236

Data Set Names . 236
Data Set Organization . 237
Record Format . 237
Block Size . 237

13.2.2 Generation Data Group and Generation Data Sets 238
Allocation . 238

13.2.3 Catalogs . 239
Symbolic Names . 239
Catalog Entry Types . 239

13.2.4 Allocation . 239

13.3 UDM Commands under z/OS . 240
13.3.1 attrib (Attribute) Command . 240
13.3.2 cd (Change Directory) Command . 244

DSN (data set name) File System . 244
Examples . 244
udm-user-3207 Confidential & Proprietary 21

Contents
DD (ddname) File System . 245
13.3.3 copy (Copy) Command . 246

DSN File System . 246
Sequential Data Sets . 246
Partitioned Data Sets . 247
DD File System . 248
Sequential ddnames . 248
Partitioned ddnames . 249

13.4 Copying Load Modules . 250
13.4.1 Example . 251
13.4.2 Error Reporting . 252
13.4.3 Special Attributes . 252

Chapter 14 Transfer Operations (OS/400-Specific). 253
14.1 Overview . 253

14.2 OS/400 I/O . 254
14.2.1 File Systems . 254
14.2.2 HFS (for OS/400) File System . 254
14.2.3 LIB File System . 254

File Types . 254
14.2.4 Data Physical Files Support . 255

Caution about Text Mode Transfer of Files with DDS 255
14.2.5 Source Physical Files Support . 256
14.2.6 Copying Source Physical Files . 257

Like Copies of Source Physical File Data . 257
Non-Source Physical to Source Physical Copies . 257
Source Physical to Non-Source Physical Copies . 257

14.2.7 Save Files Support . 258
SAVF to SAVF Transfers . 258
Non-SAVF to SAVF Transfers . 258
SAVF to Non-SAVF Transfers . 258

14.2.8 File Specifications . 259
14.2.9 Wild Cards . 259

Examples . 259

14.3 Codepage - CCSID Mappings . 260
14.3.1 CCSID Mapping . 261

14.4 Command Reference . 263
14.4.1 attrib (Attribute) Command . 263

File Attributes . 263
LIB File System Attributes . 264
HFS Attributes . 266

14.4.2 call (Call) Command . 267
udm-user-3207 Confidential & Proprietary 22

Contents
14.4.3 cd (Change Directory) Command . 268
14.4.4 copy (Copy) Command . 269
14.4.5 File Specification Rules . 269

Source File Specification Rules . 270
Destination File Specification Rules . 271

14.4.6 delete (Delete) Command . 276
delete Command Requirements . 276
delete Command Forms . 276

14.4.7 rename (Rename) Command . 277
rename Command Requirements . 277
rename Command Forms . 278

Chapter 15 Remote Execution . 279
15.1 Overview . 279

15.2 exec Command . 280
15.2.1 Executing Remote Commands within UDM . 280
15.2.2 Return Values . 282
15.2.3 exec Command Examples . 282

15.3 execsap Command . 283
15.3.1 Triggering SAP Events within UDM . 283
15.3.2 execsap Command Example . 284

Chapter 16 Return Code Processing . 285
16.1 Overview . 285

16.1.1 UDM Return Codes . 285

16.2 Return Codes in UDM Built-In Variables . 286
_lastrc Variable . 286
_rc Variable . 286
_halton Variable . 286

16.3 Setting Return Codes . 287
16.3.1 Return Codes in set (Set) Command . 287

Issuing the set Command . 287
16.3.2 Return Codes in return (Return) Command . 287

Appendix A Examples . 288
A.1 Overview . 288

A.2 UDM Manager for z/OS Examples . 289
A.2.1 Copy a File to an Existing z/OS Sequential Data Set 290

DD file system . 290
DSN file system . 291

A.2.2 Copy a z/OS Sequential Data Set to a File . 292
udm-user-3207 Confidential & Proprietary 23

Contents
DD file system . 292
DSN file system . 292

A.2.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set 293
DD file system . 294
DSN file system . 294

A.2.4 Copy a File to a New z/OS Sequential Data Set 295
DSN file system . 295

A.2.5 Copy a Set of Files to a New z/OS Partitioned Data Set 296
DSN file system . 296

A.3 UDM Manager for UNIX and Windows Examples . 297
A.3.1 Simple File Copy to the Manager . 298
A.3.2 Simple File Copy to the Server . 299
A.3.3 Copy a Set of Files . 300

A.4 UDM Manager for OS/400 Examples . 301
A.4.1 Copy a File to an Existing OS/400 File . 302

LIB file system . 302
HFS file system . 303

A.4.2 Copy an OS/400 Data Physical File to a File . 304
LIB file system . 304

A.4.3 Copy a Set of Files to an Existing Data Physical File 305
LIB file system . 305

A.4.4 Copy a File to a New OS/400 Data Physical File 306
LIB file system . 306

A.4.5 Copy a File to a New OS/400 Source Physical File 307
LIB file system . 307

A.4.6 Copy a Set of Files to a New Data Physical File on OS/400 308
LIB file system . 308

A.4.7 Copy Different Types of OS/400 Files using forfiles and $(_file.type) . . . 309
A.4.8 Invoke a Script from a Batch Job . 310

LIB file system . 310

Appendix B Customer Support . 311
udm-user-3207 Confidential & Proprietary 24

List of Figures
Chapter 1 Overview . 34
Figure 1.1 UDM Transfer Sessions ... 37

Chapter 2 Features . 38
Figure 2.1 Remote Configuration - Unmanaged and Managed Modes of

 Operation .. 50
Figure 2.2 Universal Configuration Manager Error dialog - Windows Vista 52
Figure 2.3 Windows Vista - Program Compatibility Assistant 53
Figure 2.4 Universal Configuration Manager ... 55
Figure 2.5 Universal Configuration Manager - UDM Manager 58
Figure 2.6 Universal Configuration Manager - UDM Server 59
Figure 2.7 X.500 Directory (sample) .. 89
Figure 2.8 X.509 Version 3 Certificate (sample) .. 90

Chapter 3 Universal Data Mover Manager for z/OS . 94
Figure 3.1 UDM Manager for z/OS – JCL Procedure .. 96
Figure 3.2 UDM Manager for z/OS – JCL .. 98
Figure 3.3 UDM Manager for z/OS - Command Line Syntax (1 of 2) 103
Figure 3.4 UDM Manager for z/OS - Command Line Syntax (2 of 2) 104

Chapter 4 Universal Data Mover Manager for Windows . 107
Figure 4.1 UDM Manager for Windows - Command Line Syntax 112

Chapter 5 Universal Data Mover Manager for UNIX . 114
Figure 5.1 UDM Manager for UNIX - Command Line Syntax 119

Chapter 6 Universal Data Mover Manager for OS/400 . 122
Figure 6.1 UDM Manager for OS/400 - Command Line Syntax 129

Chapter 8 Universal Data Mover Server for Windows . 140
udm-user-3207 Confidential & Proprietary 25

List of Figures
Figure 8.1 Universal Configuration Manager - Component Definitions 141
Figure 8.2 Universal Configuration Manager - Universal Data Mover Server -

 Access ACL .. 147

Chapter 13 Transfer Operations (z/OS-Specific). 235
Figure 13.1 Load Module Transfer Script - Example ... 251
Figure 13.2 Load Module Transfer Script - Output .. 251
udm-user-3207 Confidential & Proprietary 26

List of Tables
Preface . 30
Table P.1 Command Line Syntax .. 31

Chapter 2 Features . 38
Table 2.1 UNIX Configuration File Directory Search ... 46
Table 2.2 Supported SSL cipher suites ... 62
Table 2.3 Component Communication States ... 72
Table 2.4 Certificate Map Matching Criteria .. 79
Table 2.5 Certificate Identifier Field ... 79
Table 2.6 Client IP Address - Matching Criteria .. 80
Table 2.7 Certificate Fields .. 91

Chapter 3 Universal Data Mover Manager for z/OS . 94
Table 3.1 UDM Manager for z/OS – DD Statements in JCL 97
Table 3.2 UDM Manager for z/OS - Configuration Options 102

Chapter 4 Universal Data Mover Manager for Windows . 107
Table 4.1 UDM Manager for Windows - Configuration Options 111

Chapter 5 Universal Data Mover Manager for UNIX . 114
Table 5.1 UDM Manager for UNIX - Configuration Options 118

Chapter 6 Universal Data Mover Manager for OS/400 . 122
Table 6.1 UDM Manager for OS/400 - Configuration Options 128

Chapter 7 Universal Data Mover Server for z/OS . 132
Table 7.1 UDM Server for z/OS - Component Definition Options 133
Table 7.2 UDM Server for z/OS - Configuration Options ... 136
Table 7.3 UDM Server for z/OS - UACL Entries .. 138
udm-user-3207 Confidential & Proprietary 27

List of Tables
Chapter 8 Universal Data Mover Server for Windows . 140
Table 8.1 UDM Server for Windows - Component Definition Options 142
Table 8.2 UDM Server for Windows - Configuration Options 144
Table 8.3 UDM Server for Windows - UACL Entries ... 146

Chapter 9 Universal Data Mover Server for UNIX . 148
Table 9.1 UDM Server for UNIX - Component Definition Options 149
Table 9.2 UDM Server for UNIX - Configuration Options .. 151
Table 9.3 UDM Server for UNIX - UACL Entries ... 153

Chapter 10 Universal Data Mover Server for OS/400 . 155
Table 10.1 UDM Server for OS/400 - Component Definition Options 156
Table 10.2 UDM Server for OS/400 - Configuration Options 158
Table 10.3 UDMr Server for OS/400 - UACL Entries .. 160

Chapter 11 UDM Scripting Language . 162
Table 11.1 UDM Commands ... 164
Table 11.2 UDM Command Expressions - Operators ... 169
Table 11.3 Built-In Variables ... 184
Table 11.4 _file Built-in Variable – Special Attributes .. 186

Chapter 12 UDM Transfer Operations . 209
Table 12.1 CFS Terminology for Hierarchical File Systems 216
Table 12.2 CFS Terminology Associated with z/OS Data Sets 218
Table 12.3 CFS Terminology Associated with z/OS ddnames 218
Table 12.4 CFS Terminology Associated with LIB File Types 220

Chapter 13 Transfer Operations (z/OS-Specific). 235
Table 13.1 attrib Command - Dynamic Allocation Attributes 243
Table 13.2 cd Command in DSN File System ... 244
Table 13.3 copy Command File Specifications for Sequential Data Sets 246
Table 13.4 copy Command Destination File Specifications for Partitioned

Data Sets ... 247
Table 13.5 copy Command Source File Specifications for Partitioned Data Sets 247
Table 13.6 copy Command Destination File Specifications for Sequential

ddnames .. 248
Table 13.7 copy Command Source File Specification for Sequential ddnames 248
Table 13.8 copy Command Destination File Specifications for Partitioned

ddnames .. 249
Table 13.9 copy Command Source File Specifications for Sequential ddnames 249

Chapter 14 Transfer Operations (OS/400-Specific). 253
Table 14.1 CCSID Mappings ... 262
Table 14.2 OS/400-Specific LIB File Attributes for Creating New Files 266
Table 14.3 OS/400 -Specific HFS File Attributes for Creating New Files 266
Table 14.4 delete Command Forms with UDM under OS/400 276
udm-user-3207 Confidential & Proprietary 28

List of Tables
Table 14.5 rename Command Forms .. 278

Chapter 16 Return Code Processing . 285
Table 16.1 UDM Return Codes ... 285
udm-user-3207 Confidential & Proprietary 29

Preface
Document Structure
This document is written using specific conventions for text formatting and according to a
specific document structure in order to make it as useful as possible for the largest
audience. The following sections describe the document formatting conventions and
organization.

Format

Starting with the Universal Products 3.2.0 release, the Universal Data Mover User Guide
has been reformatted and restructured.

Most importantly, links to detailed information in a companion document, the Universal
Data Mover Reference Guide, have been created in the user guide.

In order for the links between these documents to work correctly:
• Place the documents in the same folder.
• In Adobe Reader / Adobe Acrobat, de-select Open cross-document link in same

window in the General category of your Preferences dialog (selected from the Edit
menu).
udm-user-3207 Confidential & Proprietary 30

Preface
Conventions

Specific text formatting conventions are used within this document to represent different
information. The following conventions are used.

Typeface and Fonts
This Font identifies specific names of different types of information, such as file names
or directories (for example, \abc\123\help.txt).

Command Line Syntax Diagrams
Command line syntax diagrams use the following conventions:

Table P.1 Command Line Syntax

Operating System-Specific Text
Most of this document describes the product in the context of all supported operating
systems. At times, it is necessary to refer to operating system-specific information. This
information is introduced with a special header, which is followed by the operating
system-specific text in a different font size from the normal text.

This text pertains specifically to the z/OS line of operating systems.

This text resumes the information pertaining to all operating systems.

Convention Description

bold monospace font Specifies values to be typed verbatim, such as file / data set names.

italic monospace font Specifies values to be supplied by the user.

[] Encloses configuration options or values that are optional.

{ } Encloses configuration options or values of which one must be chosen.

| Separates a list of possible choices.

. . . Specifies that the previous item may be repeated one or more times.

BOLD UPPER CASE Specifies a group of options or values that are defined elsewhere.

z/OS
udm-user-3207 Confidential & Proprietary 31

Preface
Tips from the Stoneman

Vendor References

References are made throughout this document to a variety of vendor operating systems.
We attempt to use the most current product names when referencing vendor software.

The following names are used within this document:
• z/OS is synonymous with IBM z/OS and IBM OS/390 line of operating systems.
• Windows is synonymous with Microsoft's Windows 2000 / 2003 / 2008, Windows XP,

Windows Vista, and Windows 7 lines of operating systems. Any differences between
the different systems will be noted.

• UNIX is synonymous with operating systems based on AT&T and BSD origins and the
Linux operating system.

• OS/400 is synonymous with IBM OS/400, IBM i/5, and IBM i operating systems.
• AS/400 is synonymous for IBM AS/400, IBM iSeries, and IBM System i systems.

Note: These names do not imply software support in any manner. For a detailed list of
supported operating systems, see the Universal Products 3.2.0 Installation Guide.

Stoneman’s Tip

Look to the Stoneman for suggestions
or for any other information

that requires special attention.
udm-user-3207 Confidential & Proprietary 32

Preface
Document Organization
• Overview (Chapter 1)

General architectural and functional overview of Universal Data Mover.
• Features (Chapter 2)

Description of Universsal Data Mover features, including configuration methods and
network protocols.

• Universal Data Mover Manager for z/OS (Chapter 3)
Description of Universal Data Mover Manager specific to the z/OS operating system.

• Universal Data Mover Manager for Windows (Chapter 4)
Description of Universal Data Mover Manager specific to the Windows operating
system.

• Universal Data Mover Manager for UNIX (Chapter 5)
Description of Universal Data Mover Manager specific to the UNIX operating system.

• Universal Data Mover Manager for OS/400 (Chapter 6)
Description of Universal Data Mover Manager specific to the OS/400 operating
system.

• Universal Data Mover Server for z/OS (Chapter 7)
Description of Universal Data Mover Server specific to the z/OS operating system.

• Universal Data Mover Server for Windows (Chapter 8)
Description of Universal Data Mover Server specific to the Windows operating
system.

• Universal Data Mover Server for UNIX (Chapter 9)
Description of Universal Data Mover Server specific to the UNIX operating system.

• Universal Data Mover Server for OS/400 (Chapter 10)
Description of Universal Data Mover Server specific to the OS/400 operating system.

• UDM Scripting Language (Chapter 11)
Description of the Universal Data Mover scripting language.

• UDM Transfer Operations (Chapter 12)
General description of the Universal Data Mover transfer operations.

• Transfer Operations (z/OS-Specific) (Chapter 13)
Description of the Universal Data Mover transfer operations specific to the z/OS
operating system.

• Transfer Operations (OS/400-Specific) (Chapter 14)
General description of the Universal Data Mover transfer operations specific to the
OS/400 operating system.

• Remote Execution (Chapter 15)
Description of remote execution procedures for Universal Data Mover.

• Return Code Processing (Chapter 16)
Description of Universal Data Mover return code processing.

• Examples (Appendix A)
Examples of Universal Data Mover Manager for specific operating systems.

• Customer Support (Appendix B)
Customer support contact information for users of Universal Data Mover.
udm-user-3207 Confidential & Proprietary 33

Chapter 1
Overview
1.1 Introduction to Universal Data Mover
This chapter provides general information on Universal Data Mover (UDM).

UDM is a secure and reliable data transfer solution developed specifically for corporate IT
infrastructures and automated data center environments. UDM is a cost-effective
alternative to the traditional complex and hard-to-implement offerings that makes
transferring data between various enterprise and desktop platforms reliable and easy.
udm-user-3207 Confidential & Proprietary 34

Transfer Components Overview
1.2 Transfer Components
There are three components to any UDM transfer operation:
1. Manager
2. Primary server
3. Secondary server

The manager may act as the primary server, depending on the type of transfer session:
two-party or three-party (see Section 1.3 Transfer Sessions). The secondary server is
always a separate and distinct component invoked via the Universal Broker.

1.2.1 Manager

The UDM Manager processes commands using UDM's scripting language. The UDM
Manager receives commands from the user through an interactive session, an external
script file, or some combination of the two. Before the UDM Manager can initiate any
transfer operations, it must first establish a transfer session where it invokes the primary
and secondary servers, which actually conduct the transfer operations.

1.2.2 Primary Server

When a transfer session is being established, the UDM Manager invokes the primary
server, which acts as the first endpoint in a transfer operation. In turn, the primary server
invokes the secondary server, providing a single path of communication. The primary
server also acts a relay for the UDM Manager, forwarding on any messages for the
secondary server from the UDM Manager. This single message pipeline reduces the
number of connections needed for three-party transfers (see Section 1.3.3 Three-Party
Transfer Sessions).

1.2.3 Secondary Server

The secondary server acts as the second endpoint in a transfer operation. Data is
transferred between primary and secondary servers, with either endpoint able to act as
the source in a transfer operation.
udm-user-3207 Confidential & Proprietary 35

Transfer Sessions Overview
1.3 Transfer Sessions
As discussed in Section 1.2 Transfer Components, transfer operations take place within
the context of a transfer session. A transfer operation is initiated once the UDM Manager
has established a transfer session with the primary and secondary transfer servers. All
subsequent transfer operations take place between the primary and secondary transfer
servers.

UDM transfer sessions can be either two-party or three-party.

1.3.1 Logical Names

When a transfer session is established, the user gives each server a unique logical name.
Commands addressed to a particular server reference this logical name.

1.3.2 Two-Party Transfer Sessions

For a two-party transfer session, the UDM Manager also acts as the primary transfer
server, running in the directory – and under the user ID – under which the UDM Manager
was launched. This means that the machine on which UDM Manager resides is the first
endpoint of the transfer.

With a two-party transfer session, the secondary server is invoked by the manager /
primary server via the Universal Broker. The second endpoint of the transfer session will
be on the machine in which the secondary server was spawned. Transfer operations
occur between the manager / primary server and the secondary server.

(See Figure 1.1 UDM Transfer Sessions.)

1.3.3 Three-Party Transfer Sessions

For a three-party transfer session, the UDM Manager acts solely as a control point for
transfer operations, sending commands to the primary and secondary servers to be
executed. Both the primary and secondary servers are spawned via the Universal Broker,
and transfer operations take place between the two machines under which these servers
are running.

(See Figure 1.1 UDM Transfer Sessions.)
udm-user-3207 Confidential & Proprietary 36

Transfer Sessions Overview
Figure 1.1 UDM Transfer Sessions
udm-user-3207 Confidential & Proprietary 37

Chapter 2
Features
2.1 Overview
This chapter provides information on Universal Data Mover (UDM) features that apply to
all operating systems.
• Configuration
• Universal Configuration Manager
• Remote Configuration
• Network Data Transmission
• Fault Tolerance
• z/OS CANCEL Command Support
• Universal Access Control List
• Message and Audit Facilities
• X.509 Certificates
udm-user-3207 Confidential & Proprietary 38

Configuration Features
2.2 Configuration
Product configuration consists of specifying options that control product behavior and
resource allocation.
• An example of configurable product behavior is whether or not data transferred over

the network is compressed.
• An example of configurable resource allocation is the directory location in which the

product creates its log files.

Each option is comprised of a pre-defined parameter, which identifies the option, and one
or more values. The format of the parameter depends on the method being used to
specify the option.

Although there are many configurable product options, Universal Products, in general,
are designed to require minimal configuration and administration. The default options will
work very well in most environments. When local requirements do require a change in
product configuration, there are multiple methods available to configure the products in
order to meet your needs.

2.2.1 Configuration Methods

All Stonebranch Inc. Universal Products provide a consistent and flexible method of
configuration. An operating system’s native configuration methods, such as configuration
files, are utilized in order to integrate with existing system management policies and
procedures for the platform.

Depending on specific Universal Products, and the operating system on which it is being
run, product configuration is performed by one or more methods. These configuration
methods, in their order of precedence, are:
1. Command Line
2. Command Line File
3. Environment Variables
4. Configuration File

This order of precedence means that a command option specified on the command line
overrides the same option specified in a command file, which overrides the same option
specified with an environment variable, which overrides the same option specified with a
configuration file keyword.

Note: For security reasons, not all options can be overridden.
udm-user-3207 Confidential & Proprietary 39

Configuration Features
2.2.2 Command Line

Command line options affect one instance of a program execution. Each time that you
execute a program, command line options let you tailor the behavior of the program to
meet the specific needs for that execution.

Command line options are the highest in order of precedence of all the configuration
methods (see Section 2.2.1 Configuration Methods). They override the options specified
using all other configuration methods, except where indicated.

Command line options consist of:
• Parameter (name of the option)
• Value (pre-defined or user-defined value of the option)

The command line syntax depends, in part, on the operating system, as noted below.

An value may or may not be case-sensitive, depending on what it is specifying. For
example, if a value is either yes or no, it is not case-sensitive. It could be specified as
YES, Yes, or yes. However, if a value specifies a directory name or file name, it would be
case-sensitive if the operating system's file system is case-sensitive.

If an option is specified more than once on the command line, the last instance of the
option specified is used.

z/OS command line options are specified in the JCL EXEC statement PARM keyword or on the SYSIN
ddname. The PARM keyword is used to pass command line options to the program being executed with the
EXEC statement.
Command line options are prefixed with a dash (-) character. For many options, there are two different forms
in which they can be specified:
• Short form: one case-sensitive character
• Long form: two or more case-insensitive characters

The parameter and value must be separated by at least one space.
Example command line options specified in the PARM value follow:

As noted above, z/OS command line options also can be specified on the SYSIN ddname. This is the easiest
and least restrictive place to specify options, since the PARM values are limited in length. The options
specified in the SYSIN ddname have the same syntax. Options can be specified on one line or multiple lines.
The data set or inline data allocated to the SYSIN ddname cannot have line numbers in the last 8 columns
(that is, all columns of the records are used as input).

z/OS

Short form:
PARM='-l INFO –G yes'

Long form:
PARM='-LEVEL INFO -LOGIN YES'
udm-user-3207 Confidential & Proprietary 40

Configuration Features
UNIX and Windows command line options are prefixed with a dash (-) character, and alternatively on
Windows, the slash (/) character.
For many options, there are two different forms in which they can be specified:
• Short form: one case-sensitive character.
• Long form: two or more case insensitive characters.
The parameter and value must be separated by at least one space or tab character.
Example command line options follow:

OS/400 command line options use the native conventions for Command Language (CL) commands. The
option name is specified as a CL parameter with its value enclosed in parentheses.
Example command line options follow:

All of the Stonebranch Inc. Universal Products provide OS/400-style command panels. The panels are
accessed by entering the command name on the command line and pressing the F4 (PROMPT) key.

UNIX and Windows

Short form:
-l info –G yes

Long form:
-level info -login yes

-LEVEL info -LoGiN YES

OS/400

Command line options:
MSGLEVEL(*info) COMPRESS(*yes)
udm-user-3207 Confidential & Proprietary 41

Configuration Features
2.2.3 Command Line File

The command line file contains command line options specified in a file. The command
line file enables you to save common command line options in permanent storage and
reference them as needed.

The command line file is the second to highest in the precedence order after command
line options (see Section 2.2.1 Configuration Methods).

Individual command line options can be specified on one or multiple lines. Blank lines are
ignored. Lines starting with the hash (#) character are ignored and can be used for
comments.

The command line file can be encrypted if it is necessary to secure the contents.

Note: If the contents of the file contain sensitive material, the operating system's native
file and user security facilities should be used in addition to the file encryption
provided by the Universal Products.
udm-user-3207 Confidential & Proprietary 42

Configuration Features
2.2.4 Environment Variables

Environment variables, like command line options, allow options to be specified for one
instance of a program execution. Each time that you execute a program, environment
variables allow you to tailor the behavior of the program to meet the specific needs for
that execution.

Environment variables are the third to highest in the precedence order after command
line file options (see Section 2.2.1 Configuration Methods).

Each operating system has its own unique method of setting environment variables.

All environment variables used by Universal Products are upper case and are prefixed
with a product identifier consisting of three or four characters. The product sections
specify the value of the environment variables. Values are case-sensitive.

Environment variables are specified in the JCL EXEC statement PARM keyword. Environment variables are
part of the IBM Language Environment (LE) and as such are specified as LE runtime options. The PARM
value is divided into LE options and application options by a slash (/) character. Options to the left of the
slash are LE options and options to the right are application options.
Example of setting an environment variable:

Environment variables in UNIX are defined as part of the shell environment. As such, shell commands are
used to set environment variables. The environment variable must be exported to be used be a called
program.
Example of setting an environment variable:

z/OS

Set option UDMLEVEL to a value of INFO:
PARM='ENVAR("UDMLEVEL=INFO")/'

UNIX

Set option UDMLEVEL to a value of INFO in a bourne, bash, or korn shell:
UDMLEVEL=INFO

export UDMLEVEL
udm-user-3207 Confidential & Proprietary 43

Configuration Features
Environment variables in Windows are defined as part of the Windows console command environment. As
such, console commands are used to set environment variables.
Example of setting an environment variable:

Environment variables in OS/400 are defined with Command Language (CL) commands for the current job
environment.
Example of setting an environment variable:

Windows

Set option UDMLEVEL to a value of INFO:
SET UDMLEVEL=INFO

OS/400

Set option UDMLEVEL to a value of INFO:
ADDENVVAR ENVVAR(UDMLEVEL) VALUE(INFO)
udm-user-3207 Confidential & Proprietary 44

Configuration Features
2.2.5 Configuration File

Configuration files are used to specify system-wide configuration values. They are last in
precedence order for specifying configuration options (see Section 2.2.1 Configuration
Methods).

(For most Universal Products, some options can be specified only in a configuration file,
while other options can be overridden by individual command executions. The
Stonebranch, Inc. documentation for each product identifies these options.)

If an option is specified more than once in a configuration file, the last option specified is
used.

All configuration files on a system are maintained by the local Universal Broker. The
Universal Broker serves the configuration data to other Universal Products running on the
local system. The one exception is Universal Enterprise Controller (UEC). UEC directly
reads its own configuration files.

The Universal Broker reads the configuration files when it first starts or when it receives a
REFRESH command from Universal Control or Universal Enterprise Controller. Any
changes made to a configuration file are not in effect until the Broker is recycled or
receives a REFRESH command.

Universal Product components do not read the configuration files themselves. When a
component starts, it first registers with the locally running Universal Broker. As part of the
registration process, the Broker returns the components configuration data.

When the Universal Broker is operating in managed mode, the configuration information
for the various Universal Products is "locked down" and can be modified or viewed only
via the Universal Management Console (see Section 2.3.2 Managed Mode).

Configuration files are members of a PDSE. The data set record format is fixed or fixed block with a record
length of 80. No line numbers can exist in columns 72-80. All 80 columns are processed as data.
All configuration files are installed in the UNVCONF library.
See Section 2.2.6 Configuration File Syntax for the configuration file syntax.

z/OS
udm-user-3207 Confidential & Proprietary 45

Configuration Features
Configuration files are regular text files on UNIX.
Universal Broker searches for the configuration files in a fixed list of directories. The Broker will use the first
configuration file that it finds in its search. The directories are listed below in the order they are searched:

Table 2.1 UNIX Configuration File Directory Search

See 2.2.6 Configuration File Syntax for the configuration file syntax.

Although configuration files can be edited with any text editor (for example, Notepad), the Universal
Configuration Manager application, accessible via the Control Panel, is the recommended way to set
configuration options.
The Universal Configuration Manager provides a graphical interface and context-sensitive help, and helps
protect the integrity of the configuration file by validating all changes to configuration option values (see
Section 2.4 Universal Configuration Manager).

The configuration files on OS/400 are stored in a source physical file named UNVCONF in the UNVPRD320
library. The files can be edited with a text editor.
See Section 2.2.6 Configuration File Syntax for the configuration file syntax.

UNIX

Directory Notes

/etc/opt/universal

/etc/universal Installation default

/etc/stonebranch Obsolete as of version 2.2.0

/etc

/usr/etc/universal

/usr/etc/stonebranch Obsolete as of version 2.2.0

/usr/etc

Windows

OS/400
udm-user-3207 Confidential & Proprietary 46

Configuration Features
2.2.6 Configuration File Syntax

Configuration files are text files that can be edited with any available text editor.

The following rules apply for configuration file syntax:
• Options are specified in a keyword / value format.
• Keywords can start in any column.
• Keywords must be separated from values by at least one space or tab character.
• Keywords are not case sensitive.
• Keywords cannot contain spaces or tabs.
• Values can contain spaces and tabs, but if they do, they must be enclosed in single

(’) or double (") quotation marks. Repeat the enclosing characters to include them
as part of the value.

• Values case sensitivity depends on the value being specified. For example:
• Directory and file names are case sensitive.
• Pre-defined values (such as yes and no) are not case sensitive.

• Each keyword / value pair must be on one line.
• Characters after the value are ignored.
• Newline characters are not permitted in a value.
• Values can be continued from one line to the next either by ending the line with a:

• Plus (+) character, to remove all intervening spaces.
• Minus (-) character, to preserve all intervening spaces between the end of the

line being continued and the beginning of the continuing line.
Ensure that the line continuation character is the last character on a line.

• Comment lines start with a hash (#) character.
• Blank lines are ignored.

Note: If an option is specified more than once in a configuration file, the last option
specified is used.
udm-user-3207 Confidential & Proprietary 47

Remote Configuration Features
2.3 Remote Configuration
Universal Products can be configured remotely by Universal Enterprise Controller using
the Universal Management Console (UMC) client application. UMC instructs the
Universal Broker of a remote Universal Agent to modify the configurations of the
Universal Products components managed by that Broker.

Universal Broker supports remote configuration in either of two modes:
1. Unmanaged Mode
2. Managed Mode

2.3.1 Unmanaged Mode

Unmanaged mode is the default mode of operations for Universal Broker. It allows a
Universal Broker – and the Universal Products managed by that Universal Broker – to be
configured either:
• Locally, by editing configuration files.
• Remotely, via UMC.

The system administrator for the machine on which a Universal Agent resides can use
any text editor to modify the configuration files of the various local Universal Products.

Via UMC, selected users can modify all configurations of any Universal Agent, including
the local Universal Agent. UMC sends the modified data to the Universal Broker of that
agent, which Universal Broker then uses to update the appropriate configuration files.

If UMC sends modifications for a Universal Broker configuration, Universal Broker
validates the modified data before it accepts it. If the data fails validation, Universal
Broker does not update its configuration file.

If UMC sends modification to the configuration of any other Universal Products
component, the Universal Broker updates the appropriate configuration file. The
component will use this new configuration at its next invocation.

Note: If errors or invalid configuration values are updated via UMC for a component
other than Universal Broker, the component may not run successfully until the
configuration has be corrected.
udm-user-3207 Confidential & Proprietary 48

Remote Configuration Features
2.3.2 Managed Mode

When a Universal Broker is operating in managed mode, the configuration information for
all Universal Products components managed by that Universal Broker is "locked down."
Universal Broker stores the information in a database file located within its specified spool
directory. The information can be modified only via Universal Management Console
(UMC).

From this point on, Universal Broker uses the database file – not the configuration files –
to access configuration information. Any configuration changes made to the components
– via UMC – are placed in the database file. Therefore, as long as Universal Broker stays
in managed mode, the configuration files may no longer contain current or valid
configuration information.

If managed mode is de-selected for the Universal Broker, it reads the database file where
it stored the configuration information. Universal Broker uses this information to create
and/or update configuration files for the components.
• If a configuration file exists in the configuration directory, it is overwritten.
• If a configuration file does not exist, it is created.

Note: Because of remote configuration and the desire to be able to "lock down" all
product configurations, Universal Broker – and all Universal Products servers – no
longer support the command line and environmental variables methods of
specifying configuration options.

Selecting Managed Mode
The managed mode of operations for Universal Broker is selected via the Universal
Enterprise Controller Administration client application.

(See the Universal Enterprise Controller 3.2.0 Client Applications guide for specific
information on how to select managed mode.)
udm-user-3207 Confidential & Proprietary 49

Remote Configuration Features
Figure 2.1, below, illustrates remote configuration for one Universal Agent in managed
mode and one Universal Agent in unmanaged mode.

Figure 2.1 Remote Configuration - Unmanaged and Managed Modes of Operation
udm-user-3207 Confidential & Proprietary 50

Remote Configuration Features
2.3.3 Universal Broker Startup

At Universal Broker start-up, in both managed and unmanaged modes, the Universal
Broker configuration file always is read.

Unmanaged Mode
At Universal Broker start-up in unmanaged mode, Universal Broker reads the
configuration files of all Universal Products components into its memory. The Universal
Broker configuration file is used to define the Universal Broker configuration, just as all
configuration files are used in unmanaged mode. Universal Broker updates its memory
from the configuration files whenever Universal Control issues a REFRESH request.

Managed Mode
At Universal Broker start-up in managed mode, the Universal Broker configuration file
points Universal Broker to the location of the configuration spool file, from which the
Broker retrieves configuration information for all Universal Products. Universal Broker
updates its memory from the configuration spool file and, automatically, after changes are
made via UMC.

If more configuration information than needed is included in the Universal Broker
configuration file at Universal Broker start-up, Universal Broker will update its running
configuration with the information that it retrieved from the spool file. The configuration file
that was used at start-up is made obsolete.
udm-user-3207 Confidential & Proprietary 51

Universal Configuration Manager Features
2.4 Universal Configuration Manager
The Universal Configuration Manager is a Universal Products graphical user interface
application that enables you to configure all of the Universal Products that have been
installed on a Windows operating system.

It is the recommended method of specifying configuration data that will not change with
each command invocation. Universal Configuration Manager helps protect the integrity of
the configuration file by validating all changes to configuration option values.

The configuration data for a Universal Products for Windows system is stored in the
configuration file.

2.4.1 Availability

Universal Configuration Manager is installed automatically on the Windows operating
system as part of every Universal Products for Windows installation.

It is available to all user accounts in the Windows Administrator group.

When opening the Universal Configuration Manager for the first time on Windows Vista, two new operating
system features, the Program Compatibility Assistant (PCA) and User Account Control (UAC), may affect its
behavior.
With these two features enabled, the expected Universal Configuration Manager behavior is as follows:
1. Universal Configuration Manager may issue the following error:

Figure 2.2 Universal Configuration Manager Error dialog - Windows Vista

2. Click OK to dismiss the error message.

The Windows Vista Program Compatibility Assistant (PCA) displays the following dialog:

Windows Vista
udm-user-3207 Confidential & Proprietary 52

Universal Configuration Manager Features
Figure 2.3 Windows Vista - Program Compatibility Assistant

3. To continue, select Open the control panel using recommended settings. This instructs the
PCA to "shim" (Microsoft term) the Configuration Manager, establishing it as an application that requires
elevated privileges.
Windows Vista User Account Control (UAC) then displays a prompt seeking permission to elevate the
logged-in account's access token.

4. Select Continue to give the account full administrative privileges.
Subsequent attempts to open Universal Configuration Manager should result only in the UAC prompt.
udm-user-3207 Confidential & Proprietary 53

Universal Configuration Manager Features
2.4.2 Accessing the Universal Configuration Manager

To access the Universal Configuration Manager:
1. Click the Start icon at the lower left corner of your Windows operating system screen

to display the Start menu.
2. Click (Settings/) Control Panel on the Start menu to display the Control Panel screen.
3. Select the Universal Configuration Manager icon to display the Universal

Configuration Manager screen (see Figure 2.4).

Newer versions of Windows support a Control Panel view that places applet icons within categories. This
"category view" may affect the location of the Universal Configuration Manager icon.
For example, the Windows XP Category View places the Universal Configuration Manager icon under the
Other Control Panel Options link. Windows Vista and Windows Server 2008 place the icon within the
Additional Options category.
If you have trouble locating the Universal Configuration Manager icon, simply switch to the Classic View to
display all Control Panel icons at the same time.

The Windows Control Panel places icons for all 32-bit applets under the View x86 Control Panel Icons
(or, on newer versions, the View 32-bit Control Panel Icons) category, even when the Classic View is
enabled.
When using the Category View, look for the 32-bit Control Panel applet icons in the Additional Options
category.

Windows XP, Windows Vista, Windows Server 2008

64-bit Windows Editions
udm-user-3207 Confidential & Proprietary 54

Universal Configuration Manager Features
Figure 2.4 Universal Configuration Manager

Each Universal Configuration Manager screen contains two sections:
1. Left side of the screen displays the Installed Components tree, which lists:

• Universal Products components currently installed on your system.
• Property pages available for each component (as selected), which include one or

more of the following:
• Configuration options
• Access control lists
• Licensing information
• Other component-specific information

2. Right side of the screen displays information for the selected component / page.

(By default, Universal Configuration Manager displays the first property page of the first
component in the Installed Components tree.)
udm-user-3207 Confidential & Proprietary 55

Universal Configuration Manager Features
2.4.3 Navigating through Universal Configuration Manager

To display general information about a component, click the component name in the
Installed Components list.

To display the list of property pages for a component, click the + icon next to the
component name in the Installed Components list.

To display a property page, click the name of that page in the Installed Components list.

If a property page has one or more of its own pages, a + icon displays next to the name of
that property page in the Installed Components list. Click that + icon to display a list of
those pages.

In Figure 2.4, for example:
• List of property pages is displayed for Universal Broker.
• Message Options property page has been selected, and information for that property

is displayed on the right side of the page.
• No + icons next to any of the property pages indicates that they do not have one or

more of their own property pages.

2.4.4 Modifying / Entering Data

On the property pages, modify / enter data by clicking radio buttons, selecting from
drop-down lists, and/or typing in data entry fields.

Some property pages provide panels that you must click in order to:
• Modify or adjust the displayed information.
• Display additional, modifiable information.

Note: You do not have to click the OK button after every modification or entry, or on every
property page on which you have modified and/or entered data. Clicking OK just
once, on any page, will save the modifications and entries made on all pages –
and will exit Universal Configuration Manager (see Section 2.4.5 Saving Data.)

Rules for Modifying / Entering Data
The following rules apply for the modification and entry of data:
• Quotation marks are not required for configuration values that contain spaces.
• Edit controls (used to input free-form text values) handle conversion of any case

sensitive configuration values. Except where specifically noted, values entered in all
other edit controls are case insensitive.
udm-user-3207 Confidential & Proprietary 56

Universal Configuration Manager Features
2.4.5 Saving Data

To save all of the modifications / entries made on all of the property pages, click the OK
button at the bottom of any property page. The information is saved in the configuration
file, and Universal Broker is automatically refreshed.

Clicking the OK button also exits the Universal Configuration Manager. (If you click OK
after every modification, you will have to re-access Universal Configuration Manager.)

To exit Universal Configuration Manager without saving any of the modifications / entries
made on all property pages, click the Cancel button.

2.4.6 Accessing Help Information

Universal Configuration Manager provides context-sensitive help information for the fields
and panels on every Universal Products component options screen.

To access Help:
1. Click the question mark (?) icon at the top right of the screen.
2. Move the cursor (now accompanied by the ?) to the field or panel for which you want

help.
3. Click the field or panel to display Help text.
4. To remove the displayed Help text, click anywhere on the screen.

The Universal Configuration Manager’s context-sensitive help is a WinHelp file, which Windows Vista and
Windows Server 2008 does not support.
Microsoft offers the 32-bit WinHelp engine as a separate download from its website. If you require access to
the Universal Configuration Manager’s context-sensitive help, simply download and install the WinHelp
engine.

Windows Vista, Windows Server 2008
udm-user-3207 Confidential & Proprietary 57

Universal Configuration Manager Features
2.4.7 Universal Data Mover Installed Components

Universal Data Mover Manager
Figure 2.5 illustrates the Universal Configuration Manager screen for the Universal Data
Mover Manager.

The Installed Components list identifies all of the UDM Manager property pages.

The text describes the selected component, Universal Data Mover Manager.

Figure 2.5 Universal Configuration Manager - UDM Manager
udm-user-3207 Confidential & Proprietary 58

Universal Configuration Manager Features
Universal Data Mover Server
Figure 2.6 illustrates the Universal Configuration Manager screen for the Universal Data
Mover Server.

The Installed Components list identifies all of the UDM Server property pages.

The text describes the selected component, Universal Data Mover Server.

Figure 2.6 Universal Configuration Manager - UDM Server
udm-user-3207 Confidential & Proprietary 59

Network Data Transmission Features
2.5 Network Data Transmission
Distributed systems, such as Universal Data Mover, communicate over data networks. All
Stonebranch products communicate using the TCP/IP protocol. The UDP protocol is not
used for any product data communication over a network.

The Universal Products suite can utilize one of two network protocols:
1. Secure Socket Layer version 3 (SSLv3) provides the highest level of security

available. SSL is a widely used and accepted network protocol for distributed software
applications that are required to address all aspects of secure data transfer on private
and public networks.

2. Universal Products version 2 (UNVv2) legacy protocol is provided for backward
compatibility with previous versions of Universal Products.

The following sections discuss each of the protocols.

In addition to the network protocol used to transmit data, Universal Products application
protocol is discussed as well.

2.5.1 Secure Socket Layer Protocol

Universal Products implement the SSL protocol using either:
• OpenSSL library.
• IBM z/OS System SSL library, available on the z/OS operating system.

The most recent SSL standard is version3. A subsequent version was produced changing
the name to Transport Layer Security version 1 (TLSv1).

TLSv1 is the actual protocol used by Universal Products. TLSv1 is more commonly
referred to simply as SSL and the term SSL is used throughout the rest of this
documentation to mean TLSv1 unless otherwise noted.

The SSL protocol addresses the major challenges of communicating securely over a
potentially insecure data network. The following sections discuss the issue of data privacy
and integrity, and peer authentication.
udm-user-3207 Confidential & Proprietary 60

Network Data Transmission Features
Data Privacy and Integrity
People with sufficient technical knowledge and access to network resources can watch or
capture data transmitting across the network. What they do with the data is up to them.

Data sent over the network that should remain private must be encrypted in a manner that
unauthorized persons cannot determine what the original data contained regardless of
their level of expertise, access to network resources, amount of data captured, and
amount of time they have. The only party that should be able to read the data is the
intended recipient.

As data is transmitted over the network, it passes through media and hardware of
unknown quality that may erroneously change bits of data without warning. Additionally,
although data may be encrypted, there is nothing stopping a malicious person from
changing the data while it is transmitted over the network. The changed data may or may
not be detected by the recipient depending on what changed and how it is processed. It
may be accepted as valid data, but the information it represents is now erroneous

Data integrity must be protected from errors in transmission and malicious users. Data
integrity checks insures that what was sent is exactly what is received by the recipient.
Without integrity checks, there is no guarantee.

Encryption algorithms are used to encrypt data into an unreadable format. The encryption
process is computationally expensive. There are a variety of encryption algorithms some
of which perform better than others. Some algorithms offer a higher level of security than
others. Typically, the higher level of security requires more computational resources.

Message digest algorithms are used to produce a Message Authentication Code (MAC)
that uniquely identifies a block of data. The sender computes a MAC for the data being
sent based on a shared secret key the sender and receiver hold. The sender sends the
data and the MAC to the receiver. The receiver computes a new MAC for the received
data based on the shared secret key. If the two MAC's are the same, data integrity is
maintained, else the data is rejected as it has been modified. Message digest algorithms
are often referred to as MAC's and can be used synonymously in most contexts.

The SSL standard defines a set of encryption and message digest algorithms referred to
cipher suites that insure data privacy and data integrity. Cipher suites pair encryption
algorithms with appropriate message digest algorithms. The two algorithms cannot be
specified individually.

Universal Products supports a subset of the complete SSL cipher suites defined by the
standard. The cipher suite name is formatted as an encryption algorithm abbreviation
followed by the message digest algorithm abbreviation.
udm-user-3207 Confidential & Proprietary 61

Network Data Transmission Features
Table 2.2, below, identifies the supported cipher suites.

Table 2.2 Supported SSL cipher suites

Universal Products support one additional cipher suite name that is not part of the SSL
protocol. The NULL-NULL cipher suite turns SSL off completely and instead uses the
Universal Products Protocol (UNVv2) (see Section 2.5.2 Universal Products Protocol).

To turn off SSL, specify NULL-NULL for the data cipher list for all UDM servers used for
the session and for the encrypt parameter on the open command.

Peer Authentication
When communicating with a party across a data network, how do you insure that the
party you are communicating with (your peer) is who you believe? A common form of
network attack is a malicious user representing themselves as another user or host.

Peer authentication insures that the peer is truly who they identify themselves as. Peer
authentication applies to users, computer programs and hardware systems.

SSL uses X.509 certificates and public and private keys to identify an entity. An entity
may be a person, a program, or a system. A complete description of X.509 certificates is
beyond the scope of this documentation. Section 2.10 X.509 Certificates provides an
overview to help get the reader oriented to the concepts, terminology and benefits.

For additional details, the following web site is recommended:

http://www.faqs.org/rfcs/rfc3280.html

Cipher Suite Name Description

RC4-SHA 128-bit RC4 encryption with SHA-1 message digest

RC4-MD5 128-bit RC4 encryption with MD5 message digest

AES256-SHA 256-bit AES encryption with SHA-1 message digest

AES128-SHA 128-bit AES encryption with SHA-1 message digest

DES-CBC3-SHA 128-bit Triple-DES encryption with SHA-1 message digest

DES-CBC-SHA 128-bit DES encryption with SHA-1 message digest

NULL-SHA No encryption with SHA-1 message digest

NULL-MD5 No encryption with MD5 message digest
udm-user-3207 Confidential & Proprietary 62

Network Data Transmission Features
2.5.2 Universal Products Protocol

The Universal Products protocol (UNVv2) is a proprietary protocol that securely and
efficiently transports data across data networks. UNVv2 is used in Universal Products
prior to version 3 and will be available in future versions.

UNVv2 addresses data privacy and integrity. It does not address peer authentication.

Data Privacy and Integrity
Data privacy is insured with data encryption algorithms. UNVv2 utilizes 128-bit RC4
encryption for all data encryption.

Data integrity is insured with message digest algorithms. UNVv2 utilizes 128-bit MD5
MAC's for data integrity. UNVv2 referred to data integrity as data authentication.

Encryption and integrity may be enabled and disabled on an individual bases.

Encryption keys are generated using a proprietary key agreement algorithm. A new key is
created for each and every network session.
udm-user-3207 Confidential & Proprietary 63

Network Data Transmission Features
2.5.3 Universal Products Application Protocol

Universal Product components use an application-layer protocol to exchange data
messages. The protocol has the following characteristics:
• Low-Overhead
• Secure
• Extensible
• Configurable Attributes

The following sections refer to two categories of data transmitted by Universal Products:
• Control data (or messages) consists of messages generated by Universal Products

components in order to communicate with each other. The user of the product has no
access to the control data itself.

• Application data (or messages) consists of data that is transmitted as part of the
requested work being executed. For example, standard input and output data of jobs
Universal Command executes. The data is created by the job and read or written by
Universal Command on behalf of the job.

Low-Overhead
The protocol is lightweight, in order to minimize its use of network bandwidth. The product
provides application data compression options, which reduces the amount of network
data even further.

There are two possible compression methods:
• ZLIB method offers the highest compression ratios with highest CPU utilization.
• HASP method offers the lowest compression ratios with lowest CPU utilization.

Note: Control data is not compressed. Compression options are available for application
data only.

Secure
The protocol is secure. All control data exchanged between Universal Products
components are encrypted with a unique session key and contain a MAC. The encryption
prevents anyone from analyzing the message data and attempting to circumvent product
and customer policies. Each session uses a different encryption key to prevent "play
back" types of network attacks, where messages captured from a previous session are
replayed in a new session. This applies to both network protocols: SSL and UNVv2.

The security features used in the control messages are not optional. They cannot be
turned off. The security features are optional for application data sent over the network.

The data encryption options affect the application data being sent over the network.
Special fields, such as passwords, are always encrypted. The encryption option cannot
be turned off for such data.
udm-user-3207 Confidential & Proprietary 64

Network Data Transmission Features
Extensible
The message protocol used between the Universal Products components is extensible.
New message fields can be added with each new release without creating product
component incompatibilities. This permits different component versions to communication
with each other with no problems. This is a very important feature for distributed systems,
since it is near impossible to upgrade hundreds of servers simultaneously.

New encryption and compression algorithms can be added in future releases without
loosing backward compatibility with older releases. After a network connection is made,
connection options are negotiated between the two Universal Products programs. The
options negotiated include which encryption and compression algorithms are used for the
session. Only algorithms that both programs implement are chosen in the negotiation
process. The negotiation process permits two different program versions to communicate.
udm-user-3207 Confidential & Proprietary 65

Network Data Transmission Features
2.5.4 Configurable Attributes

The network protocol can be configured in ways that effect compress, encryption, code
pages, and network delays.

The following configuration options are available on many of the Universal Products:

CODE_PAGE
The CODE_PAGE option specifies the code page translation table used to translate
network data from and to the local code page for the system on which the program is
executing.

A codepage table is a text file that contains a two-column table. The table maps local
single-byte character codes to two-byte UNICODE character codes.

Code pages are located in the product National Language Support (NLS) directory or
library. New code pages may be created and added to the NLS directory or library. The
CODE_PAGE option value is simply the name of the code page file without any file name
extension if present.

CTL_SSL_CIPHER_LIST
The CTL_SSL_CIPHER_LIST option specifies one or more SSL cipher suites that are
acceptable to use for network communications on the control session, which is used for
component internal communication.

The SSL protocol uses cipher suites to specify the combination of encryption and
message digest algorithms used for a session. An ordered list of acceptable cipher suites
can be specified in a most to least order of preference.

An example cipher suite list is RC4-MD5,RC4-SHA,AES128-SHA. The RC4-MD5 cipher
suite is the most preferred and AES128-SHA is the least preferred.

When a manager and server first connect, they perform an SSL handshake. The
handshake negotiates the cipher suite used for the session. The manager and server
each have a cipher suite list and the first one in common is used for the session.

Why is a list of cipher suites helpful? A distributed software solution may cross many
organizational and application boundaries each with their own security requirements.
Instead of having to choose one cipher suite for all distributed components, the software
components can be configured with their own list of acceptable cipher suites based on
their local security requirements. When a high level of security is required, the higher
CPU consuming cipher suite is justified. When lower level of security is acceptable, a
lower CPU consuming cipher suite may be used. As long as the manager has both cipher
suites in its list, it can negotiate either cipher suite with servers of different security levels.
udm-user-3207 Confidential & Proprietary 66

Network Data Transmission Features
DATA_AUTHENTICATION
The DATA_AUTHENTICATION option specifies whether or not the network data is
authenticated. Data authentication verifies that the data did not change from the point it
was sent to the point it was received.

Data authentication also is referred to as a data integrity in this document.

Data authentication occurs for each message sent over the network. If a message fails
authentication, the network session is terminated and both programs end with an error.

The DATA_AUTHENTICATION option is applicable to the UNVv2 protocol only. SSL
always performs authentication.

DATA_COMPRESSION
The DATA_COMPRESSION option specifies that network data should be compressed.

Compression attempts to reduce the amount of data to a form that can be decompressed
to its original form. The compression ratio is the original size divided by the compressed
size. The compression ratio value will depend on the type of data. Some data compress
better than others.

Two methods of compression are available:
• ZLIB method provides the highest compression ratio with the highest use of CPU.
• HASP method provides the lowest compression ratio with the lowest use of CPU.

Whether or not compression is used, and which compression method is used, depends
on several items:
• Network bandwidth

If network bandwidth is small, compression may be worth the cost in CPU.
• CPU resources

If CPU is limited, the CPU cost may not be worth the reduced bandwidth usage.
• Data compression ratio

If the data does not compress well, it is probably not worth CPU cost. If the data ratio
is high, the CPU cost may be justified.

DATA_ENCRYPTION
The DATA_ENCRYPTION option specifies whether or not network data is encrypted.

Encryption translates data into a format that prevents the original data from being
determined. Decryption translates encrypted data back into its original form.

The type of encryption performed depends on the network protocol being used: SSL or
UNVv2.

Data encryption does increase CPU usage. Whether or not encryption is used depends
on the sensitivity of the data and the security of the two host systems and the data
network between the hosts.
udm-user-3207 Confidential & Proprietary 67

Network Data Transmission Features
DATA_SSL_CIPHER_LIST
The DATA_SSL_CIPHER LIST option specifies one or more SSL cipher suites that are
acceptable to use for network communications on the data session, which is used for
standard I/O file transmission.

(See CTL_SSL_CIPHER_LIST in this section.)

DEFAULT_CIPHER
The DEFAULT_CIPHER option specifies the SSL cipher suite to use (since SSL protocol
requires a cipher suite) if the DATA_ENCRYPTION option is set to NO. The default
DEFAULT_CIPHER is NULL-MD5 (no encryption, MD5 message digest).

All SSL cipher suites have a message digest for good reasons. The message digest
ensures that the data sent are the data received. Without a message digest, it is possible
for bits of the data packet to get changed without being noticed.

KEEPALIVE_INTERVAL
The KEEPALIVE_INTERVAL option specifies how often, in seconds, a keepalive
message (also commonly known as a heartbeat message) is sent between a manager
and server. A keepalive message ensures that the network and both programs are
operating normally. Without a keepalive message, error conditions can arise that place
one or both programs in an infinite wait.

A keepalive message is sent from the server to the manager. If the server does not
receive a keepalive acknowledgement from the manager in a certain period of time
(calculated as the maximum of 2 x NETWORK_DELAY or the KEEPALIVE_INTERVAL),
the server considers the manager or network as unusable. How the server processes a
keepalive time-out depends on what fault tolerant features are being used. If no fault
tolerant features are being used, the server ends with an error. The manager expects to
receive a keepalive message in a certain period of time (calculated as the
KEEPALIVE_INTERVAL + 2 x NETWORK_DELAY.

NETWORK_DELAY
The NETWORK_DELAY option provides the ability to fine tune Universal product's
network protocol. When a data packet is sent over a TCP/IP network, the time it takes to
reach the other end depends on many factors, such as, network congestion, network
bandwidth, and the network media type. If the packet is lost before reaching the other
end, the other end may wait indefinitely for the expected data. In order to prevent this
situation, Universal Products time out waiting for a packet to arrive in a specified period of
time. The delay option specifies this period of time.

NETWORK_DELAY specifies the maximum acceptable delay in transmitting data
between two programs. Should a data transmission take longer than the specified delay,
the operation ends with a time out error. Universal Products will consider a time out error
as a network fault.

The default NETWORK_DELAY value is 120 seconds. This value is reasonable for most
networks and operational characteristics. If the value is too small, false network time outs
could occur. If the value is too large, programs will wait a long period of time before
reporting a time out problem.
udm-user-3207 Confidential & Proprietary 68

Network Data Transmission Features
SIO_MODE
The SIO_MODE option specifies whether the data transmitted over the network is
processed as text data or binary data.

Text data is translated between the remote and local code pages. Additionally, end of line
representations are converted

Text translation operates in two modes: direct and UCS. The default is direct. The direct
translation mode exchanges code pages between Universal Products components to
build direct translation tables. Direct translation is the fastest translation method when a
significant amount (greater then 10K) of text data is transmitted. The code page
exchange increases the amount of data sent over the network as part of the network
connection negotiation. UCS translation does not require the exchange of code pages.
For transactions that have little text data transmission, this is the fastest.

Binary data is transmitted without any data translation.
udm-user-3207 Confidential & Proprietary 69

Fault Tolerance Features
2.6 Fault Tolerance
Fault tolerant features address Universal Product capabilities to recover or restart from an
array of error conditions that occur in any large IT organization. Errors occur as a result of
human, software, or hardware conditions. The more resilient a product is to errors, the
greater value it offers.

2.6.1 Network Fault Tolerance

UDM uses the TCP/IP protocol for communications over a data network. The TCP/IP
protocol is a mature, robust protocol capable of re-sending packets and rerouting packets
when network errors occur. However, data networks do have problems significant enough
to prevent the TCP/IP protocol from recovering. As a result, the TCP/IP protocol
terminates the connection between the application programs. Like any application using
TCP/IP, UDM is subject to these network errors. Should they occur, a product can no
longer communicate and must shutdown or restart. These types of errors normally show
themselves as premature closes, connection resets, time-outs, or broken pipe errors.

UDM provides the ability to circumvent these types of errors with its Network Fault
Tolerant protocol. By using the network fault tolerant protocol, UDM traps the connection
termination caused by the network error and it reestablishes the network connections.
Once connections are reestablished, processing automatically resumes from the location
of the last successful message exchange. No program restarts are required and no data
are lost.

The network fault tolerant protocol acknowledges and checkpoints successfully received
and sent messages, respectively. The network fault tolerant protocol does reduce data
throughput. Consequentially, the use of network fault tolerance should be carefully
weighed in terms of increased execution time versus the probability of network errors and
cost of such errors. For example, it may be easier to restart a program then to incur
increased execution time.

When a network connection terminates, the manager will enter a network reconnect
phase. In the reconnect phase, the manager attempts to connect to the server and
reestablish its network connections. The condition that caused the network error may
persist for only seconds or days. The manager will attempt server reconnection for a
limited amount of time. That amount of time is configured with the
RECONNECT_RETRY_COUNT and RECONNECT_RETRY_INTERVAL options. These
two options determine, respectively, how many reconnect attempts are made and how
often they are made. After all attempts have failed, the manager ends with an error.
udm-user-3207 Confidential & Proprietary 70

Fault Tolerance Features
When a network connection terminates, the server enters a disconnected state and waits
for the manager to reconnect. The user process continues running; however, if the user
process attempts any I/O on the standard files, it will block. The server waits for the
manager to reconnect for a period of time defined by the manager's
RECONNECT_RETRY_COUNT and RECONNECT_RETRY_INTERVAL. Once that time
has expired, the server terminates the user process and exits.

UDM can request the use of the network fault tolerant protocol. If the server does not
support the protocol or is not configured to accept the protocol, the Manager continues
without using the protocol.

The NETWORK_FAULT_TOLERANT option is used to request the protocol.

2.6.2 Open Retry

Open Retry is a type of fault tolerance used at the session-establishment level.

(Network fault tolerance, as described in Section 2.6.1 Network Fault Tolerance, is used
from the time that a session has been fully established until the session has terminated.

Open Retry is used during the establishment phase of a session. UDM tries to establish a
session when the open command is issued. If the OPEN_RETRY option value is yes,
and UDM fails to establish the session due to a network error, timeout, or the inability to
start a transfer server, it will retry the open command based on the settings of the
OPEN_RETRY_COUNT and OPEN_RETRY_INTERVAL options.
udm-user-3207 Confidential & Proprietary 71

Fault Tolerance Features
2.6.3 Component Management

In order to fully understand Universal Data Mover fault tolerant features, some
understanding of how the Universal Broker manages components is necessary.

Universal Broker manages component startup, execution, and termination. The broker
and its components have the ability to communicate service requests and status
information between each other.

The Broker maintains a database of components that are active or have completed and
waiting for restart or reconnection. The component information maintained by the broker
determines the current state of the component. This state information is required by the
broker to determine if a restart or reconnect request from a manager is acceptable or not.
The broker's component information can be viewed with the Universal Query program.

One piece of component information maintained by the broker is the component's
communication state. The communication state primarily determines what state the
Universal Data Mover Server is in regarding its network connection with a manager and
the completion of the user process and its associated spooled data.

The communication state values are described in Table 2.3 Component Communication
States, below. The Reconnect column indicates whether or not a network reconnect
request is valid. The Restart column indicates whether or not a restart request is valid.

Table 2.3 Component Communication States

 State Reconnect Restart Description

COMPLETED NO NO The server and manager have completed. All
standard output and standard error files have been
sent to the manager and the user process's exit
status.

DISCONNECTED YES YES The server is not connected to the manager. This
occurs when a network error has occurred, the
manager halted, or the manager host halted.
The server is executing with either the network fault
tolerant protocol, is restartable, or both.
Note: The server cannot tell if the manager is still

executing or not since it cannot
communicate with it.

ESTABLISHED NO NO The server and manager are connected and
processing normally. This state is the most common
state when all is well.

RECONNECTING NO NO The server has received a reconnect request from
the manager to recover a lost network connection.
This state should not remain long, only for the time it
takes to re-establish the network connections.

STARTED NO NO The server has started.
If the server is restartable it is receiving the standard
input file from the manager and spooling it.
udm-user-3207 Confidential & Proprietary 72

z/OS CANCEL Command Support Features
2.7 z/OS CANCEL Command Support
Universal Products provide network fault tolerance (see Section 2.6 Fault Tolerance) and,
in some cases, manager fault tolerance. These features provide users with the ability to
execute jobs that will continue to run when the network is down and when a manager is
terminated.

However, there are scenarios in which the user may want to cancel an executing job that
supports manager and/or network fault tolerance and have both the manager and server
processes terminate immediately. Because of fault tolerance, when the manager is
terminated, the server side would begin a connection reestablishment protocol and
continue to execute. This would allow the started user job to continue running.

In particular, z/OS supports a CANCEL command that will terminate a job executing on
the z/OS operating system. When a Universal Data Mover job is cancelled via the z/OS
CANCEL command, the job terminates with either of these exit codes:
• Exit code S122, if it is cancelled with a dump.
• Exit code S222, if it is cancelled without a dump.

Part of the responsibility of a Universal Broker executing on a particular host is to monitor
the status of all locally running manager processes on that machine. So, when instructed,
that Universal Broker could issue a STOP command to the Universal Data Mover Server
process associated with the stopped/ended manager process.

In the case of a Universal Data Mover three-party transfer, both the primary and
secondary servers need to be cancelled. The Universal Broker running locally with the
cancelled Universal Data Mover Manager process will send a STOP command to the
primary server. This primary server will, in turn, forward the STOP command to the
secondary server, thus cancelling both servers of the three-party transfer.

2.7.1 Exit Codes

Through the use of the SERVER_STOP_CONDITIONS configuration option, the
Universal Data Mover Manager process notifies the locally running Universal Broker of
the exit codes that should cause it to terminate the running Server process. With this
option, the user can specify a list of exit codes that should trigger the locally running
Universal Broker to issue the STOP command to the manager's Universal Data Mover
server-side process.

SERVER_STOP_CONDITIONS can specify a single exit code or a comma-separated list
of exit codes. These stop conditions are passed from the manager to the locally running
Universal Broker, which store this and other component-specific data about the executing
manager component. When this executing Universal Data Mover Manager process is
cancelled or stopped, the locally running Universal Broker detects the ending of the
manager process and retrieves its process completion information, which includes the
exit code of the manager.
udm-user-3207 Confidential & Proprietary 73

z/OS CANCEL Command Support Features
The Universal Broker then compares this exit code with the list of exit codes provided by
SERVER_STOP_CONDITIONS. If a match is found, and network fault tolerance is
enabled, the Universal Broker will execute a uctl command to STOP the running
Universal Data Mover Server component.

2.7.2 Security Token

For security purposes, Universal Products pass around a security token that is used by
the locally running Universal Broker to STOP associated Universal Data Mover Server
process.

This security token is generated on a component-by-component basis by the Universal
Broker process that starts the Universal Data Mover Server. Upon generation, this token
is returned to the Universal Data Mover Manager which, in turn, updates its locally
running Universal Broker with this token. The locally running Universal Broker then uses
this token with the issued STOP command to cancel the running Universal Data Mover
Server process.

When this token is received by the Universal Broker processes with the request to STOP
the server component, the Broker authenticates the received token with the stored token
for the running Universal Data Mover Server process. When the token is authenticated,
the Universal Data Mover Server process is STOPPED.
udm-user-3207 Confidential & Proprietary 74

Universal Access Control List Features
2.8 Universal Access Control List
Many Universal Products utilize the Universal Access Control List (UACL) feature as an
extra layer of security to the services they offer. The UACL determines if a request is
denied or allowed to continue and can assign security attributes to the request.

This section describes the UACL capabilities in general, non-component specific terms.
See the appropriate component security sections for complete details on how a
component utilizes the UACL feature.

The following Universal Product components use the UACL feature:
• Universal Broker uses UACLs to permit or deny TCP/IP connections based on the

remote host IP address.
See the Universal Broker User Guide for complete details.

• Universal Command Server uses UACLs to permit or deny Manager access based on
the Managers IP address and user ID, and to control whether or not the Manager
request requires user authentication.
See the Universal Command 3.2.0 User Guide for complete details.

• Universal Control Server uses UACLs to permit or deny Manager access based on
the Managers IP address and user ID, and to control whether or not the Manager
request requires user authentication.
See the Universal Control chapter of the Universal Products Utilities 3.2.0 User Guide
for complete details.

• Universal Data Mover Server uses UACLs to permit or deny Manager access based
on the Managers IP address and user ID.
See the UACL section for each operating system in this user guide for complete
details.
udm-user-3207 Confidential & Proprietary 75

Universal Access Control List Features
2.8.1 UACL Configuration

The method used to configure UACL rules is platform dependent. The following sections
discuss each of the methods.

All UACL rules are defined in library UNVCONF, member ACLCFG00. The Universal Broker allocates the UACL
configuration data set to ddname UNVACL.
The UACL file syntax is the same as all other Universal Products z/OS configuration files. See Section 2.2.6
Configuration File Syntax for details.

All UACL rules are defined in one file, uacl.conf. This file is required for products utilizing UACL rules;
otherwise, the product will not start. The configuration file consists of zero or more UACL entries.
The UACL file syntax is the same as all other Universal UNIX configuration files. See Section 2.2.6
Configuration File Syntax for details.

All UACL rules are stored in the configuration file, uacl.conf.
UACL entries for each component are maintained using the Universal Configuration Manager (see
Section 2.4 Universal Configuration Manager).

All UACL rules are defined in file unvconf and member uacl. This file is required for products utilizing UACL
rules, else the product will not start. The configuration file consists of zero or more UACL entries.
The UACL file is searched for in the same manner as all other product configuration files. See Section 2.2.5
Configuration File for information on how configuration files are located.
The UACL file syntax is the same as all other Universal Products for OS/400 configuration files. See
Section 2.2.6 Configuration File Syntax for details.

z/OS

UNIX

Windows

OS/400
udm-user-3207 Confidential & Proprietary 76

Universal Access Control List Features
2.8.2 UACL Entries

UACL entries are composed of two parts: type and rule.
• Type identifies the Universal Products component for which the rule applies. For

example, the Universal Broker product utilizes UACL rules of type ubroker_access.
• Rule defines the client's identity and the client's request for which the entry pertains

and the security attributes it enforces.

UACL configuration file syntax is the same as all other configuration files, where the
configuration file keyword corresponds to the UACL type part and the configuration file
value corresponds to the UACL rule part.

The entire rule part of the UACL entry must be enclosed in quotation characters, not just
a sub-field of the rule, if a space or tab is part of the value.

The correct syntax would be as follows:
ucmd_request "prod.host.name,MVS USER,user,cmd,DSPLIB
QGPL,allow,auth"

For each client that connects and sends a request, Broker and Server components
search UACL entries to find the best match for the client identity and the client request.
Entries are searched in the order they are listed. The first entry found stops the search.

Note: There is no limit to the number of UACL entries that can be specified.

Client Identification
Rule matching is based on the client identity and the client request.

There are two client identification methods:
1. X.509 certificate authentication.
2. Client IP address and reported user account.
udm-user-3207 Confidential & Proprietary 77

Universal Access Control List Features
X.509 Certificate Authentication
X.509 certificates identify an entity. An entity can be a program, person, or host computer.
When an X.509 certificate is authenticated, it authenticates that the entity is who it claims
to be.

X.509 certificates are utilized in UACL entries by first mapping a client certificate to a
UACL certificate identifier. The certificate identifier then is used in the UACL entries. A
certificate identifier provides for:
1. Concise representation of certificates in UACL entries. There are a large number of

certificate fields that may be used and many of the fields have lengthy, tedious
naming formats. A certificate map only needs to be defined once and then the concise
certificate identifier can be used in the UACL entries.

2. Mapping of one or more certificates to a single certificate identity. A group of entities
that share a common security access level may be represented by one certificate
identity reducing the number of UACL entries to maintain.

UACL certificate map entries are searched sequentially (that is, top to bottom) matching
the client certificate to each entry until a match is found. The certificate map defines a set
of X.509 certificate fields that may be used as matching criteria.

Table 2.4, below, defines the certificate map matching criteria.

Criteria Description

SUBJECT Matches the X.509 subject field. The subject field is formatted as an X.501
Distinguished Name (DN). A DN is a hierarchical list of attributes referred to as Relative
Distinguished Names (RDNs).
RDNs are separated with a comma (,) by default. If a different separator is required
(perhaps one of the RDN values uses a comma), start the DN with the different separator
character. Valid separators are slash (/), comma (,) and period (.).
Many RDN values can be used in a DN. Some of the most common values are:
• C Country name
• CN Common name
• L Locality
• O Organization
• OU Organizational Unit
• ST State
The RDN attributes must be listed in the same order as they are defined in the certificate
to be considered matched.
A partial DN can be specified. All certificates that have a subject name that matches up
to the last RDN are considered a match. This permits a group of certificates to be
matched.
The RDN attribute values can include pattern matching characters. An asterisk (*)
matches 0 or more characters and a question mark (?) matches one character.
Some example of SUBJECT values are:
• subject=”C=US,ST=Georgia,O=Acme,CN=Road Runner”
• subject=”C=US,ST=Georgia,O=Acme,CN=Road * ”
• subject=”C=US,ST=Georgia,O=Acme,CN=Road ?unner”

Whether an RDN value is case sensitive or not depends on the format in which the value
is stored. The certificate creator has some control over which format is used. All formats
except for printableString are case sensitive.
udm-user-3207 Confidential & Proprietary 78

Universal Access Control List Features
Table 2.4 Certificate Map Matching Criteria

If a certificate map rule is found that matches the client certificate, the rule's identifier is
assigned to the client's request. The certificate identifier is then used in matching
certificate-based UACL entries.

Table 2.5, below, defines the certificate identifier field as used in UACL entries.

Table 2.5 Certificate Identifier Field

EMAIL Matches the X.509 emailAddress attribute of the subject field and rfc822Name of
the subjectAltName extension value. Both fields format the email address as an RFC
822 addr-spec in the form of identifier@domain.
The attribute values may include pattern matching characters. An asterisk (*) matches 0
or more characters and a question mark (?) matches one character.
Some example EMAIL values are:
• email=user1@acme.com
• email=*@acme.com
• email=user?@acme.com

RFC 822 names are not case sensitive.

HOSTNAME Matches the following X.509 fields in the order listed:
1. dNSName of the subjectAltName extension value.

2. commonName (CN) RDN attribute of the subject field’s DN value.
Some example HOSTNAME values are:
• hostname=bigfish.acme.com
• hostname=*.acme.com
The values are not case sensitive.

IP
ADDRESS

Matches the X.509 iPAddress field of the subjectAltName extension value.
An example IPADDRESS value is:
• ipaddress=10.20.30.40

SERIAL
NUMBER

Matches the X.509 serialNumber value.
The value can be specified in a hexadecimal format by prefixing the value with 0x or 0X,
otherwise, the value is considered a decimal format. For example, the value
0x016A392E7F would be considered a hexadecimal format.
An example SERIALNUMBER value is:
• serialnumber=0x7a2d52cbae

Criteria Description

CERTID Matches the certificate identifier defined by the certificate map entry. The CERTID value
has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches one

character. For example, AB*M matches ABCDM and ABM. AB?M matches ABCM, but
not ABCDM.

• The comparison is case insensitive.
• Pattern matching characters, such as the asterisk and question mark, are included in

the text to be matched by prefixing them with a forward slash (/) character. For
example, A/*B matches A*B. A//B matches A/B.

Criteria Description
udm-user-3207 Confidential & Proprietary 79

Universal Access Control List Features
Client IP Address Identification
TCP/IP provides a method to obtain a client's IP address. The IP address typically
identifies the host computer on which the client is executing. There are exceptions to this
though. Networks can be configured with Network Address Translation (NAT) systems
between the client and the Broker that hides the client's IP address. In addition to the
client IP address, Universal Products clients provide a user account name with which they
are executing that is used to further refine the client's identity.

UACL entries are searched matching the client's IP address and user account to each
entry until a match is found.

Table 2.6, below, defined possible matching criteria for IP address and user account client
identification.

Table 2.6 Client IP Address - Matching Criteria

Criteria Description

HOST Matches the TCP/IP address of the remote user.
The HOST value has the following syntax:
• Dotted numeric form of an IP address. For example, 10.20.30.40.
• Dotted numeric prefix of the IP addresses. For example, 10.20.30. matches all

IP addresses starting with 10.20.30. The last dot (.) is required.
• A net/mask expression. For example, 131.155.72.0/255.255.254.0 matches

IP address range 131.155.72.0 through 131.155.73.255. The mask and the
host value are AND'ed together. The result must match net.
Note: Contact your network administrator for calculation of the correct net /

mask expression.
• Host name for an IP address. For example, sysa.abc.com.
• Host name suffix for a range of IP addresses. For example, .abc.com matches all

host names ending with abc.com, such as, sysa.abc.com. The first dot (.) is
required.

• A value of ALL matches all IP addresses. The value must be uppercase.

REMOTE_USER Matches the user name with which the remote user is executing as on the remote
system.
The REMOTE_USER value has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches

one character. For example, AB*M matches ABCDM and ABM. AB?M matches
ABCM, but not ABCDM.

• Control code /c switches off case-sensitivity and /C switches on case-sensitivity
matching. The default is on. For example, /cABC matches abc. /ca/Cbc matches
Abc, but not ABC.

• Pattern matching characters, such as the asterisk and question mark, are included
in the text to be matched by prefixing them with a forward slash (/) character. For
example, A/*B matches A*B. A//B matches A/B.
udm-user-3207 Confidential & Proprietary 80

Universal Access Control List Features
Certificate-Based and Non Certificate-Based UACL Entries
Universal Products components that support X.509 certificates define their UACL entries
in two varieties:
1. Certificate-based entries
2. Non certificate-based entries

The two entry types are distinguished by their name. For example, cmd_cert_access is
the certificate-based form of the entry and ucmd_access is a non certificate-based entry .
All entries follow the same format.

Certificate-based UACL entries are searched under the following conditions:
• Client provides an X.509 certificate that matches a certificate map entry.

Non certificate-based UACL entries are searched under the following conditions:
• Client provides an X.509 certificate and no certificate map entry matches.
• Client does not provide an X.509 certificate.

Either the certificate-based UACL entries or the non certificate-based UACL entries are
searched, but not both.
udm-user-3207 Confidential & Proprietary 81

Universal Access Control List Features
2.8.3 Types of UACL Rules

There are three types of ACL rules in the UACL configuration file used by UDM:
• udm_access
• udm_cert_access
• udm_mgr_access

All of them are access rules. That is, they are used to either allow or deny access (the
right to establish a connection) from a remote system.

The udm_access and udm_mgr_access rules are similar to the Universal Command
ucmd_access rule in that they allow or deny access depending on a remote host IP
address and remote user.

udm_access
udm_access takes the same form as the ucmd_access rule. The remote host and remote
user refer to the host IP of the machine connecting to the UDM Server and the user of the
remote system.

udm_mgr_access
udm_mgr_access differs slightly from ucmd_access in that instead of the remote IP and
remote user, udm_mgr_access refers to the IP address and user of the manager.

Note: In a three-party transfer session, the manager’s host IP is from the perspective of
the primary transfer server (the IP address given if you look up the manager’s IP
address on the primary server).

This also is true for the secondary server. Even if the secondary server, when
looking up the manager, would produce a different IP address than the primary
server, the ACL rule is based on the address as seen from the primary server.

udm_cert_access
udm_cert_ access works just like the Universal Command ucmd_cert_access rule. In
the top section of the UACL configuration file, you describe a certificate in detail and give
it an alias. A udm_cert_access rule describes whether access is allowed or denied to a
connecting UDM manager or server based on whether or not its certificate matches the
one to which the alias in the rule refers.

For detailed information on these UACL rules, see Chapter 5 Universal Data Mover
UACL Entries in the Universal Data Mover 3.2.0 Reference Guide.
udm-user-3207 Confidential & Proprietary 82

Universal Access Control List Features
2.8.4 Proxy Certificates

For two-party transfer sessions, certificates work exactly as they do with Universal
Command: the manager presents its certificate when trying to establish a session with the
server. If the access rules allow a connection using that certificate, and if they certificate
is properly validated, a session is established.

For three-party transfer sessions, the manager — as it does in a two-party transfer
session — presents its certificate to the primary when trying to establish a session. The
udm_cert_access rules (if there are any) determine whether the session can be
established between the manager and primary server using this certificate.

A similar thing happens when setting up the remainder of the three-party transfer session
between the primary and secondary. There are some differences, though. A UDM server
cannot have a certificate of its own, so the primary server in a three-party transfer session
obtains its certificate from the broker (in effect, it uses the Broker’s certificate) running on
that machine to try to establish a connection with the secondary. If certificate access rules
in the UACL configuration file on the secondary are used to allow or deny this connection
with the secondary, they must refer to the Broker’s certificate on the primary.

(See Section 1.3 Transfer Sessions for further information on two-party and three-party
transfer sessions.)

In order to help minimize the amount of certificate management and set-up that needs to
be done with a large number of systems, UDM provides alternative way of using
certificates in a three-party transfer session: proxy certificates.

A proxy certificate is a certificate generated on the fly that is signed by an original
certificate holder and allows the holder of the proxy certificate to act on behalf of (as the
proxy of) the original certificate holder.

In a three-party UDM session, this removes the need to use the Broker’s certificate on the
primary when establishing a connection from the primary to the secondary. Instead, once
the manager’s certificate is validated on the primary (just as happens when not using
proxy certificates in a three-party transfer session), a proxy certificate is generated by the
primary and signed by the manager. The primary uses this proxy certificate to establish a
connection between it and the secondary.

The subject name of the proxy certificate is the same as the original certificate supplied
to the manager. A certificate ACL rule for a certificate containing this subject can be used
on both the primary and secondary. Proxy certificates simplify things by allowing the
same ACL rule to be used in both places instead having a rule for the manager’s
certificate on the primary and a rule for the primary’s (actually, the broker on the primary
system) certificate on the secondary.

Proxy certificates can only be used under the following conditions:
1. Manager, primary, and secondary must all be version 3.2 or later.
2. Manager, primary, and secondary must all use OpenSSL as their SSL type. If any of

these are running on the mainframe, they cannot use system SSL and proxy
certificates at the same time.

3. PROXY_CERTIFICATES configuration option must be set to yes for the manager.
udm-user-3207 Confidential & Proprietary 83

Message and Audit Facilities Features
2.9 Message and Audit Facilities
All Universal Products have the same message facilities. Messages - in this context - are
text messages written to a console, file, or system log that:
1. Document the actions taken by a program.
2. Inform users of error conditions encountered by a program.

This section describes the message and audit facilities that are common to all Universal
Products. (See the individual Universal Product documentation for additional details.)

2.9.1 Message Types

There are six types (or severity levels) of Universal Products messages. (The severity
level is based on the type of information provided by those messages.)
1. Audit messages document the configuration options used by the program's execution

and resource allocation details. They provide complete description of the program
execution for auditing and problem resolution.

2. Informational messages document the actions being taken by a program. They help
determine the current stage of processing for a program. Informational messages
also document statistics about data processed.

3. Warning messages document unexpected behavior that may cause or indicate a
problem.

4. Error messages document program errors. They provide diagnostic data to help
identify the cause of the problem.

5. Diagnostic messages document diagnostic information for problem resolution.
6. Alert messages document a notification that a communications issue, which does not

disrupt the program or require action, has occurred.

The MESSAGE_LEVEL configuration option in each Universal Product component lets
you specify which messages are written (see Section 2.9.3 Message Levels).
udm-user-3207 Confidential & Proprietary 84

Message and Audit Facilities Features
2.9.2 Message ID

Each message is prefixed with a message ID that identifies the message.

The message ID format is UNVnnnnl, where:
• nnnn is the message number.
• l is the message severity level:

• A (Audit)
• I (Informational)
• W (Warning)
• E (Error)
• T (alerT)
• D (Diagnostic)

Note: The Universal Products 3.2.0 Messages and Codes document identifies all
messages numerically, by product, using the nnnn message number.

2.9.3 Message Levels

Each Universal Product includes a MESSAGE_LEVEL configuration option that lets you
select which levels (that is, severity levels) of messages are to be written.
• Audit specifies that all audit, informational, warning, and error messages are to be

written.
• Informational specifies that all informational, warning, and error messages are to be

written.
• Warning specifies that all warning and error messages are to be written.
• Error specifies that all error messages are to be written.
• Trace specifies that a trace file is created, to which data used for program analysis will

be written. The trace file name and location are Universal Product dependent (see the
appropriate Universal Product documentation for details).
(Trace should be used only at the request of Stonebranch, Inc. Customer Support.)

Note: Diagnostic and Alert messages always are written, regardless of the level
selected in the MESSAGE_LEVEL option.
udm-user-3207 Confidential & Proprietary 85

Message and Audit Facilities Features
2.9.4 Message Destinations

The location to which messages are written is the message destination.

Some Universal Products have a MESSAGE_DESTINATION configuration option that
specifies the message destination. If a program is used only from the command line or
batch job, it may have only one message destination, such as standard error. Valid
destination values will depend on the host operating system.

Universal Products on z/OS run as batch jobs or started tasks. Batch jobs do not provide the
MESSAGE_DESTINATION option. All messages are written to the SYSOUT ddname.
Started task message destinations are listed in the table below.

Message destinations are listed in the table below.

z/OS

Destination Description

LOGFILE Messages are written to ddname UNVLOG.
All messages written to log files include a date and time stamp and the program's USS
process ID.

SYSTEM Messages are written to the console log as WTO messages.

UNIX

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console
commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.
The recommended directory for log files is /var/opt/universal/log. This can be
changed with the LOG_DIRECTORY option. All messages written to log files include a
date and time stamp and the program's process ID.

SYSTEM Messages are written to the syslog daemon. Not all programs provide this destination.
Universal programs that execute as daemons write to the syslog's daemon facility. All
messages include the programs process ID. If an error occurs writing to the syslog, the
message is written to the system console.
udm-user-3207 Confidential & Proprietary 86

Message and Audit Facilities Features
Message destinations are listed in the table below.

Message destinations are listed in the table below.

Windows

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console
commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.
Log files are written to product specific log directories, which can be modified with the
LOG_DIRECTORY option. All messages written to log files include a date and time
stamp and the program's process ID.

SYSTEM Messages are written to the Windows Application Event Log.

OS/400

Destination Description

STDERR Messages are written to standard error. A batch job's standard error file is allocated to the
print file QPRINT.

LOGFILE Messages are written to the job's job log.

SYSTEM Messages are written to the system operator message queue QSYSOPR.
udm-user-3207 Confidential & Proprietary 87

X.509 Certificates Features
2.10 X.509 Certificates
A certificate is an electronic object that identifies an entity. It is analogous to a passport in
that it must be issued by a party that is trusted by all who accept the certificate.
Certificates are issued by trusted parties called Certificate Authorities (CA's). For
example, VeriSign Inc. is a CA that most parties trust. We all have faith that a trusted CA
takes the necessary steps to confirm the identity of a user before issuing the user a
certificate.

Certificate technology is based on public/private key technology. There are a few different
types of public/private keys: RSA, DH, and DSS. As their name denotes, the private key
must be kept private, like a password. The public key can be given to anyone or even
published in a newspaper.

A property of public/private keys is that data encrypted with one can be decrypted only
with the other. Therefore, if someone wants to send you a secret message, they encrypt
the data with your public key, which everyone has. However, since you are the only one
with your private key, you are the only one who can decrypt it. If you want to send
someone message, such as a request for $100,000 purchase, you can "sign" it with your
private key.

Note: Signing does not encrypt the data. Once a person receives your request, that
person can verify it is from you by verifying your electronic signature with your
public key.

A certificate ties a statement of identity to a public key. Without the public key, the
certificate is meaningless. Possession of a certificate alone does not prove your identity.
You must have the corresponding private key. The two together prove your identity to any
third party that trusts the CA that issued your certificate. This is a key point; if you do not
trust the CA that signed a certificate, you cannot trust the certificate.

Since certificates originally were designed to be used for internet authentication, global
directory technologies were developed to make them available via the internet. This
directory technology is known as X.500 Directory Access Protocol. Later LDAP was
introduced by Netscape to make it Lightweight Directory Access Protocol.

X.500 divides the world into a hierarchical directory. A person's identity is located by
traversing down the hierarchy until it reaches the last node. Each node in the hierarchy
consists of a type of object, such as a country, state, company, department, or name.
udm-user-3207 Confidential & Proprietary 88

X.509 Certificates Features
2.10.1 Sample Certificate Directory

Figure 2.7, below, provides a sample diagram of a small X.500 directory.

Figure 2.7 X.500 Directory (sample)

The keywords listed on each node are referred to as a Relative Distinguished Name
(RDN). A person is identified by a Distinguished Name (DN). The DN value for Joe Black
is C=US/ST=Georgia/O=Stonebranch, Inc./OU=Sales/CN=Joe Black.

A certificate is composed of many fields and possible extensions. Many of the most
popular fields are specified as X.500 DN values.
udm-user-3207 Confidential & Proprietary 89

X.509 Certificates Features
2.10.2 Sample X.509 Certificate

Figure 2.8, below, illustrates a sample X.509 version 3 certificate for Joe Buck at the
Acme corporation.

Figure 2.8 X.509 Version 3 Certificate (sample)

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 01:02:03:04:05:06:07:08

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=US, ST=Florida, O=Acme, Inc., OU=Security, CN=CA
Authority/emailAddress=ca@acme.com

 Validity

 Not Before: Aug 20 12:59:55 2004 GMT

 Not After : Aug 20 12:59:55 2005 GMT

 Subject: C=US, ST=Florida, O=Acme, Inc., OU=Sales, CN=Joe Buck

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:be:5e:6e:f8:2c:c7:8c:07:7e:f0:ab:a5:12:db:

 fc:5a:1e:27:ba:49:b0:2c:e1:cb:4b:05:f2:23:09:

 77:13:75:57:08:29:45:29:d0:db:8c:06:4b:c3:10:

 88:e1:ba:5e:6f:1e:c0:2e:42:82:2b:e4:fa:ba:bc:

 45:e9:98:f8:e9:00:84:60:53:a6:11:2e:18:39:6e:

 ad:76:3e:75:8d:1e:b1:b2:1e:07:97:7f:49:31:35:

 25:55:0a:28:11:20:a6:7d:85:76:f7:9f:c4:66:90:

 e6:2d:ce:73:45:66:be:56:aa:ee:93:ae:10:f9:ba:

 24:fe:38:d0:f0:23:d7:a1:3b

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Alternative Name:

 email:joe.buck@acme.com

 Signature Algorithm: md5WithRSAEncryption

 a0:94:ca:f4:d5:4f:2d:da:a8:6d:e3:41:6e:51:83:57:b3:b5:

 31:95:32:b6:ca:7e:d1:4f:fb:01:82:db:23:a0:39:d8:69:71:

 31:9c:0a:3b:ce:f6:c6:e2:5c:af:23:f0:d7:ee:87:3e:8a:7b:

 40:03:39:64:a1:8c:29:7d:5b:99:93:fa:23:19:e1:e4:ac:4d:

 13:0f:de:ad:51:27:e3:4e:4b:9f:40:4c:05:fd:f2:82:09:3e:

 46:05:f0:ad:cc:f7:78:25:3e:11:f8:ca:b6:df:f7:37:57:9b:

 63:00:d0:b5:b5:18:ec:38:73:d2:85:a3:c7:24:21:47:ee:f2:

 8c:0d
udm-user-3207 Confidential & Proprietary 90

X.509 Certificates Features
Note: The contents of a certificate file does not look like the information in Figure 2.8,
which is produced by a certificate utility using the certificate file as input.
Certificates can be saved in multiple file formats, so their file contents will look
very different.

Certificate Fields
A certificate is composed of many fields.

Table 2.7, below, describes the main fields.

Table 2.7 Certificate Fields

Field or Section Description

Version X.509 certificates come in two versions: 1 and 3.

Serial Number CA is required to provide each certificate it issues a unique serial number. The
serial number is not unique for all certificates, only for the certificates issued by
each CA.

Issuer DN name of the CA that issued the certificate.

Validity Starting and ending date for which this certificate is valid.

Subject Identity of the certificate. A certificate may identify a person or a computer. In
this case, the certificate identifies Joe Buck in the Sales organization of the
Acme company in the state of Florida in the United States.

Public Key Public key associated with the certificate identity.

X509v3 Extensions X.509 version 3 introduced this section so that additional certificate fields may
be added. In this case, the identity’s email address is included as a Subject
Alternative Name field.
This section is not available in X.509 version 1.

Signature CA’s digital signature of the certificate.
udm-user-3207 Confidential & Proprietary 91

X.509 Certificates Features
2.10.3 SSL Peer Authentication

The SSL protocol utilizes X.509 certificates to perform peer authentication. For example,
a Universal Command Manager may want to authenticate that it is connected to the
correct Broker.

Peer authentication is performed by either one or both of the programs involved in the
network session. If a Manager wishes to authenticate the Broker to which it connects, the
Broker will send its certificate to the Manager for the Manager to authenticate. Should the
Broker wish to authenticate the Manager, the Manager sends its certificate to the Broker.

Certificate authentication is performed in the following steps:
1. Check that the peer certificate is issued by a trusted CA.
2. Check that the certificate has not been revoked by the CA.
3. Check that the certificate identifies the intended peer.

If a step fails, the network session is terminated immediately.

Certificate Verification
The Universal Product must be configured with a list of trusted CA certificates. When a
peer certificate is received, the trusted CA certificates are used to verify that the peer
certificate is issued by one of the trusted CA's.

The trusted CA certificate list must be properly secured so that only authorized accounts
have update access to the list. Should the trusted CA list become compromised, there is
a possibility that an untrusted CA certificate was added to the list.

The CA certificate list configuration option is CA_CERTIFICATES. It specifies a PEM
formatted file that contains one or more CA certificates used for verification.

Should a peer certificate not be signed by a trusted CA, the session is immediately
terminated.

Certificate Revocation
After a certificate is verified to have come from a trusted CA, the next step is to check if
the CA has revoked the certificate. Since a certificate is held by the entity for which it
identifies, a CA cannot take a certificate back after it is issued. So when a CA needs to
revoke a certificate for some reason, it issues a list of revoked certificates referred to as
the Certificate Revocation List (CRL). A program that validates certificates needs to have
access to the latest CRL issued by the CA.

The CERTIFICATE_REVOCATION_LIST configuration option specifies the
PEM-formatted file that contains the CRL. This option is available in all Universal
Products that utilize certificates.
udm-user-3207 Confidential & Proprietary 92

X.509 Certificates Features
Certificate Identification
When a certificate has been validated as being issued by a trusted CA, and not revoked
by the CA, the next step is to check that it identifies the intended peer.

A Universal Product Manager validates a Broker certificate by the Broker host name or IP
address or the certificate serial number. The VERIFY_HOST_NAME configuration option
is used to specify the host name or IP address that is identified in the Broker certificate.
Each certificate signed by a CA must have a unique serial number for that CA. The
VERIFY_SERIAL_NUMBER option is used to specify the serial number in the Broker
certificate.

Should certificate identification fail, the session is immediately terminated.

Universal Brokers work differently than the Managers. A Broker maps a peer certificate to
a certificate ID. The certificate map definitions are part of the Universal Access Control
List (UACL) definitions. At that point, the certificate ID is used by UACL definitions to
control access to Broker and Server services.

Certificate Support
Many certificate authority applications, also known as Public Key Infrastructure (PKI)
applications, are available. Universal Products should be able to utilize any certificate in a
PEM format file. PEM (Privacy Enhanced Mail) is a common text file format used for
certificates, private keys, and CA lists.

Universal Products support X.509 version 1 and version 3 certificates.

Although implementing a full featured PKI infrastructure is beyond the scope of Universal
Products and this documentation, some assistance is provided using the OpenSSL toolkit
(http://www.openssl.org).

Universal Products on most of the supported platforms utilize the OpenSSL toolkit for its
SSL and certificate implementation. OpenSSL is delivered on most UNIX distributions
and Windows distributions are available on the OpenSSL web site.

Universal Products supports z/OS System SSL on the IBM z/OS operating system as well
as OpenSSL. System SSL interfaces directly with the RACF security product for
certificate access. All certificates, CA and user certificates, and private keys must be
stored in the RACF database to use System SSL.

The Universal Product suite includes an X.509 certificate utility, Universal Certificate, to
create certificates for use in the Universal Product suite. See the Universal Certificate
chapter in the Universal Products Utilities 3.2.0 User Guide for details.
udm-user-3207 Confidential & Proprietary 93

Chapter 3
Universal Data Mover Manager

for z/OS
3.1 Overview
This chapter provides information on the Universal Data Mover (UDM) Manager, specific
to the z/OS operating system.

UDM Manager transfers files between any computers running UDM Server. Using a UDM
command script, you indicate to the UDM Manager the actions to take. The UDM
Manager connects to the UDM Server (or Servers) and processes your request.

The z/OS Batch Manager provides a batch job interface to remote computers running the
UDM Server component.
udm-user-3207 Confidential & Proprietary 94

Usage Universal Data Mover Manager for z/OS
3.2 Usage
UDM Manager for z/OS executes as a batch job.

This section describes the JCL, configuration and configuration options, and command
line syntax of UDM Manager for z/OS.

Section3.3 Examples of UDM Manager for z/OS provides examples demonstrating the
flexibility of Universal Data Mover.
udm-user-3207 Confidential & Proprietary 95

Usage Universal Data Mover Manager for z/OS
3.2.1 JCL Procedure

Figure 3.1, below, illustrates the Universal Data Mover for z/OS JCL procedure (UDMPRC,
located in the SUNVSAMP library) that is provided to simplify the execution JCL and future
maintenance.

Figure 3.1 UDM Manager for z/OS – JCL Procedure

For this JCL procedure:
• UPARM parameter is used to specify EXEC PARM keyword values.
• UNVPRE parameter specifies the data set name prefix of Universal Products

installation data sets.
• UNVPRD parameter specifies the data set name prefix of Universal Products

production data sets.

//UDMPRC PROC UPARM=, -- UDM options

// USPRFC=USPRFC00, -- USAP SAP RFC member

// UNVPRE=#SHLQ.UNV,

// UNVPRD=#PHLQ.UNV

//*

//PS1 EXEC PGM=UDM,REGION=256M,PARM='ENVAR(TZ=EST5EDT)/&UPARM'

//STEPLIB DD DISP=SHR,DSN=&UNVPRE..SUNVLOAD

//*

//UNVNLS DD DISP=SHR,DSN=&UNVPRE..SUNVNLS

//UNVUSRC DD DISP=SHR,DSN=&UNVPRD..UNVCONF(&USPRFC)

//UNVCLIB DD DISP=SHR,DSN=&UNVPRE..SUNVSAMP

//*

//UNVTRACE DD SYSOUT=*

//UNVTRMDL DD DISP=SHR,DSN=&UNVPRD..MDL

//*

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//*

//SYSIN DD DUMMY -- UDM command options

//UNVSCR DD DUMMY -- UDM script
udm-user-3207 Confidential & Proprietary 96

Usage Universal Data Mover Manager for z/OS
3.2.2 DD Statements in JCL

Table 3.1, below, describes the DD statements used in the Universal Data Mover for z/OS
JCL illustrated in Figure 3.1.

Table 3.1 UDM Manager for z/OS – DD Statements in JCL

ddname DCB Attributes Mode Description

STEPLIB DSORG=PO, RECFM=U input Universal Products load library containing the
program being executed.

UNVNLS DSORG=PO,
RECFM=(F, FB, V, VB)

input Universal Products national language support
library. Contains message catalogs and code page
translation tables.

UNVUSRC DSORG=PS,
RECFM=(F, FB, V, VB)

input Universal SAP connector RFC member.

UNVCLIB DSORG=PO,
RECFM=(F, FB, V, VB)

input UDM call library: UDM searches for script files
specified on the call command in this library.

UNVTRACE DSORG=PS,
RECFM=(F, FB, V, VB)

Output UDM trace output.

UNVTRMDL DSORG=PS,
RECFM=(F, FB, V, FB)

input Data set used as a model for creating UCMD and
USAP trace files when they are called by UDM using
the exec and execsap commands.

SYSPRINT DSORG=PS,
RECFM=(F, FB, V, VB)

output Standard output file for the UDM program.

SYSOUT DSORG=PS,
RECFM=(F, FB, V, VB)

output Standard error file for the UDM program.

SYSIN DSORG=PS,
RECFM=(F, FB, V, VB)

input Standard input file for the UDM program. UDM reads
its command options from SYSIN.

UNVSCR DSORG=PS,
RECFM=(F, FB, V, VB)

input UDM command script: UDM executes the script
allocated to this ddname.

The C runtime library determines the default DCB attributes. Refer to the IBM manual OS/390 C/C++
Programming Guide for details on default DCB attributes for stream I/O.
udm-user-3207 Confidential & Proprietary 97

Usage Universal Data Mover Manager for z/OS
3.2.3 JCL

Figure 3.2, below, illustrates the Universal Data Mover for z/OS JCL using the UDMPRC
procedure illustrated in Figure 3.1.

Figure 3.2 UDM Manager for z/OS – JCL

Job step STEP1 executes the procedure UDMPRC.

The UDM script commands are specified on the UNVSCR DD.

//jobname JOB CLASS=A,MSGCLASS=X

//STEP1 EXEC UDMPRC

//UNVSCR DD *
 open srv=sol7 user=id001 pwd=pwd001
 copy local='uid.data' srv=data

 quit

/*
udm-user-3207 Confidential & Proprietary 98

Usage Universal Data Mover Manager for z/OS
3.2.4 Configuration

Configuration consists of:
• Setting default options and preferences for all executions of UDM Manager.
• Setting options and preferences for a single execution of UDM Manager.

Configuration options are read from the following sources:
1. PARM keyword
2. SYSIN ddname
3. Configuration file

The order of precedence is the same as the list above; PARM keyword options being the
highest and configuration file being the lowest. That is, options specified via a PARM
keyword override options specified via a SYSIN ddname, and so on.

The configuration file provides the simplest method of specifying configuration options
whose values will not change with each command invocation. These default values are
used if the options are not read from one or more other sources.

Some options only can be specified in the configuration file; they have no corresponding
command line equivalent. Other options cannot be specified in the configuration file; they
must be specified via one or more other sources for a single execution of UDM Manager.

See Section2.2.1 Configuration Methods for details on Universal Products configuration
methods.
udm-user-3207 Confidential & Proprietary 99

Usage Universal Data Mover Manager for z/OS
3.2.5 Configuration Options

Table 3.2, below, describes the configuration options used to execute UDM Manager for
z/OS.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events
are generated.

ALLOC_ABNORMAL_DISP Abnormal disposition of a data set being allocated.

ALLOC_BLKSIZE Block size used for newly allocated data sets.

ALLOC_DATACLAS SMS data class used for newly allocated data sets.

ALLOC_DIR_BLOCKS Number of directory blocks for newly allocated partitioned data
sets.

ALLOC_DSORG Data set organization used for newly allocated data sets.

ALLOC_INPUT_STATUS Status of data sets being allocated for input.

ALLOC_LRECL Logical record length used for newly allocated data sets.

ALLOC_MGMTCLAS SMS management class used for newly allocated data sets.

ALLOC_NORMAL_DISP Normal disposition of a data set being allocated.

ALLOC_OUTPUT_STATUS Status of existing data sets being allocated for output.

ALLOC_PRIM_SPACE Primary space allocation used for newly allocated data sets.

ALLOC_RECFM Record format used for newly allocated data sets.

ALLOC_SEC_SPACE Secondary space allocation used for newly allocated data sets.

ALLOC_SPACE_UNIT Space unit in which space is allocated for newly allocated data
sets.

ALLOC_STORCLAS SMS storage class used for newly allocated data sets.

ALLOC_UNIT Unit used for newly allocated data sets.

ALLOC_VOLSER Volume serial number used for newly allocated data sets.

CA_CERTIFICATES File name / ddname of the PEM-formatted trusted CA X.509
certificates.

CERTIFICATE File name / ddname of UDM Manager’s PEM-formatted X.509
certificate.

CERTIFICATE_REVOCATION_LIST File name / ddname of the PEM-formatted CRL.

CODE_PAGE Character code page used to translate text data received and
transmitted over the network.

COMMENT User-defined string.

CTL_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the control
session between UDM components.

DATA_COMPRESSION Specification for whether or not data is compressed on all
standard I/O files.
udm-user-3207 Confidential & Proprietary 100

Usage Universal Data Mover Manager for z/OS
DATA_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the data
session on which file data is transferred between UDM primary
and secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent when UDM is operating with network fault
tolerance turned on.

HELP Writes a description of the command options and their format.

IDLE_TIMEOUT Number of seconds of inactivity in an interactive UDM session
after which the manager will close the session.

KEEP_ALIVE_INTERVAL Default interval at which a keep alive message is sent from the
manager to the transfer server(s).

MERGE_LOG Specification for whether or not to merge standard out and
standard error output streams from a remote command to the
UDM transaction log.

MESSAGE_LANGUAGE Universal Message Catalog (UMC) file used to write messages.

MESSAGE_LEVEL Level of messages to write.

MODE_TYPE Default transfer mode type for UDM sessions.

NETWORK_DELAY Expected network latency.

NETWORK_FAULT_TOLERANT Specification for whether or not UDM transfer sessions are
network fault tolerant by default.

OPEN_RETRY Level of fault tolerance for the open command.

OPEN_RETRY_COUNT Maximum number of attempts that will be made to establish a
session by the open command.

OPEN_RETRY_INTERVAL Number of seconds that UDM will wait between each open retry
attempt.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

PRIVATE_KEY ddname of Manager’s PEM formatted RSA private key.

PRIVATE_KEY_PWD Password for the Manager’s PRIVATE_KEY.

PROXY_CERTIFICATES Specification for whether or not UDM will use proxy certificates in
three-party transfer sessions if a certificate is supplied to the UDM
Manager.

RECONNECT_RETRY_COUNT Number of attempts the manager will make to re-establish a
transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

REMOTE_PORT TCP port number on the remote computer used for invoking UDM
Server instances.

SAF_KEY_RING SAF certificate key ring name.

SAF_KEY_RING_LABEL SAF key ring certificate label.

SCRIPT ddname from which to read a UDM script command file.

Option Name Description
udm-user-3207 Confidential & Proprietary 101

Usage Universal Data Mover Manager for z/OS
Table 3.2 UDM Manager for z/OS - Configuration Options

SCRIPT_OPTIONS Options to pass to the script command file.
SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

SERVER_STOP_CONDITIONS Exit codes that cause Universal Broker to cancel the
corresponding UDM Server of the exited UDM Manager.

SSL_IMPLEMENTATION SSL implementation.

SYSTEM_ID Local Universal Broker with which the UDM Manager must
register.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UMASK File mode creation mask.

VERSION Writes the program version information and copyright.

Option Name Description
udm-user-3207 Confidential & Proprietary 102

Usage Universal Data Mover Manager for z/OS
3.2.6 Command Line Syntax

Figure 3.3 and Figure 3.4, below, illustrate the command line syntax of UDM Manager for
z/OS.

Figure 3.3 UDM Manager for z/OS - Command Line Syntax (1 of 2)

udm

[-alloc_abnormal_disp {keep|delete|catlg|uncatlg}]

[-alloc_blksize size]

[-alloc_dataclas class]

[-alloc_dir_blocks number]

[-alloc_dsorg {po|ps}]

[-alloc_input_status {old|shr}]

[-alloc_lrecl length]

[-alloc_mgmtclas class]

[-alloc_normal_disp {keep|delete|catlg|uncatlg}]

[-alloc_output_status {old|shr}]

[-alloc_prim_space space]

[-alloc_recfm format]

[-alloc_sec_space space]

[-alloc_space_unit {cyl|trk|number}]

[-alloc_storclas class]

[-alloc_unit unit]

[-alloc_volser number]

[-system_id ID]

[-ssl_implementation {openssl|system}]

[-ca_certs ddname]

[-cert ddname]

[-private_key ddname [-private_key_pwd password]]

[-proxy_certificates {yes|no}]

[-crl ddname]

[-script ddname]

[-options options]

[-codepage codepage]

[-ctl_ssl_cipher_list list]

[-data_ssl_cipher_list list]

[-compress {yes|no}[,{zlib|hasp}]]

[-delay seconds]

[-idle_timeout seconds]

[-keep_alive_interval seconds]

[-lang language]

[-level {trace|audit|info|warn|error}[,{time|notime}]]
udm-user-3207 Confidential & Proprietary 103

Usage Universal Data Mover Manager for z/OS
Figure 3.4 UDM Manager for z/OS - Command Line Syntax (2 of 2)

[-network_fault_tolerant {yes|no} [-frame_interval number]]

[-mode_type {binary|text}]

[-umask number]

[-outboundip host]

[-port port]

[-recvbuffersize size]

[-open_retry {yes|no}]

[-open_retry_count number]

[-open_retry_interval number]

[-retry_count number]

[-retry_interval seconds]

[-sendbuffersize size]

[-saf_key_ring name]

[-saf_key_ring_label label]

[-server_stop_conditions codes]

[-tcp_no_delay option]

[-tracefilelines number]

[-trace_table size,{error|always|never}]

[-comment text]

udm

{-help | -version}
udm-user-3207 Confidential & Proprietary 104

Examples of UDM Manager for z/OS Universal Data Mover Manager for z/OS
3.3 Examples of UDM Manager for z/OS
Appendix A Examples provides operating system-specific examples that demonstrate the
use of Universal Data Mover.

Included in this appendix are the following examples that demonstrate the use of
Universal Data Mover Manager for z/OS:
• Copy a File to an Existing z/OS Sequential Data Set
• Copy a z/OS Sequential Data Set to a File
• Copy a Set of Files to an Existing z/OS Partitioned Data Set
• Copy a File to a New z/OS Sequential Data Set
• Copy a Set of Files to a New z/OS Partitioned Data Set

For each topic, there is an example (as appropriate) for both the DSN and DD file
systems.

Note: These z/OS examples apply equally as well to the Windows operating systems,
with appropriate changes for the file system syntactical differences.
udm-user-3207 Confidential & Proprietary 105

Security Universal Data Mover Manager for z/OS
3.4 Security
Universal Data Mover is designed to be a secure system. As the level of security rises, so
does the administrative complexity of the system. Universal Data Mover has balanced the
two to avoid the administrative complexity with a minimum sacrifice to security.

Universal Data Mover security concerns are:
1. Access to Universal Data Mover files
2. Privacy and integrity of transmitted network data

3.4.1 Data Set Permissions

Only trusted user accounts should have write access to the Universal Data Mover
installation files. Eligible users of Universal Data Mover require read access to the
national language support library SUNVNLS, the configuration file UNVCONF, and the load
library SUNVLOAD.
udm-user-3207 Confidential & Proprietary 106

Chapter 4
Universal Data Mover Manager

for Windows
4.1 Overview
This chapter provides information on the Universal Data Mover (UDM) Manager, specific
to the Windows operating system.

UDM Manager transfers files between any computers running UDM Server. Using a UDM
command script, you indicate to the UDM Manager the actions to take. The UDM
Manager connects to the UDM Server (or Servers) and processes your request.
udm-user-3207 Confidential & Proprietary 107

Usage Universal Data Mover Manager for Windows
4.2 Usage
The UDM Manager command is executed from the command line or a script. After it has
been initiated, UDM is ready to process commands. The commands can come from
standard input or a script file.

This section describes the modes of operation, configuration and configuration options,
and command line syntax of UDM Manager for Windows.

Section 4.3 Examples of UDM Manager for Windows provides examples demonstrating
the flexibility of Universal Data Mover.

4.2.1 Modes of Operation

Under Windows, UDM can be run either in:
• Interactive mode
• Batch mode

Running UDM in Interactive Mode
To invoke UDM in interactive mode, enter the following at the command prompt:
udm

This will start the UDM Manager. You will be greeted with a startup message and the
UDM prompt, similar to this:
UNV2800I Universal Data Mover 3.2.0 Level 0 started.
udm>

At the udm> prompt, you can enter any UDM command.

To exit UDM, enter the following command at the udm> prompt:
quit

Running UDM in Batch Mode
When running in batch mode, UDM processes a script file.

When the script file has finished executing, UDM will exit automatically:
udm -s script_filename
udm-user-3207 Confidential & Proprietary 108

Usage Universal Data Mover Manager for Windows
4.2.2 Configuration

Configuration consists of:
• Setting default options and preferences for all executions of UDM Manager.
• Setting options and preferences for a single execution of UDM Manager.

Configuration options are read from the following sources:
1. Command line
2. Command file
3. Environment variables
4. Configuration file

The order of precedence is the same as the list above; command line options being the
highest and configuration file being the lowest. That is, options specified via the
command line override options specified via a command file, and so on.

The configuration file provides the simplest method of specifying configuration options
whose values will not change with each command invocation. These default values are
used if the options are not read from one or more other sources.

Although configuration files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to set configuration options. The Universal Configuration Manager
provides a graphical interface and context-sensitive help, and helps protect the integrity
of the configuration file by validating all changes to configuration option values (see
Section 2.4 Universal Configuration Manager).

Some options only can be specified in the configuration file; they have no corresponding
command line equivalent. Other options cannot be specified in the configuration file; they
must be specified via one or more other sources for a single execution of UDM Manager.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.
udm-user-3207 Confidential & Proprietary 109

Usage Universal Data Mover Manager for Windows
4.2.3 Configuration Options

Table 4.1, below, describes the configuration options used to execute UDM Manager for
Windows.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events
are generated.

CA_CERTIFICATES File name / ddname of the PEM-formatted trusted CA X.509
certificates.

CERTIFICATE File name / ddname of UDM Manager’s PEM-formatted X.509
certificate.

CERTIFICATE_REVOCATION_LIST File name / ddname of the PEM-formatted CRL.

CODE_PAGE Character code page used to translate text data received and
transmitted over the network.

COMMENT User-defined string.

CTL_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the control
session between UDM components.

DATA_COMPRESSION Specification for whether or not data is compressed on all
standard I/O files.

DATA_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the data
session on which file data is transferred between UDM primary
and secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent when UDM is operating with network fault
tolerance turned on.

HELP Writes a description of the command options and their format.

IDLE_TIMEOUT Number of seconds of inactivity in an interactive UDM session
after which the manager will close the session.

INSTALLATION_DIRECTORY Directory on which UDM Manager is installed.

KEEP_ALIVE_INTERVAL Default interval at which a keep alive message is sent from the
manager to the transfer server(s).

MERGE_LOG Specification for whether or not to merge standard out and
standard error output streams from a remote command to the
UDM transaction log.

MESSAGE_LANGUAGE Universal Message Catalog (UMC) file used to write messages.

MESSAGE_LEVEL Level of messages to write.

MODE_TYPE Default transfer mode type for UDM sessions.

NETWORK_DELAY Expected network latency.

NETWORK_FAULT_TOLERANT Specification for whether or not UDM transfer sessions are
network fault tolerant by default.
udm-user-3207 Confidential & Proprietary 110

Usage Universal Data Mover Manager for Windows
Table 4.1 UDM Manager for Windows - Configuration Options

NLS_DIRECTORY Directory where the UDM Manager message catalog and code
page tables are located.

OPEN_RETRY Level of fault tolerance for the open command.

OPEN_RETRY_COUNT Maximum number of attempts that will be made to establish a
session by the open command.

OPEN_RETRY_INTERVAL Number of seconds that UDM will wait between each open retry
attempt.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

PRIVATE_KEY ddname of Manager’s PEM formatted RSA private key.

PRIVATE_KEY_PWD Password for the Manager’s PRIVATE_KEY.

PROXY_CERTIFICATES Specification for whether or not UDM will use proxy certificates in
three-party transfer sessions if a certificate is supplied to the UDM
Manager.

RECONNECT_RETRY_COUNT Number of attempts the manager will make to re-establish a
transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

REMOTE_PORT TCP port number on the remote computer used for invoking UDM
Server instances.

SCRIPT_FILE Script file containing UDM commands to execute.

SCRIPT_OPTIONS Options to pass to the script command file.

SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UCMD_PATH Sets the complete path to UCMD for calls by the exec command.

UMASK File mode creation mask.

VERSION Writes the program version information and copyright.

Option Name Description
udm-user-3207 Confidential & Proprietary 111

Usage Universal Data Mover Manager for Windows
4.2.4 Command Line Syntax

Figure 4.1, below, illustrates the command line syntax of UDM Manager for Windows.

Figure 4.1 UDM Manager for Windows - Command Line Syntax

udm

[-ca_certs file]

[-cert file]

[-private_key file [-private_key_pwd password]]

[-proxy_certificates {yes|no}]

[-crl file]

[-script filename]

[-options options]

[-codepage codepage]

[-ctl_ssl_cipher_list list]

[-data_ssl_cipher_list list]

[-compress {yes|no}[,{zlib|hasp}]]

[-delay seconds]

[-idle_timeout seconds]

[-keep_alive_interval seconds]

[-lang language]

[-level {trace|audit|info|warn|error}[,{time|notime}]]

[-network_fault_tolerant {yes|no} [-frame_interval number]]

[-mode_type {binary|text}]

[-umask number]

[-outboundip host]

[-port port]

[-recvbuffersize size]

[-open_retry {yes|no}]

[-open_retry_count number]

[-open_retry_interval number]

[-retry_count number]

[-retry_interval seconds]

[-sendbuffersize size]

[-tcp_no_delay option]

[-tracefilelines number]

[-trace_table size,{error|always|never}]

[-comment text]

udm

{-help | -version}
udm-user-3207 Confidential & Proprietary 112

Examples of UDM Manager for Windows Universal Data Mover Manager for Windows
4.3 Examples of UDM Manager for Windows
Appendix A Examples provides operating system-specific examples that demonstrate

the use of Universal Data Mover.

Included in this appendix are the following examples that demonstrate the use of
Universal Data Mover Manager for Windows (and UNIX):
• Simple File Copy to the Manager
• Simple File Copy to the Server
• Copy a Set of Files

Each example illustrates a procedure that occurs under the operating system's default file
system.

(See Section A.2 UDM Manager for z/OS Examples in Appendix A Examples for z/OS
examples that apply equally as well to the Windows operating systems.)
udm-user-3207 Confidential & Proprietary 113

Chapter 5
Universal Data Mover Manager

for UNIX
5.1 Overview
This chapter provides information on the Universal Data Mover (UDM) Manager, specific
to the UNIX operating system.

UDM Manager transfers files between any computers running UDM Server. Using a UDM
command script, you indicate to the UDM Manager the actions to take. The UDM
Manager connects to the UDM Server (or Servers) and processes your request.
udm-user-3207 Confidential & Proprietary 114

Usage Universal Data Mover Manager for UNIX
5.2 Usage
The UDM Manager command is executed from the command line or a script. After it has
been initiated, UDM is ready to process commands. The commands can come from
standard input or a script file.

This section describes the modes of operation, configuration and configuration options,
and command line syntax of UDM Manager for UNIX.

Section 5.3 Examples of UDM Manager for UNIX provides examples demonstrating the
flexibility of Universal Data Mover.

5.2.1 Modes of Operation

Under UNIX, UDM can be run either in:
• Interactive mode
• Batch mode

Running UDM in Interactive Mode
To invoke UDM in interactive mode, enter the following at the command prompt:
udm

This will start the UDM Manager. You will be greeted with a start-up message and the
UDM prompt, similar to this:
UNV2800I Universal Data Mover 3.2.0 Level 0 started.
udm>

At the udm> prompt, you can enter ny UDM command.

To exit UDM, enter the following command at the udm> prompt:
quit

Running UDM in Batch Mode
UDM also can be run in batch mode. When running in batch mode, UDM processes a
script file. When the script file has finished executing, UDM will exit automatically:
udm -s script_filename
udm-user-3207 Confidential & Proprietary 115

Usage Universal Data Mover Manager for UNIX
5.2.2 Configuration

Configuration consists of:
• Setting default options and preferences for all executions of UDM Manager.
• Setting options and preferences for a single execution of UDM Manager.

Configuration options are read from the following sources:
1. Command line
2. Command file
3. Environment variables
4. Configuration file

The order of precedence is the same as the list above; command line options being the
highest and configuration file being the lowest. That is, options specified via the
command line override options specified via a command file, and so on.

The configuration file, udm.conf, provides the simplest method of specifying
configuration options whose values will not change with each command invocation.
These default values are used if the options are not read from one or more other sources.
(See the Universal Products 3.2.0 Installation Guide to determine the directory in which it
is located.)

Some options only can be specified in the configuration file; they have no corresponding
command line equivalent. Other options cannot be specified in the configuration file; they
must be specified via one or more other sources for a single execution of UDM Manager.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.
udm-user-3207 Confidential & Proprietary 116

Usage Universal Data Mover Manager for UNIX
5.2.3 Configuration Options

Table 5.1, below, describes the configuration options used to execute UDM Manager for
UNIX.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events
are generated.

BIF_DIRECTORY Broker Interface File directory where the Universal Broker
interface file is located.

CA_CERTIFICATES File name / ddname of the PEM-formatted trusted CA X.509
certificates.

CERTIFICATE File name / ddname of UDM Manager’s PEM-formatted X.509
certificate.

CERTIFICATE_REVOCATION_LIST File name / ddname of the PEM-formatted CRL.

CODE_PAGE Character code page used to translate text data received and
transmitted over the network.

COMMENT User-defined string.

CTL_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the control
session between UDM components.

DATA_COMPRESSION Specification for whether or not data is compressed on all
standard I/O files.

DATA_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the data
session on which file data is transferred between UDM primary
and secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent when UDM is operating with network fault
tolerance turned on.

HELP Writes a description of the command options and their format.

IDLE_TIMEOUT Number of seconds of inactivity in an interactive UDM session
after which the manager will close the session.

INSTALLATION_DIRECTORY Directory in which Universal Data Mover is installed.

KEEP_ALIVE_INTERVAL Default interval at which a keep alive message is sent from the
manager to the transfer server(s).

MERGE_LOG Specification for whether or not to merge standard out and
standard error output streams from a remote command to the
UDM transaction log.

MESSAGE_LANGUAGE Universal Message Catalog (UMC) file used to write messages.

MESSAGE_LEVEL Level of messages to write.

MODE_TYPE Default transfer mode type for UDM sessions.

NETWORK_DELAY Expected network latency.
udm-user-3207 Confidential & Proprietary 117

Usage Universal Data Mover Manager for UNIX
Table 5.1 UDM Manager for UNIX - Configuration Options

NETWORK_FAULT_TOLERANT Specification for whether or not UDM transfer sessions are
network fault tolerant by default.

NLS_DIRECTORY Directory where the UDM Manager message catalog and code
page tables are located.

OPEN_RETRY Level of fault tolerance for the open command.

OPEN_RETRY_COUNT Maximum number of attempts that will be made to establish a
session by the open command.

OPEN_RETRY_INTERVAL Number of seconds that UDM will wait between each open retry
attempt.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

PLF_DIRECTORY Program Lock File directory that specifies the location of the UDM
Manager program lock file.

PRIVATE_KEY ddname of Manager’s PEM formatted RSA private key.

PRIVATE_KEY_PWD Password for the Manager’s PRIVATE_KEY.

PROXY_CERTIFICATES Specification for whether or not UDM will use proxy certificates in
three-party transfer sessions if a certificate is supplied to the UDM
Manager.

RECONNECT_RETRY_COUNT Number of attempts the manager will make to re-establish a
transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

REMOTE_PORT TCP port number on the remote computer used for invoking UDM
Server instances.

SCRIPT_FILE Script file containing UDM commands to execute.

SCRIPT_OPTIONS Parameters to pass to the script file.

SEND_BUFFER_SIZE Size (in bytes) of the TCP send buffer for UDM.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UCMD_PATH Sets the complete path to UCMD for calls by the exec command.

UMASK File mode creation mask.

USAP_PATH Sets the complete path to USAP for calls by the execsap
command.

VERSION Writes the program version information and copyright.

Option Name Description
udm-user-3207 Confidential & Proprietary 118

Usage Universal Data Mover Manager for UNIX
5.2.4 Command Line Syntax

Figure 5.1, below, illustrates the command line syntax of UDM Manager for UNIX.

Figure 5.1 UDM Manager for UNIX - Command Line Syntax

udm

[-bif_directory directory]

[-plf_directory directory]

[-ca_certs file]

[-cert file]

[-private_key file [-private_key_pwd password]]

[-proxy_certificates {yes|no}]

[-crl file]

[-script filename]

[-options options]

[-codepage codepage]

[-ctl_ssl_cipher_list list]

[-data_ssl_cipher_list list]

[-compress {yes|no}[,{zlib|hasp}]]

[-delay seconds]

[-idle_timeout seconds]

[-keep_alive_interval seconds]

[-lang language]

[-level {trace|audit|info|warn|error}[,{time|notime}]]

[-network_fault_tolerant {yes|no} [-frame_interval number]]

[-mode_type {binary|text}]

[-umask number]

[-outboundip host]

[-port port]

[-recvbuffersize size]

[-open_retry {yes|no}]

[-open_retry_count number]

[-open_retry_interval number]

[-retry_count number]

[-retry_interval seconds]

[-sendbuffersize size]

[-tcp_no_delay option]

[-tracefilelines number]

[-trace_table size,{error|always|never}]

[-comment text]

udm

{-help | -version}
udm-user-3207 Confidential & Proprietary 119

Examples of UDM Manager for UNIX Universal Data Mover Manager for UNIX
5.3 Examples of UDM Manager for UNIX
Appendix A Examples provides operating system-specific examples that demonstrate

the use of Universal Data Mover.

Included in this appendix are the following examples that demonstrate the use of
Universal Data Mover Manager for Windows (and UNIX):
• Simple File Copy to the Manager
• Simple File Copy to the Server
• Copy a Set of Files

Each example illustrates a procedure that occurs under the operating system's default file
system.
udm-user-3207 Confidential & Proprietary 120

Security Universal Data Mover Manager for UNIX
5.4 Security
Universal Data Mover is designed to be a secure system. As the level of security rises, so
does the administrative complexity of the system. Universal Data Mover has balanced the
two to avoid the administrative complexity with a minimum sacrifice to security.

Universal Data Mover security concerns are:
1. Access to Universal Data Mover files and directories
2. Access to Universal Data Mover configuration files
3. Universal Data Mover user account
4. Privacy and integrity of transmitted network data
5. User authentication

5.4.1 File Permissions

Only trusted user accounts should have permission to write to the Universal Data Mover
installation directory and subdirectories, and all files within those directories.

5.4.2 Configuration Files

Only trusted user accounts should have write permission to the Universal Data Mover
configuration files, and add and delete access to the directories in which they reside.
udm-user-3207 Confidential & Proprietary 121

Chapter 6
Universal Data Mover Manager

for OS/400
6.1 Overview
This chapter provides information on the Universal Data Mover (UDM) Manager, specific
to the OS/400 operating system.

UDM Manager transfers files between any computers running UDM Server. Using a UDM
command script, you indicate to the UDM Manager the actions to take. The UDM
Manager connects to the UDM Server (or Servers) and processes your request.
udm-user-3207 Confidential & Proprietary 122

Usage Universal Data Mover Manager for OS/400
6.2 Usage
The UDM Manager command is invoked from a command line or a batch job. After it has
been initiated, UDM is ready to process commands.

The commands can come from:
• Standard input or a script file in interactive mode
• Script file in batch mode

This section describes the modes of operation, configuration and configuration options,
and command line syntax of UDM Manager for UNIX.

Section 6.3 Examples of UDM Manager for OS/400 provides examples demonstrating the
flexibility of Universal Data Mover.

6.2.1 Universal Products for OS/400 Commands

The names of the Universal Products for OS/400 commands that are installed in the
OS/400 QSYS library are tagged with the Universal Products for OS/400 version / release
/ modification number, 320. The names of the commands installed in the Universal
Products for OS/400 product library, UNVPRD320, are untagged.

To maintain consistency across releases, you may prefer to use the untagged names in
your production environment. The UCHGRLS (Change Release Tag) program lets you
change the tagged command names in QSYS to the untagged command names in
UNVPRD320.

(See the Universal Products 3.2.0 for OS/400 Installation Guide for detailed information
on UCHGRLS.)

This chapter references the OS/400 commands by their untagged names. If you are using
commands with tagged names to run UDM, substitute the tagged names for the untagged
names in these references.
udm-user-3207 Confidential & Proprietary 123

Usage Universal Data Mover Manager for OS/400
6.2.2 Modes of Operation

Under OS/400, UDM can be run either:
• In interactive mode
• From a script file
• As a batch application

Additionally under OS/400, UDM can use either the LIB or HFS file system.

Running UDM Interactively
To invoke UDM as an interactive application:
1. Enter the following on the command line: STRUDM
2. Press <Enter>.

This will start the UDM Manager. You will be greeted with a startup message and the udm>
prompt, similar to this:
UNV2800I Universal Data Mover 3.2.0 Level 0 started.

udm>

At the udm> prompt, you can enter any UDM command.

To exit UDM, enter the following command at the udm> prompt:
quit

Running UDM from a Script
To invoke a UDM script:
1. Enter the following on the command line:

STRUDM SCRFILE(library/file) SCRMBR(member)

2. Press <Enter>.

This will start the UDM Manager using the script located by library, file, and member.
When the script file has finished executing, UDM will exit automatically.

UDM requires the member name; there is no default. Requiring the member name makes
script specification under OS/400 behave as it does on other platforms. On other
systems, there is no default search order as exists under OS/400. However, users may
explicitly provide *FILE as a member name to use the OS/400 default file search order.
udm-user-3207 Confidential & Proprietary 124

Usage Universal Data Mover Manager for OS/400
Running UDM in Batch Mode
UDM also can be run in batch mode. When running in batch mode, use a script as shown
in Section Running UDM from a Script.

To execute a batch file such as the one below, use:

SBMDBJOB FILE(LIBNAME/FILENAME) MBR(MBRNAME):

//BCHJOB JOB(MYUDMJOB) ENDSEV(10)
STRUDM MYLIB/QSCRSRC UDM817
//ENDBCHJOB

Output is sent to the output queue associated with the batch job. Two spooled files will be
sent to the output queue; one file associated with standard out and one file associated
with standard error.
udm-user-3207 Confidential & Proprietary 125

Usage Universal Data Mover Manager for OS/400
6.2.3 Configuration

Configuration consists of:
• Setting default options and preferences for all executions of UDM Manager.
• Setting options and preferences for a single execution of UDM Manager.

Configuration options are read from the following sources:
1. Command line
2. Command file
3. Environment variables
4. Configuration file

The order of precedence is the same as the list above; command line options being the
highest and configuration file being the lowest. That is, options specified via the
command line override options specified via a command file, and so on.

The configuration file provides the simplest method of specifying configuration options
whose values will not change with each command invocation. These default values are
used if the options are not read from one or more other sources.

The installation default for the UDM configuration file is Universal Products installation
library UNVPRD320, file UNVCONF, and member UDM. The configuration file name can be any
valid file name. It can be edited manually using an OS/400 editor such as SEU, EDTF, or
any other installed source file editor, or via the IFS using a text editor. If a text editor is
used to edit the file via the IFS, the padded spaced must be removed for lines that exceed
the file maximum record length.

Some options only can be specified in the configuration file; they have no corresponding
command line equivalent. Other options cannot be specified in the configuration file; they
must be specified via one or more other sources for a single execution of UDM Manager.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.
udm-user-3207 Confidential & Proprietary 126

Usage Universal Data Mover Manager for OS/400
6.2.4 Configuration Options

Table 6.1, below, describes the configuration options used to execute UDM Manager for
OS/400.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events
are generated.

CA_CERTIFICATES File name of the PEM-formatted trusted CA X.509 certificates.

CERTIFICATE File name of UDM Manager’s PEM-formatted X.509 certificate.

CERTIFICATE_REVOCATION_LIST File name of the PEM-formatted CRL.

CODE_PAGE Character code page used to translate text data received and
transmitted over the network.

CODEPAGE_TO_CCSID_MAP Specification to use either the internal or external table for code
page to CCSID mapping.

COMMENT User-defined string.

CTL_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the control
session between UDM components.

DATA_COMPRESSION Specification for whether or not data is compressed on all
standard I/O files.

DATA_SSL_CIPHER_LIST Acceptable and preferred SSL cipher suites to use for the data
session on which file data is transferred between UDM primary
and secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent when UDM is operating with network fault
tolerance turned on.

IDLE_TIMEOUT Number of seconds of inactivity in an interactive UDM session
after which the manager will close the session.

KEEP_ALIVE_INTERVAL Default interval at which a keep alive message is sent from the
manager to the transfer server(s).

MERGE_LOG Specification for whether or not to merge standard out and
standard error output streams from a remote command to the
UDM transaction log.

MESSAGE_LANGUAGE Universal Message Catalog (UMC) file used to write messages.

MESSAGE_LEVEL Level of messages to write.

MODE_TYPE Default transfer mode type for UDM sessions.

NETWORK_DELAY Expected network latency.

NETWORK_FAULT_TOLERANT Specification for whether or not UDM transfer sessions are
network fault tolerant by default.

OPEN_RETRY Level of fault tolerance for the open command.
udm-user-3207 Confidential & Proprietary 127

Usage Universal Data Mover Manager for OS/400
Table 6.1 UDM Manager for OS/400 - Configuration Options

OPEN_RETRY_COUNT Maximum number of attempts that will be made to establish a
session by the open command.

OPEN_RETRY_INTERVAL Number of seconds that UDM will wait between each open retry
attempt.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

PLF_DIRECTORY Program Lock File directory that specifies the location of the UDM
Manager program lock file.

PRIVATE_KEY Location of Manager’s PEM formatted RSA private key.

PRIVATE_KEY_PWD Password for the Manager’s PRIVATE_KEY.

PROXY_CERTIFICATES Specification for whether or not UDM will use proxy certificates in
three-party sessions if a certificate is supplied to the UDM
Manager.

RECONNECT_RETRY_COUNT Number of attempts the manager will make to re-establish a
transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

REMOTE_PORT TCP port number on the remote computer used for invoking UDM
Server instances.

SCRIPT_FILE Script file containing UDM commands to execute.

SCRIPT_OPTIONS Parameters to pass to the script file.
SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

SIZE_ATTRIB Default file creation size for physical files of both data and source
file types.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UMASK File mode creation mask.

VERSION Writes the program version information and copyright.

Option Name Description
udm-user-3207 Confidential & Proprietary 128

Usage Universal Data Mover Manager for OS/400
6.2.5 Command Line Syntax

Figure 6.1, below, illustrates the command line syntax of UDM Manager for OS/400.

Figure 6.1 UDM Manager for OS/400 - Command Line Syntax

STRUDM

[SCRFILE([library/]filename) [SCRMBR(member)]

[PLFDIR (directory)]

[OPTIONS(options)]

[CODEPAGE(codepage)]

[CTLCPHRLST(cipherlist)]

[DTACPHRLST(cipherlist)]

[COMPRESS(*{yes|no})]

[CMPRSMTH(*{zlib|hasp})]

[DELAY(seconds)]

[IDLTIMOUT(seconds)]

[KEEPALIVE(seconds)]

[MODETYPE (*{bin|binary|text}]

[MSGLANG(language)]

[MSGLEVEL(*{trace|audit|info|warn|error}) [,*{yes|no}]]

[NETWORKFT(*{yes|no}) [FRAMEINT(number)]]

[OPENRETRY(*{yes|no} count interval)]

[OUTBOUNDIP(host)]

[PORT(port)]

[PROXYCERT(option)]

[RCVBUFSIZE(size)]

[RETRYCNT(number)]

[RETRYINT(seconds)]

[SNDBUFSIZE(size)]

[TRCLINES(number)]

[TRCTBL(size,*{error|always|never})]

[CACERTS(file [lib]) [CACERTSMBR(member)]]

[CERT(file [lib]) [CERTMBR(member)]

 PVTKEYF(file [lib]) [PVTKEYFMBR(member)] [PVTKEYPWD(password)]]

 [CRLFILE(file [lib]) [CRLMBR(member)]]
[COMMENT(user-defined string)]

STRUDM

[VERSION(*{yes|no})]
udm-user-3207 Confidential & Proprietary 129

Examples of UDM Manager for OS/400 Universal Data Mover Manager for OS/400
6.3 Examples of UDM Manager for OS/400
Appendix A Examples provides operating system-specific examples that demonstrate

the use of Universal Data Mover.

Included in this appendix are the following examples that demonstrate the use of
Universal Data Mover Manager in a two-party mode between OS/400 and UNIX:
• Copy a File to an Existing OS/400 File
• Copy an OS/400 Data Physical File to a File
• Copy a Set of Files to an Existing Data Physical File
• Copy a File to a New OS/400 Data Physical File
• Copy a File to a New OS/400 Source Physical File
• Copy a Set of Files to a New Data Physical File on OS/400
• Copy Different Types of OS/400 Files using forfiles and $(_file.type)
• Invoke a Script from a Batch Job

Note: These examples apply equally as well to the Windows operating system, with
appropriate changes for the file system syntactical differences.

Each topic provides an example for the LIB file system.

The first topic, Copy a File to an Existing OS/400 File, also provides an example specific
to the HFS file system. For other examples similar to those used in the HFS file system,
see Section A.3 UDM Manager for UNIX and Windows Examples in Appendix A
Examples.

These examples reference the OS/400 commands by their untagged names. If you are
using commands with tagged names to run UDM, substitute the tagged names for the
untagged names. (See Section 6.2.1 Universal Products for OS/400 Commands for
further information.)
udm-user-3207 Confidential & Proprietary 130

Security Universal Data Mover Manager for OS/400
6.4 Security
Universal Data Mover is designed to be a secure system. As the level of security rises, so
does the administrative complexity of the system. Universal Data Mover has balanced the
two to avoid the administrative complexity with a minimum sacrifice to security.

Universal Data Mover security concerns are:
1. Access to Universal Data Mover files and libraries.
2. Access to the Universal Data Mover configuration file.
3. Privacy and integrity of transmitted network data.

6.4.1 Object Permissions

Only administrator accounts should have write permission to the following Universal
Products libraries (and all objects within these libraries):
• Installation library, UNVPRD320 (by default)
• Product temporary library, UNVTMP320
• Universal spool library, UNVSPL320

For maximum security, only trusted accounts (administrators and the UNVUBR320 profile)
should have management, existence, alter, add, update, and delete authority to these
objects.

Note: System value QCRTAUT controls public access authority to created objects unless
overridden by specific commands.
udm-user-3207 Confidential & Proprietary 131

Chapter 7
Universal Data Mover Server

for z/OS
7.1 Overview
This chapter provides the following information on the Universal Data Mover (UDM)
Server, specific to the z/OS operating system:
• Component Definition
• Configuration
• Security
udm-user-3207 Confidential & Proprietary 132

Component Definition Universal Data Mover Server for z/OS
7.2 Component Definition
All Universal Products components managed by Universal Broker have a component
definition. The component definition is a text file of options containing component-specific
information required by Universal Broker. (For details on how Universal Broker manages
components, see the Universal Broker 3.2.0 User Guide.)

The syntax of a component definition file is the same as a configuration file. See Section
2.2.6 Configuration File Syntax for detailed syntax information.

The UDM Server for z/OS component definition is located in the component definition
library #HLQ.UNV.UNVCOMP allocated to the Universal Broker ddname UNVCOMP. The UDM
Server component definition member is UDSCMP00.

Table 7.1, below, identifies all of the options that comprise the UDM Server for z/OS
component definition.

Each Option Name is a link to detailed information about that component definition
option in the Universal Data Mover 3.2.0 Reference Guide.

Table 7.1 UDM Server for z/OS - Component Definition Options

Option Name Description

AUTOMATICALLY_START Specification for whether or not UDM Server starts automatically when
Universal Broker is started.

COMPONENT_NAME Name by which the clients know the UDM Server.

CONFIGURATION_FILE Member name of the UDM Server configuration file in the UNVCONF
library allocated to the Broker ddname UNVCONF.

RUNNING_MAXIMUM Maximum number of UDM Servers that can run simultaneously.

START_COMMAND Member name of the UDM Server program.

WORKING_DIRECTORY HMS directory used as the working directory of the UDM Server.
udm-user-3207 Confidential & Proprietary 133

Configuration Universal Data Mover Server for z/OS
7.3 Configuration
Universal Data Mover Server configuration consists of defining runtime and default
values. See Section 2.2.1 Configuration Methods for details on Universal Products
configuration methods.

7.3.1 Configuration File

The configuration file provides the simplest method of specifying configuration values that
will not change with each command invocation.

The UDM Server configuration file name is specified in the UDM Server component
definition. The default name is UDSCFG00. The name refers to a member in the PDS
allocated to the Universal Broker ddname UNVCONF.
udm-user-3207 Confidential & Proprietary 134

Configuration Universal Data Mover Server for z/OS
7.3.2 Configuration Options

Figure 7.2, below, identifies all UDM Server for z/OS command options.

Each Option Name is a link to detailed information about that command option in the
Universal Data Mover 3.2.0 Reference Guide.

Option Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are
generated.

ALLOC_ABNORMAL_DISP Abnormal disposition of a data set being allocated.

ALLOC_BLKSIZE Block size used for newly allocated data sets.

ALLOC_DATACLAS SMS data class used for newly allocated data sets.

ALLOC_DIR_BLOCKS Number of directory blocks for newly allocated partitioned data sets.

ALLOC_DSORG Data set organization used for newly allocated data sets.

ALLOC_INPUT_STATUS Status of data sets being allocated for input.

ALLOC_LRECL Logical record length used for newly allocated data sets.

ALLOC_MGMTCLAS SMS management class used for newly allocated data sets.

ALLOC_NORMAL_DISP Normal disposition of a data set being allocated.

ALLOC_OUTPUT_STATUS Status of existing data sets being allocated for output.

ALLOC_PRIM_SPACE Primary space allocation used for newly allocated data sets.

ALLOC_RECFM Record format used for newly allocated data sets.

ALLOC_SEC_SPACE Secondary space allocation used for newly allocated data sets.

ALLOC_SPACE_UNIT Space unit in which space is allocated for newly allocated data sets.

ALLOC_STORCLAS SMS storage class used for newly allocated data sets.

ALLOC_UNIT Unit used for newly allocated data sets.

ALLOC_VOLSER Volume serial number used for newly allocated data sets.

CODE_PAGE Character code page used to translate text data.

DATA_COMPRESSION Specification for whether or not data is compressed on all standard
I/O files.

DATA_SSL_CIPHER_LIST SSL cipher suites to use for data session between UDM primary and
secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent with network fault tolerance turned on.

MESSAGE_LEVEL Level of messages that UDM will write to the Universal message
Catalog (UMC) file.

NETWORK_DELAY Expected network latency (in seconds).

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

RECONNECT_RETRY_COUNT Number of attempts that the UDM Manager will make to re-establish
a transfer session when a network fault occurs.
udm-user-3207 Confidential & Proprietary 135

Configuration Universal Data Mover Server for z/OS
Table 7.2 UDM Server for z/OS - Configuration Options

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TMP_DIRECTORY Directory that UDM Server uses for temporary files.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UMASK File mode creation mask.

USER_SECURITY User security option.

Option Description
udm-user-3207 Confidential & Proprietary 136

Security Universal Data Mover Server for z/OS
7.4 Security
Universal Data Mover Server security concerns are:
1. Access to product data sets
2. Access to Universal Product configuration files
3. Universal Broker user account
4. Privacy and integrity of transmitted network data
5. User authentication

7.4.1 File Permissions

Only trusted user accounts should have write permission to the Universal Data Mover
Server installation data sets. No general user access is required.

7.4.2 Configuration Files

Only trusted user accounts should have write permission to the Universal Data Mover
Server configuration files.

7.4.3 Universal Data Mover Server User ID

Universal Data Mover Server requires read access to its installation data sets and its HFS
working directory (defined in the component definition).

7.4.4 User Authentication

User authentication is the process of verifying that a user is known and valid to the
system. The process used by UDM Server requires the user to provide a user name / ID
and a password. The UDM Server passes the name / ID and password to the operating
system for verification; this is referred to as logging on the user.
udm-user-3207 Confidential & Proprietary 137

Security Universal Data Mover Server for z/OS
7.4.5 Universal Access Control List

UDM Server uses the Universal Access Control List (UACL) file as an extra layer of
security. The UACL file contains Universal Data Mover Server entries that contain Access
Control List (ACL) rules that permit or deny access to the Server.

See Section 2.8 Universal Access Control List for details on the Universal Access Control
List feature.

UACL Entries
The syntax of a UACL entry file is the same as the UDM configuration file. See
Section 2.2.6 Configuration File Syntax for detailed syntax information.

Table 7.3 identifies all UDM Server for z/OS UACL entries.

Each UACL Entry Name is a link to detailed information about that UACL entry in the
Universal Data Mover 3.2.0 Reference Guide.

Table 7.3 UDM Server for z/OS - UACL Entries

UACL Entry Name Description

UDM_ACCESS Allows or denies access to Universal Data Mover Server services

UDM_MGR_ACCESS Allows or denies access based on the host name and/or user of the
Manager trying to initiate a UDM session
udm-user-3207 Confidential & Proprietary 138

Security Universal Data Mover Server for z/OS
UACL Examples
The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
udm-user-3207 Confidential & Proprietary 139

Chapter 8
Universal Data Mover Server

for Windows
8.1 Overview
This chapter provides the following information on the Universal Data Mover (UDM)
Server, specific to the Windows operating system:
• Component Definition
• Configuration
• Security
udm-user-3207 Confidential & Proprietary 140

Component Definition Universal Data Mover Server for Windows
8.2 Component Definition
All Universal Products components managed by Universal Broker have a component
definition. The component definition is a text file of options containing component-specific
information required by Universal Broker. (For details on how Universal Broker manages
components, see the Universal Broker 3.2.0 User Guide.)

The syntax of a component definition file is the same as a configuration file. See Section
2.2.6 Configuration File Syntax for detailed syntax information.

Although component definition files can be edited with any text editor (for example,
Notepad), the Universal Configuration Manager application is the recommended way to
edit component definitions for Windows (see Section 2.4 Universal Configuration
Manager).

Note: The component definitions for all Universal Products are identified in the
Component Definitions property page of the Universal Broker (see Figure 8.1,
below).

Figure 8.1 Universal Configuration Manager - Component Definitions
udm-user-3207 Confidential & Proprietary 141

Component Definition Universal Data Mover Server for Windows
The UDM Server component definition is located in the component definition directory of
the Universal Broker.

Table 8.1, below, identifies all of the options that comprise the UDM for Windows
component definition.

Each Option Name is a link to detailed information about that component definition
option in the Universal Data Mover 3.2.0 Reference Guide.

Table 8.1 UDM Server for Windows - Component Definition Options

Option Name Description

AUTOMATICALLY_START Specification for whether or not UDM Server starts automatically when
Universal Broker is started.

COMPONENT_NAME Name by which the clients know the UDM Server.

CONFIGURATION_FILE Full path name of the UDM Server configuration file.

RUNNING_MAXIMUM Maximum number of UDM Servers that can run simultaneously.

START_COMMAND Full path name of the UDM Server program.

WORKING_DIRECTORY Full path name of the UDM Server working directory.
udm-user-3207 Confidential & Proprietary 142

Configuration Universal Data Mover Server for Windows
8.3 Configuration
Universal Data Mover Server configuration consists of defining runtime and default
values. This section describes the UDM Server configuration options.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.

8.3.1 Configuration File

The configuration file provides a method of specifying configuration values that will not
change with each command invocation.

The Universal Data Mover Server configuration file name (and directory) is specified in
the Universal Data Mover Server component definition (see Chapter 4 Universal Data
Mover Component Definition Options in the Universal Data Mover 3.2.0 Reference
Guide). The default configuration file name is udms.conf.

Although configuration files can be edited manually with any text editor (for example,
Notepad), the Universal Configuration Manager application is the recommended way to
set configuration options in the configuration file.

The Universal Configuration Manager provides a graphical interface and
context-sensitive help, and helps protect the integrity of the configuration file by validating
all changes to configuration option values (see Section 2.4 Universal Configuration
Manager).
udm-user-3207 Confidential & Proprietary 143

Configuration Universal Data Mover Server for Windows
8.3.2 Configuration Options

Table 8.2 identifies all Universal Data Mover Server for Windows configuration options.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Table 8.2 UDM Server for Windows - Configuration Options

Option Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are
generated.

CODE_PAGE Character code page used to translate text data.

DATA_COMPRESSION Specification for whether or not data is compressed on all standard
I/O files.

DATA_SSL_CIPHER_LIST SSL cipher suites to use for data session between UDM primary and
secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent with network fault tolerance turned on.

INSTALLATION_DIRECTORY Directory on which UDM Server is installed.

LOGON_METHOD Specification for how users are logged onto the system.

MESSAGE_LEVEL Level of messages that UDM will write to the Universal message
Catalog (UMC) file.

NETWORK_DELAY Expected network latency (in seconds).

NLS_DIRECTORY Directory where the UDM Manager message catalog and code page
tables are located.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

RECONNECT_RETRY_COUNT Number of attempts that the UDM Manager will make to re-establish
a transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TMP_DIRECTORY Directory that UDM Server uses for temporary files.

TRACE_DIRECTORY Directory name that UDM Server uses for its Trace files.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

USER_SECURITY User security option.
udm-user-3207 Confidential & Proprietary 144

Security Universal Data Mover Server for Windows
8.4 Security
UDM Server is designed to be a secure system. As the level of security rises, so does the
administrative complexity of the system. UDM Server has balanced the two to avoid the
administrative complexity with a minimum sacrifice to security.

UDM security concerns are:
1. Access to Universal Data Mover files and directories.
2. Access to Universal Data Mover configuration files.
3. Universal Data Mover user account.
4. Privacy and integrity of transmitted network data.
5. User authentication.

8.4.1 File Permissions

Only trusted user accounts should have write permission to the UDM Server installation
directory and subdirectories, and all of the files within them.

8.4.2 Configuration Files

Only trusted user accounts should have write permission to the UDM Server configuration
files, and add and delete access to the directories in which they reside.

8.4.3 Universal Data Mover Server User ID

UDM Server requires read access to its installation directory and its working directory
(defined in the component definition).
udm-user-3207 Confidential & Proprietary 145

Security Universal Data Mover Server for Windows
8.4.4 User Authentication

User authentication is the process of verifying that a user is known and valid to the
system. The process used by UDM Server requires the user to provide a user name / ID
and a password. The UDM Server passes the name / ID and password to the operating
system for verification; this is referred to as logging on the user.

For Windows, user authentication is optional. However, if security is enabled, a user
name / ID and password are required in order to verify the user’s credentials. (With
security enabled, you transfer files using a specific user’s security context.)

8.4.5 Universal Access Control List

UDM Server uses the Universal Access Control List (UACL) file as an extra layer of
security. The UACL file contains UDM Server entries that contain Access Control List
(ACL) rules that permit or deny access to the UDM Server.

See Section 2.8 Universal Access Control List for details on the Universal Access Control
List feature.

UACL Entries
The syntax of a UACL entry file is the same as the UDM configuration file. See
Section 2.2.6 Configuration File Syntax for detailed syntax information.

Table 8.3 identifies all Universal Data Mover Server for Windows UACL entries.

Each UACL Entry Name is a link to detailed information about that UACL entry in the
Universal Data Mover 3.2.0 Reference Guide.

Table 8.3 UDM Server for Windows - UACL Entries

UACL Entry Name Description

UDM_ACCESS Allows or denies access to Universal Data Mover Server services

UDM_MGR_ACCESS Allows or denies access based on the host name and/or user of the
Manager trying to initiate a UDM session
udm-user-3207 Confidential & Proprietary 146

Security Universal Data Mover Server for Windows
Updating the Universal Data Mover Server ACL Entries
Although UACL files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to update UACL entries (see Section 2.4 Universal Configuration
Manager). From there, ACL entries can be added, changed, deleted or sorted (rules are
applied in the order in which they are listed).

Figure 8.2, below, illustrates an example. The set of ACL entries only allows connections
from host 10.20.30.40 if the user on that host is TS1004. All other remote users will be
blocked. TS1004 may run processes on the local system using any user account,
provided the correct password is supplied. No processes may be run with Universal Data
Mover using the Administrator account on the local system, regardless of where the
request originated.

Figure 8.2 Universal Configuration Manager - Universal Data Mover Server - Access ACL
udm-user-3207 Confidential & Proprietary 147

Chapter 9
Universal Data Mover Server

for UNIX
9.1 Overview
This chapter provides the following information on Universal Data Mover (UDM) Server,
specific to the UNIX operating system:
• Component Definition
• Configuration
• Security
udm-user-3207 Confidential & Proprietary 148

Component Definition Universal Data Mover Server for UNIX
9.2 Component Definition
All Universal Products components managed by Universal Broker have a component
definition. The component definition is a text file of options containing component-specific
information required by Universal Broker. (For details on how Universal Broker manages
components, see the Universal Broker 3.2.0 User Guide.)

The syntax of a component definition file is the same as a configuration file. See Section
2.2.6 Configuration File Syntax for detailed syntax information.

The UDM Server for UNIX component definition is located in the component definition
directory of the Universal Broker.

Table 9.1, below, identifies all of the options that comprise the UDM Server for UNIX
component definition.

Each Option Name is a link to detailed information about that component definition
option in the Universal Data Mover 3.2.0 Reference Guide.

Table 9.1 UDM Server for UNIX - Component Definition Options

Option Name Description

AUTOMATICALLY_START Specification for whether or not UDM Server starts automatically when
Universal Broker is started.

COMPONENT_NAME Name by which the clients know the UDM Server.

CONFIGURATION_FILE Full path name of the UDM Server configuration file.

RUNNING_MAXIMUM Maximum number of UDM Servers that can run simultaneously.

START_COMMAND Full path name of the UDM Server program.

WORKING_DIRECTORY Full path name of the UDM Server working directory.
udm-user-3207 Confidential & Proprietary 149

Configuration Universal Data Mover Server for UNIX
9.3 Configuration
Universal Data Mover Server configuration consists of defining runtime and default
values. This section describes the UDM Server configuration options.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.

9.3.1 Configuration File

The configuration file provides the simplest method of specifying configuration values that
will not change with each command invocation.

The Universal Data Mover Server configuration file name (and directory) is specified in
the Universal Data Mover Server component definition (see Chapter 4 Universal Data
Mover Component Definition Options in the Universal Data Mover 3.2.0 Reference
Guide). The default configuration file name is udms.conf.

This file can be edited manually with any text editor.
udm-user-3207 Confidential & Proprietary 150

Configuration Universal Data Mover Server for UNIX
9.3.2 Configuration Options

Table 9.2 identifies all UDM Server for UNIX configuration options.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Table 9.2 UDM Server for UNIX - Configuration Options

Option Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are
generated.

CODE_PAGE Character code page used to translate text data.

DATA_COMPRESSION Specification for whether or not data is compressed on all standard
I/O files.

DATA_SSL_CIPHER_LIST SSL cipher suites to use for data session between UDM primary and
secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent with network fault tolerance turned on.

INSTALLATION_DIRECTORY Directory on which UDM is installed.

MESSAGE_LEVEL Level of messages that UDM will write to the Universal message
Catalog (UMC) file.

NETWORK_DELAY Expected network latency (in seconds).

NLS_DIRECTORY Directory where the UDM Manager message catalog and code page
tables are located.

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

RECONNECT_RETRY_COUNT Number of attempts that the UDM Manager will make to re-establish
a transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

TCP_NO_DELAY Specification for whether or not to use TCP packet coalescing.

TMP_DIRECTORY Directory that UDM Server uses for temporary files.

TRACE_DIRECTORY Directory that UDM Server uses for its Trace files.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UMASK File mode creation mask.

USER_SECURITY User security option.
udm-user-3207 Confidential & Proprietary 151

Security Universal Data Mover Server for UNIX
9.4 Security
Universal Data Mover Server is designed to be a secure system. As the level of security
rises, so does the administrative complexity of the system. Universal Data Mover Server
has balanced the two to avoid the administrative complexity with a minimum sacrifice to
security.

Universal Data Mover security concerns are:
1. Access to Universal Data Mover files and directories
2. Access to Universal Data Mover configuration files
3. Universal Data Mover user account
4. Privacy and integrity of transmitted network data
5. User authentication

9.4.1 File Permissions

Only trusted user accounts should have write permission to the Universal Data Mover
Server installation directory and subdirectories, and all of the files within them.

9.4.2 Configuration Files

Only trusted user accounts should have write permission to the Universal Data Mover
Server configuration files, and add and delete access to the directories in which they
reside.

9.4.3 Universal Data Mover Server User ID

Universal Data Mover Server requires read access to its installation directory and its
working directory (defined in the component definition). If user security is activated, the
Server requires root access to create processes that execute with another user’s identity.
The Server security identity is inherited from the Broker. If the Broker is running with a
non-root user ID, then the Server program must have the set user ID on execution
permission set and root as owner.
udm-user-3207 Confidential & Proprietary 152

Security Universal Data Mover Server for UNIX
9.4.4 User Authentication

User authentication is the process of verifying that a user is known and valid to the
system. The process used by UDM Server requires the user to provide a user name / ID
and a password. The UDM Server passes the name / ID and password to the operating
system for verification; this is referred to as logging on the user.

For UNIX, user authentication is optional. However, if security is enabled, a user name /
ID and password are required in order to verify the user's credentials. With security
enabled, you transfer files using a specific user's security context.

Universal Data Mover can use three different types of user authentication methods:
1. Default authentication uses the UNIX traditional password comparison method.
2. PAM authentication uses the PAM API to authenticate users. The PAM modules,

which authenticate and account, are called. This option is available only for certain
UNIX platforms.

3. HP-UX Trusted Security uses HP-UX Trust Security APIs to authenticate users. This
is available only on Hewlett Packard HP-UX platforms.

9.4.5 Universal Access Control List

UDM Server uses the Universal Access Control List (UACL) file as an extra layer of
security. The UACL file contains UDM Server entries that contain Access Control List
(ACL) rules that permit or deny access to the UDM Server.

See Section 2.8 Universal Access Control List for details on the Universal Access Control
List feature.

UACL Entries
The syntax of a UACL entry file is the same as the UDM configuration file. See
Section 2.2.6 Configuration File Syntax for detailed syntax information.

Table 9.3 identifies all UDM Server for UNIX UACL entries.

Each UACL Entry Name is a link to detailed information about that UACL entry in the
Universal Data Mover 3.2.0 Reference Guide.

Table 9.3 UDM Server for UNIX - UACL Entries

UACL Entry Name Description

UDM_ACCESS Allows or denies access to Universal Data Mover Server services

UDM_MGR_ACCESS Allows or denies access based on the host name and/or user of the
Manager trying to initiate a UDM session
udm-user-3207 Confidential & Proprietary 153

Security Universal Data Mover Server for UNIX
UACL Examples
The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
udm-user-3207 Confidential & Proprietary 154

Chapter 10
Universal Data Mover Server

for OS/400
10.1 Overview
This chapter provides the following information on the Universal Data Mover (UDM)
Server, specific to the OS/400 operating system:
• Component Definition
• Configuration
• Security
udm-user-3207 Confidential & Proprietary 155

Component Definition Universal Data Mover Server for OS/400
10.2 Component Definition
All Universal Products components managed by Universal Broker have a component
definition. The component definition is a text file of options containing component-specific
information required by Universal Broker. (For details on how Universal Broker manages
components, see the Universal Broker 3.2.0 User Guide.)

The syntax of a component definition file is the same as a configuration file. See Section
2.2.6 Configuration File Syntax for detailed syntax information.

The UDM Server for OS/400 component definition is located in the component definition
directory of the Universal Broker.

Table 10.1, below, identifies all of the options that comprise the UDM Server for OS/400
component definition.

Each Option Name is a link to detailed information about that component definition
option in the Universal Data Mover 3.2.0 Reference Guide.

Table 10.1 UDM Server for OS/400 - Component Definition Options

Option Name Description

AUTOMATICALLY_START Specification for whether or not UDM Server starts automatically when
Universal Broker is started.

COMPONENT_NAME Name by which the clients know the UDM Server.

CONFIGURATION_FILE Full path name of the UDM Server configuration file.

RUNNING_MAXIMUM Maximum number of UDM Servers that can run simultaneously.

START_COMMAND Full path name of the UDM Server program.

WORKING_DIRECTORY Full path name of the UDM Server working directory.
udm-user-3207 Confidential & Proprietary 156

Configuration Universal Data Mover Server for OS/400
10.3 Configuration
UDM Server configuration consists of defining runtime and default values. This section
describes the Server configuration options.

See Section 2.2.1 Configuration Methods for details on Universal Products configuration
methods.

10.3.1 Configuration File

The configuration file provides the simplest method of specifying configuration values that
will not change with each command invocation.

The UDM Server configuration file name is specified in the UDM Server component
definition (see Section 10.2 Component Definition). The default name is
UNVPRD320/UNVCONF(UDMS).

This file can be edited manually with any text editor.
udm-user-3207 Confidential & Proprietary 157

Configuration Universal Data Mover Server for OS/400
10.3.2 Configuration Options

Table 10.2 identifies all Universal Data Mover Server for OS/400 configuration options.

Each Option Name is a link to detailed information about that configuration option in the
Universal Data Mover 3.2.0 Reference Guide.

Table 10.2 UDM Server for OS/400 - Configuration Options

Option Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are
generated.

CODE_PAGE Character code page used to translate text data.

CODEPAGE_TO_CCSID_MAP Specification to use either the internal or external table for code page
to CCSID mapping.

DATA_COMPRESSION Specification for whether or not data is compressed on all standard
I/O files.

DATA_SSL_CIPHER_LIST SSL cipher suites to use for data session between UDM primary and
secondary servers.

EVENT_GENERATION Events to be generated as persistent events.

FRAME_INTERVAL Number of UDM transfer blocks transferred before a frame-sync
message is sent with network fault tolerance turned on.

MESSAGE_LEVEL Level of messages that UDM will write to the Universal message
Catalog (UMC) file.

NETWORK_DELAY Expected network latency (in seconds).

OUTBOUND_IP Host or IP address that UDM binds to when initiating outgoing
connections to another UDM server.

RECONNECT_RETRY_COUNT Number of attempts that the UDM Manager will make to re-establish
a transfer session when a network fault occurs.

RECONNECT_RETRY_INTERVAL Number of seconds that UDM will wait between each successive
attempt to re-establish a transfer session when a network fault
occurs.

RECV_BUFFER_SIZE Size of the TCP receive buffer for UDM.

SEND_BUFFER_SIZE Size of the TCP send buffer for UDM.

SIZE_ATTRIB Default size for file creation of physical files for both data and source
file types.

TMP_DIRECTORY Directory that UDM Server uses for temporary files.

TRACE_FILE_LINES Maximum number of lines to write to the trace file.

TRACE_TABLE Size of a wrap-around trace table maintained in memory.

UMASK File mode creation mask.

USER_SECURITY User security option.
udm-user-3207 Confidential & Proprietary 158

Security Universal Data Mover Server for OS/400
10.4 Security
Universal Data Mover Server is designed to be a secure system. As the level of security
rises, so does the administrative complexity of the system. Universal Data Mover Server
has balanced the two to avoid the administrative complexity with a minimum sacrifice to
security.

Universal Data Mover security concerns are:
1. Access to Universal Data Mover files and libraries
2. Access to Universal Data Mover configuration file
3. Universal Data Mover user account
4. Privacy and integrity of transmitted network data
5. User authentication

10.4.1 Object Permissions

Only administrator accounts should have write permission to the following Universal
Products libraries (and all objects within these libraries):
• Installation library, UNVPRD320 (by default)
• Product temporary library, UNVTMP320
• Universal spool library, UNVSPL320

For maximum security, only trusted accounts (administrators and the UNVUBR320 user
profile) should have management, existence, alter, add, update or delete authority to
these objects. As a reminder, the system value QCRTAUT controls public access authority
to created objects unless overridden by specific commands.

10.4.2 Universal Data Mover Server User Profile

If user security is activated, the UDM Server requires, by default, *ALLOBJ authority to
switch user profiles. As described in Chapter 6 Universal Broker for OS/400 of the
Universal Broker 3.2.0 User Guide, this *ALLOBJ authority requirement may be removed.
The UDM Server initially inherits authority from the UNVUBR320 user profile. Following the
switch to the user profile, the UDM Server runs under the authority of the user initiating
the data transfer.

The UNVUBR320 user profile requires *SPLCTL authority in order to provide Universal
Submit Job with job logs in specific limited situations. See Chapter 6 Universal Broker for
OS/400 in the Universal Broker 3.2.0 User Guide for information on how to remove the
*SPLCTLauthority. Removing *SPLCTL from the UNVUBR320 user profile may prevent the
job log processing in limited situations.
udm-user-3207 Confidential & Proprietary 159

Security Universal Data Mover Server for OS/400
10.4.3 User Authentication

User authentication is the process of verifying that a user is known and valid to the
system. The process used by UDM Server requires the user to provide a user name / ID
and a password. The UDM Server passes the name / ID and password to the operating
system for verification; this is referred to as logging on the user.

For OS/400, user authentication is optional. However, if security is enabled, a user name
/ ID and password are required in order to verify the user's credentials. With security
enabled, you transfer files using a specific user's security context.

10.4.4 Universal Access Control List

UDM Server uses the Universal Access Control List (UACL) file as an extra layer of
security. The UACL file contains UDM Server entries that contain Access Control List
(ACL) rules that permit or deny access to the UDM Server.

See Section 2.8 Universal Access Control List for details on the Universal Access Control
List feature.

UACL Entries
The syntax of a UACL entry file is the same as the UDM configuration file. See
Section 2.2.6 Configuration File Syntax for detailed syntax information.

Table 10.3 identifies all UDM Server for OS/400 UACL entries.

Each UACL Entry Name is a link to detailed information about that UACL entry in the
Universal Data Mover 3.2.0 Reference Guide.

Table 10.3 UDMr Server for OS/400 - UACL Entries

UACL Entry Name Description

UDM_ACCESS Allows or denies access to Universal Data Mover Server services

UDM_MGR_ACCESS Allows or denies access based on the host name and/or user of the
Manager trying to initiate a UDM session
udm-user-3207 Confidential & Proprietary 160

Security Universal Data Mover Server for OS/400
UACL Examples
The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
udm-user-3207 Confidential & Proprietary 161

Chapter 11
UDM Scripting Language
11.1 Overview
This chapter provides information on the Universal Data Mover (UDM) scripting language.

UDM has an easy-to-learn scripting language that can be used to give instructions to
UDM in both interactive and batch mode. While simple to use, UDM's scripting language
has some powerful features, such as the ability to nest script file calls up to ten levels
deep, and parameters.
udm-user-3207 Confidential & Proprietary 162

UDM Commands UDM Scripting Language
11.2 UDM Commands
The UDM Manager processes commands using UDM’s scripting language.

Table 11.1, below, identifies all of the UDM commands.

Each Command Name is a link to detailed information about that command in the
Universal Data Mover 3.2.0 Reference Guide.

Command Name Description

appenddata Appends a line of text to the end of an existing data element, or creates a new
data element. containing that line of text.

attrib Sets the file system attributes that govern the transfer operations on the host
with the specified logical name.

break Stops iterating through a forfiles loop and picks up execution at the script
line immediately following the end statement marking the end of the forfiles
loop.

call Loads and executes a command script.

cd Changes the working directory (on UNIX, Windows, OS/400, and file system
HFS) or if z/OS, the current data set qualifiers (for DSN and DD file systems) on
the specified logical machine to the specified path.

close Closes the current transfer session.

closelog Closes the open log file.

compare Compares two strings of data.

copy Initiates a copy operation.

copydir Initiates a copy operation that recurses into subdirectories.

data Defines an in-stream data element that can be passed as input for other
commands.

debug Turns debug information on and off.

delete Deletes a file (or series of files if file-spec contains any wildcards) from the
transfer server with the corresponding logical name.

deletestring Removes a substring from an existing string.

echo Sends text to standard out (stdout).

echolog Sends text to an open log file.

exec Executes system commands on remote machines.

execsap Executes SAP events.

exit Exits the UDM Manager (same as the quit command).

filesys Sets the file system with which the server with the specified logical name is
working.

filetype Set a series of masks and corresponding transfer mode types.

find Finds a specific occurrence of a substring in an existing string or list element.

format Creates a formatted string.

insertstring Inserts a substring into an existing string.
udm-user-3207 Confidential & Proprietary 163

UDM Commands UDM Scripting Language
Table 11.1 UDM Commands

loaddata Loads the contents of a data element from a file, instead of setting them in a
script via the data command.

logdata Writes the content of a data element to the open log file.

lower Forces all alpha characters in a given variable or list element to lower case.

mode Sets the current transfer mode.

move Initiates a move operation.

open Opens a UDM session.

openlog Opens a log file on disk for writing custom log information.

pad Takes a string in an existing variable or list element and pads it to make it the
given length.

parse Parses a string, placing the components of the string into variables.

print Prints a message in the UDM manager's transaction output.

query Prints out the UDM Manager version.

quit Exits the UDM Manager (same as the exit command).

rename Renames a file.

replace Replaces one or more instances of a sequence with another sequence.

report Sets UDM's reporting options.

resetattribs Resets the attributes for all UDM file systems on the transfer server with the
specified logical name.

return Stops executing the current script immediately and returns execution to the
calling script immediately after the call command used to invoke the current
script.

reverse Reverses the order of all characters in the string of a specified existing variable
or element.

savedata Writes each line of a data element to a file on disk.

set Sets the UDM Manager's built-in and global variable values.

status Displays the current connection status.

strip Strips occurrences of a sequence from a string.

substring Finds a substring in an existing string and stores it in a variable.

truncate Truncates a string to a specific length.

upper Forces all alpha characters in a given variable or list element to upper case.

Command Name Description
udm-user-3207 Confidential & Proprietary 164

UDM Command Format UDM Scripting Language
11.3 UDM Command Format
All UDM commands conform to the following format:
command [parameter_1[=value_1]]…[parameter_n[=value_n]]

11.3.1 Basic Rules

The following basic rules apply to all UDM commands.

Parameters
Each command can have zero or more parameters. Each parameter can have a value,
which immediately must follow an equal (=) sign.

Spaces
A space must precede each parameter or parameter and value.

Value names, such as a filename with a long path under Windows, can include spaces.
To indicate such values, use quotation marks (").

For example:
copy src="c:\program files\somefile.txt" dst=test.txt

Escape Sequences

Double Quote Marks
To include quotation marks (") as part of the token, use two quotation marks in a row:
> echo "This word is ""quoted""!"
This word is "quoted"!

Other Printable Characters
When processing tokens that are inside quotation marks, all other printable characters -
except variable references - are ignored as being part of the language.

If you want to assign a variable to have a value of a language symbol, such as an equal
sign (=), you must enclose it in quotation marks:
> set myvar="="
> echo $(myvar)
=

udm-user-3207 Confidential & Proprietary 165

UDM Command Format UDM Scripting Language
Line Continuation
If a command is too long for a single line, it can be continued on one or more following
lines by placing either of the following characters as the last character in each line break:
• Plus sign (+)

Retains leading white space on the next line when assembling the finished line.
• Minus sign (-)

Trims the leading white space.

For example:
This is +
 a test

Yields the following line:
This is a test

This is -
 a test

Yields the following line:
This is a test

Comments
A script also can have comments: lines of user-specified text indicating information about
the script and the operations taking place. Comment lines begin with the hash (#) mark.
White space characters can precede the hash (#) mark.

11.3.2 Sample UDM Script

The following is a sample UDM script:
Open a transfer session
open src=* dst=ntmachine

Copy command using line continuation
copy src=test.txt +
dst=test.txt

if 8 EQ $(_lastrc)
print msg="The last command resulted in an error"

end

Close the transfer session and exit UDM
quit
udm-user-3207 Confidential & Proprietary 166

UDM Command Format UDM Scripting Language
11.3.3 Expressions

The following basic rules apply to expressions in UDM commands.

Appearance
An expression can appear either as a parameter or its value. It must comprise the entire
parameter or value in which it appears, not just part of it.

For example, in the following command, <2 + 2> is not an expression:
echo "2 + 2 = <2 + 2>"

It is merely part of the quoted string, and the output would be:
2 + 2 = <2 + 2>

In order to treat <2 + 2> as an expression, the command must be:
echo "2 + 2 = " <2 + 2>

The output of this command is:
2 + 2 = 4

Integer Only
Although floating point number are allowed in expressions, everything is evaluated as an
integer. The only exception is that the EQ - Equal and NE - Not Equal comparators can be
used to compare strings as well as numbers.

Delimiters
All expressions must be bound by left angle (<) and right angle (>) brackets.

For example:
set value=<2 + 2>

Operand / Operator Delimiters
Operands and operators in an expression must be separated by a space.

For example, the following is not legal:
<2+4>

There must be a space before and after the operator < + >:
<2 + 4>
udm-user-3207 Confidential & Proprietary 167

UDM Command Format UDM Scripting Language
Operator Precedence
The operator order of precedence (and reading left to right) is:
1. NOT
2. *, /, and %
3. + and -
4. EQ, NE, LT, GT, LE, and GE
5. AND, OR, and XOR

To manually indicate that an operation is of higher precedence, enclose it in parentheses:
(and). An expression is evaluated going from the inner most set of parentheses out. Sets
on the same level are evaluated left to right.

The following examples illustrates how parentheses can affect results.

In the following expression, where < * > takes precedence over < + >:
<5 + 4 * 2>

The expression yields the following value:
13

However, when the expression includes the following parentheses:
<(5 + 4) * 2>

The expression yields the following value:
18

Nesting
Expressions can be nested in order to indicate desired change precedence. Nested
expressions are bound by parentheses: (and).

When nested expressions are a part of an expression, the deepest nested portions are
evaluated first. Also, spaces are not required between the (and) when they are used for
nesting, as they are between operators and operands.

For example:

> echo <5 + 5 * 2>
15

> echo <(5 + 5) * 2>
20

> echo <2 * 4 + (2 * (7 + 2))>
26

> echo <2 * 4 + 2 * 7 + 2>
24
udm-user-3207 Confidential & Proprietary 168

UDM Command Format UDM Scripting Language
Operations
All operations take the following form:
left-value operator right-value

The left-value and right-value can be:
• Strings (EQ and NE only)
• Numbers
• Variable references
• Other operations

Table 11.2 identifies and describes all of the operators for UDM command expressions.

Table 11.2 UDM Command Expressions - Operators

Operator Description

EQ Compares the value on the left to the value on the right. If the two are equal, the result is
1, otherwise it is 0. Both the left an right values can be strings or numbers. If they are
strings, the comparison is case insensitive.

NE Works like the equal operator, except that it results in 1 if the left and right value are not
equal and 0 if they are equal.

LT Results in a value of 1 if the left value is less than the right value, otherwise it results in 0.
This is a numeric operator.

GT Results in a value of 1 if the left value is greater than the right value, otherwise it results in
0. This is a numeric operator.

LE Results in a value of 1 if the left value is less than or equal to the right value, otherwise it
results in 0. This is a numeric operator.

GE Results in a value of 1 if the left value is greater than or equal to the right value, otherwise
it results in 0. This is a numeric operator.

AND Results in a value of 1 if both the left value and right value are not 0, otherwise it results
in 0.

OR Results in a value of 1 if either the left value or the right value are not 0, otherwise it
results in 0.

XOR Results in a value of 1 if either the left or the right values are not 0, but not both. If both
the left and right values are 0, then the result of the XOR operator is 0.

NOT Unlike all of the operators, the NOT operator has only one operand that appears to the
right of the NOT operator. This operation evaluates to one if the operand is zero and zero
if the operand is non-zero.

+ Result is the sum of the left and right values.

- Result is subtracting the right value from the left value.

* Result is the product of the left and right values.

/ Result is the left value divided by the right value. Assuming integer-only math, the
remainder is discarded.

% Result is the remainder of the left value divided by the right value.
udm-user-3207 Confidential & Proprietary 169

UDM Command Format UDM Scripting Language
11.3.4 Strings in Expressions

You can use strings as operators in EQ and NE expressions. However, to avoid ambiguity,
strings must be quoted explicitly (even if they are contained in a variable reference);
otherwise, an error is generated.

The following expression correctly compares strings:
<"yes" EQ "yes">

Conversely, the following expression results in an error because the strings being
compared are not quoted:
<yes EQ yes>

For these next two examples, assume that a variable called myvar has been defined with
a value of yes.

This expression results in an error because when myvar is referenced, its value (yes) is
not quoted:
<$(myvar) EQ "yes">

Instead, the correct expression should be:
<"$(myvar)" EQ "yes">

Index Position and Sequence
When working with strings, the following policy regarding the inclusion/exclusion of
positional length/index and sequences should be followed:
• Positional Index or Length = Include the value at that position in the operations.
• Sequences = Exclude the value in operations.

(See deletestring, insertstring, and substring in the Universal Data Mover 3.2.0 Reference
Guide.)
udm-user-3207 Confidential & Proprietary 170

UDM Command Format UDM Scripting Language
11.3.5 Examples of Expressions
> set x=<2 + 4>
> set y=<$(x) * 10>
> echo "x * y = " <$(x) * $(y)>
x * y = 360

> set x=4
> set y=2
> set z=<($(x) + $(y)) * 10>
> echo "z = $(z)"
z = 60

> set x=10 z=20
> set q=<$(x) LT $(z)>
> echo "q = $(q)"
q = 1
udm-user-3207 Confidential & Proprietary 171

Script Files UDM Scripting Language
11.4 Script Files
You can execute UDM commands interactively or in batch, depending on the operating
system.

On all platforms other than OS/400, the batch method reads the UDM commands from a
script file specified by the SCRIPT_FILE option.

SCRIPT_FILE is not specified, the commands are read from the file allocated to the UNVSCR DD statement
in the execution JCL.

The script file and member can be specified by position as the first two command parameters or by using the
SRCFILE and SRCMBR command parameters.

The UDM interactive method also can read UDM commands from a script file.

Syntactically, there is no differences in the command structure between the two methods,
with the exception that commands in the batch method script files can contain
parameters.

11.4.1 Invoking UDM in Batch Mode with Commands from a Script File

To launch UDM in batch from the Windows or UNIX command line, use the SCRIPT_FILE
option to specify the filename of the script.

For example:
udm -s script_filename

Scripts also can have parameters, which are specified in the same name=value format of
command parameters. To specify options parameters for a script file on the command
line, use the SCRIPT_OPTIONS option.

For example:
udm -s copyfiles.udm -o "file=* source=c:\source dest=c:\destination"

In this example, UDM is invoked with a script file name copyfiles.udm. It has three
parameters that are passed to the script file:
1. file, with a value of *
2. source, with a value of c:\source
3. dest, with a value of c:\destination

When UDM has finished executing the copyfiles.udm, it will terminate.

z/OS

OS/400
udm-user-3207 Confidential & Proprietary 172

Script Files UDM Scripting Language
The following example shows the same options for a batch execution in z/OS:
//jobname JOB CLASS=A,MSGCLASS=X
//STEP1 EXEC UDMPRC
//UNVSCR1 DD *
udm commands??
/*
//SYSIN DD *
-s UNVSCR1 -o "file=* source=c:\source dest=c:\destination"
/*

For OS/400 examples, see Sections Running UDM from a Script and Running UDM in
Batch Mode.

11.4.2 Invoking UDM Interactively with Commands from a Script File

You also can invoke scripts directly from the UDM prompt in interactive mode (or as part
of a script file itself) using the call command. Any parameters to the call command are
passed on to the script being called.

The following example illustrates the call command executing the copyfiles.udm script
(as identified in the previous example):
UDM
UDM>call copyfiles.udm file=* source=c:\source dest=c:\destination
UDM>
UDM>quit

Unlike executing a script from the command line, UDM will not exit automatically when it
finishes processing a script invoked using the call command.

Stoneman’s Tip

 If you are passing a large number of parameters to a script,
you may want to break up the call command into multiple lines.

You can do this by putting a + at the end of each line break,
except for the last line.

However, this method cannot be used for invoking
UDM script files with -s and -o command line options

(SCRFILE and OPTIONS command parameters under OS/400).
udm-user-3207 Confidential & Proprietary 173

Script Files UDM Scripting Language
11.4.3 Invoking Scripts from within Scripts

As mentioned in the previous section, scripts can use the call command to invoke other
scripts. Scripts can be nested up to ten levels deep. As each script finishes processing,
control is returned to the script that invoked it immediately following the point of
invocation.

When nesting scripts, parameters from higher-level invocations are available to scripts
invoked at a lower level. If the same parameter name is used in more than one invocation
of a series of nested scripts, the value for the instance of the parameter at the lowest level
is used.

11.4.4 Parameter Processing

A parameter is referenced inside of a UDM script using the following format:
$(parameter_name)

When a parameter reference is encountered, it is replaced with the value of parameter
matching the enclosed name. Continuing with copyfiles.udm script example (used
previously in this section, 11.4 Script Files), a reference to $(source) would be replaced
with c:\source.

An example of how the copyfiles.udm script might look is as follows:
cd src=$(source)
cd dst=$(dest)
copy src=$(file)

In this example:
1. Transfer server with the logical name src would change its directory to c:\source.
2. Transfer server with the logical name dst would change its directory to

c:\destination.
3. All files in the c:\source directory then would be copied from the first transfer server

over to the second.
udm-user-3207 Confidential & Proprietary 174

Subroutines UDM Scripting Language
11.5 Subroutines
UDM’s scripting language provides support for subroutines.

Subroutines are portions of the script code that can be called, by name, at any point. This
provides a convenient way to reuse common script code.

11.5.1 Usage

There are two parts to a subroutine:
1. Definition Names the subroutine and defines the script code that becomes

associated with that subroutine name.
2. Invocation Carries out the work of lines of script associated with a subroutine.

Defining a Subroutine
subroutine name
[script line 1]
…
[script line n]
endsub

Invoking a Subroutine
callsub name
udm-user-3207 Confidential & Proprietary 175

Subroutines UDM Scripting Language
Sequence of Defining / Invoking a Subroutine
A subroutine must be physically defined before the callsub to the routine is used.

For example, the following subroutine will function correctly:
subroutine test

echo "This is subroutine test"
echo "$(_halton)"

endsub

echo "This is main()"
callsub test

However, this subroutine will fail:
echo "This is main()"
callsub test

subroutine test
echo "This is subroutine test"
echo "$(_halton)"

endsub

Nesting / Recursion of Subroutines
UDM allows subroutine nesting (one subroutine calls another subroutine) and recursion
(a subroutine calls itself).

For example, the following illustrates subroutine nesting:

subroutine a
 echo "Beginning subroutine A"
 callsub b
 echo "Ending subroutine A"
endsub

subroutine b
 echo "Beginning subroutine B"
 echo "Ending subroutine B"
endsub

callsub a
udm-user-3207 Confidential & Proprietary 176

Subroutines UDM Scripting Language
11.5.2 Example
subroutine loop_increment
 echo "inside loop_increment: $(LOOP)"
 set LOOP=<$(LOOP) + 1>
endsub

echo "Starting Loop:"
set LOOP=0
if <$(LOOP) LT 1>
 callsub loop_increment
end
if <$(LOOP) LT 2>
 callsub loop_increment
end
if <$(LOOP) EQ 2>
 callsub loop_increment
end
echo "Final Value of LOOP: $(LOOP)"

Output
Starting Loop:
inside loop_increment: 0
inside loop_increment: 1
inside loop_increment: 2
Final Value of LOOP: 3
udm-user-3207 Confidential & Proprietary 177

UDM Variables UDM Scripting Language
11.6 UDM Variables
Variables are integral data storage objects in the Universal Scripting Engine.

This section provides information on:
• Variable types
• Variable scope
• Variable reference
• Variable attributes

11.6.1 Variable Types

There are two types of variables:
1. Script
2. Global (user-defined and built-in)

Variable Names
There are no restrictions on variable names except:
• They cannot contain double-quote marks (") or spaces.
• UDM reserves variable names beginning with an underscore (_) for its own internal

(built-in) variables (see 11.6.8 Built-in Variables). You cannot create a script variable
or user-defined global variable that begins with an underscore (_).

11.6.2 Variable Reference

To obtain the value of a variable, you must create a reference for that variable. The
reference can appear anywhere in a script line. It is replaced with the value of the
referenced variable.

Referencing the value of a global variable in a script is done exactly the same way as for
a script variable:
$(variable_name)

For example:
set srcfile=myfile.txt
set dstfile=yourfile.txt
copy src=$(srcfile) dst=$(dstfile)
udm-user-3207 Confidential & Proprietary 178

UDM Variables UDM Scripting Language
11.6.3 Script Variables

Script variables are user-defined variables visible only to a called script, and any of its
children, for which they have been defined. When the called script has ended, the script
variables’ definitions are removed from the scripting engine environment.

You must use the call command to define script variables. The variables are specified
as parameters in a call command, after the script name, that loads and executes a
script. They are created during execution of the script.

The value of a script variable cannot be changed once it has been created.

(For detailed information on defining script variables, see Section 11.4 Script Files.)

11.6.4 Global Variables

Global variables are variables that are visible at all script levels.

There are two types of global variables:
1. User-defined (see Section 11.6.6 User-Defined Variables)
2. Built-in (see Section 11.6.8 Built-in Variables)

Global variables are permanent in scope and, once defined, last until the UDM Manager
is terminated. Once defined, a global variable cannot be undefined, but its value can be
changed by issuing another set command.

Issuing the set command by itself with no arguments displays all user-defined and built-in
variables.

Each global variable includes the following information:
1. Name: identifies a variable as either a UDM pre-defined (built-in) variable (see 11.6.8

Built-in Variables) or a user-defined variable. A variable is referenced in a script by
this name.

2. Attribute: optional entry that can be included in a variable reference. It provides
additional information about a variable (see 11.6.7 Variable Attributes).

3. Value: assigned by the user and/or provided by UDM, depending on the variable.
Built-in variables have pre-defined and/or user-defined values. All user-defined
variables have user-defined values.
udm-user-3207 Confidential & Proprietary 179

UDM Variables UDM Scripting Language
11.6.5 Scope of Script and Global Variables

A variable's scope is its visibility throughout the scripting environment.

Script variables supersede global variables in precedence. That is, if a script variable has
the same name as an existing global variable, any references to that variable name will
result in the script variable value, not the global variable value.

If more than one script variable exists with the same name, the script variable defined in
the last call command has precedence.

For example, if UDM encounters the $(variable_name) sequence, it first checks to see
if a variable with a matching name was passed into the script it currently is executing. If
so, UDM uses this variable's value. If not, UDM goes up the chain of calling scripts and
uses the value of the first instance of a variable that it finds that matches the name in the
sequence.

If no variable with a matching name was passed into any script along the chain, UDM
looks to see if a global variable exists with the name. If one is found, its value is used. If
no instances are found anywhere, an error is issued.
udm-user-3207 Confidential & Proprietary 180

UDM Variables UDM Scripting Language
Variable Scope Scripts
The following three scripts demonstrate variable scope:

script1.udm
set var1="a global variable"

set var2="a global variable"

set var3="a global variable"

print msg="The value of var1 is $(var1)"

print msg="The value of var2 is $(var2)"

print msg="The value of var3 is $(var3)"

call script2.udm var1="passed into script2"

var2="passed into script2"

script2.udm
print msg="The value of var1 is $(var1)"

print msg="The value of var2 is $(var2)"

print msg="The value of var3 is $(var3)"

call script3.udm var1="passed into script3"

script3.udm
print msg="The value of var1 is $(var1)"

print msg="The value of var2 is $(var2)"

print msg="The value of var3 is $(var3)"

Running UDM and calling script1.udm produces the following results:

Processing script: script1.udm

The value of var1 is a global variable

The value of var2 is a global variable

The value of var3 is a global variable

Processing script: script2.udm

The value of var1 is passed into script2

The value of var2 is passed into script2

The value of var3 is a global variable

Processing script: script3.udm

The value of var1 is passed into script3

The value of var2 is passed into script2

The value of var3 is a global variable

Finished processing script: script3.udm

Finished processing script: script2.udm

Finished processing script: script1.udm
udm-user-3207 Confidential & Proprietary 181

UDM Variables UDM Scripting Language
11.6.6 User-Defined Variables

User-defined variables are defined using the set command. They can have any name —
except that they cannot begin with an underscore (_) character — and any value.

A user-defined variable can be called within any script or in an interactive session:
set variable_name=variable_value

The following example creates a user-defined variable called test:
set test="This is a test."

Multiple user-defined variables can be set with a single call to the set command, listing
each variable's name / value pair in succession, separated by spaces:
set varname1=value1 varname2=value2 varname3=value3

To assign a value to a variable that has one or more spaces in it, the value must be
quoted:
set lonvar="This variable has a rather long value."
udm-user-3207 Confidential & Proprietary 182

UDM Variables UDM Scripting Language
11.6.7 Variable Attributes

In addition to accessing the value of a variable, you can access information about that
variable through its attributes.

A variable attribute is referenced by putting a dot (.) after the variable name in a variable
reference. For example:
$(name.attribute)

There are two variable attributes that can be used for any variable:
1. exists
2. length

Note: Some built-in variables have attributes specific to those variables.

exists Attribute
The exists attribute expands to yes if a variable with that name exists at any scope; it
expands to no if no variable with that name exists.

Note: Unlike when referencing a variable's value, an error is not issued if the exists
attribute is used for a variable name that does not exist.

length Attribute
The length attribute expands to the length of the variable's value. If the length attribute
is used for a variable that does not exist, an error is issued.

Stoneman’s Tip

You can use the exists attribute
in combination with the if statement

to determine if a variable exists
(and take the appropriate action if it does):

if $(filename.exists) EQ yes
copy src=$(filename)

end

Stoneman’s Tip

 You can use the length attribute
in combination with the if statement

to decide if a file name is too long to copy to a remote system:

if $(filename.length) LE 8
copy src=$(filename)

end
udm-user-3207 Confidential & Proprietary 183

UDM Variables UDM Scripting Language
11.6.8 Built-in Variables

UDM provides built-in variables that are used to make available some of its internal
values to UDM commands. Depending on the variable, their values are provided by UDM
and/or defined via the set command.

Note: All built-in variables are preceded by an underscore (_) to indicate that they are
built-in variables reserved by UDM.

Table 11.3 lists all of the UDM built-in variables and provides a link to detailed information
about them in this section.

Table 11.3 Built-In Variables

Stoneman’s Tip

Version 1.1.0 of UDM had four built-in variables:
echo, halton, lines, and rc.

The names of these variables were not preceded with an _
as they are in version 3.1.0 and later.

For the purpose of backward compatibility,
these variables can be referenced by their 1.1.0 names as well.

Variable Description Page

_date Displays the current date in the format appropriate for the system's locale. 185

_echo Specification for whether or not a command is echoes prior to processing. 185

_execrc Holds the value of the process executed by the last exec command issued. 185

_file Name of the file for the current iteration in a forfiles loop. 186

_halton Return code value that causes UDM to terminate if it is greater than 0 and is
equalled or exceeded by the return code value in the _rc variable.

 187

_keepalive Interval at which keepalive messages are sent form the UDM Manager to
transfer servers.

 187

_lastmsg Contains all of the messages written in the transaction log for the last network-
or file-oriented command issued.

 187

_lastrc Holds the return code of the last command issued and, optionally, an indication
of what happened with the last executed statement.

 188

_lines Specification for whether or not the line number is printed with the error if a
command cannot be parsed or is malformed.

 189

_path Absolute path of the file for the current iteration in a forfiles loop. 189

_rc Current UDM return code. 189

_time Current time. 190

_uuid Generates a UUID. 190
udm-user-3207 Confidential & Proprietary 184

UDM Variables UDM Scripting Language
_date
The _date built-in variable displays the current date in the format appropriate for the
system's locale.

_date has several additional variable attributes:
• day resolves to the day of the week.
• month resolves to the current month.
• dd resolves to a two-digit day of the month.
• ddd resolves to the Julian day.
• mm resolves to the two-digit month of the year.
• yy prints the two-digit year.
• ww resolves to the two-digit current week of the year.
• yyyy resolves to the four-digit year.

Note: The value of ww is zero-based, not one based. That is, the first week of the year is
0, the second week is 1, the third week is 2, and so on.

The _date variable can be referenced only in your scripts and cannot be set.

_echo
The _echo built-in variable specifies whether or not a command is echoed prior to
processing. It can have a value of either yes or no:
• If the value is yes, each UDM command is echoed prior to processing.
• If the value is no, the command is not echoed.

The value of _echo can be set using the set command, as in the following example:
set _echo=yes

_execrc
The _execrc built-in variable holds the value of the process executed by the last exec
command issued. The return code of the exec command itself is stored in _lastrc (and
_rc, if the return code is greater than the current value of _rc).

The difference between the two values is that the return code for exec (in _lastrc and _rc)
tells you whether exec was successful in executing the command that it was supposed to
execute, while _execrc is the return code of that executed command.

The value of _execrc can be set using the set command.

Stoneman’s Tip

You can use the _date variable
in combination with the print command

 to display custom date information in UDM's transaction log:
print msg="Today is $(_date.day), $(_date.month) $(_date.dd)"

Produces the following output:
Today is Wednesday, January 19
udm-user-3207 Confidential & Proprietary 185

UDM Variables UDM Scripting Language
_file
The _file built-in variable contains the name of the file for the current iteration in a
forfiles loop. _file also has special attributes, as shown in Table 11.4, below.

For information on using _file and its special attributes, see _file Variable Attributes in
Section 11.10.1 forfiles Built-In Variables.

Table 11.4 _file Built-in Variable – Special Attributes

_file cannot be set using the set command.

Attribute Name Description

accessdate Date on which the file was last accessed.
Format (ISO 8601) is yyyy-mm-dd.

accesstime Time when the file was last accessed.
Format (ISO 860) is hh:mm:ss.

accesstimestamp Combination of accessdate and accesstime: yyyy-mm-dd
hh:mm:ss.
If the file does not have an access time, but does have a access date,
00:00:00 is used for the time portion.

createdate Date on which the file was created.
Format (ISO 8601) format of yyyy-mm-dd.

createtime Time when the file was created.
Format (ISO 8601) is hh:mm:ss.

createtimestamp Combination of createdate and createtime: yyyy-mm-dd
hh:mm:ss.
If the file does not have a creation time, but does have a creation date,
00:00:00 is used for the time portion.

moddate Date on which the file was last modified (referenced for z/OS).
Format (ISO 8601) is yyyy-mm-dd.

modtime Time when the file was last modified (referenced for z/OS).
Format (ISO 8601) is hh:mm:ss.

modtimestamp Combination of moddate and modtime: yyyy-mm-dd hh:mm:ss.
If the file does not have a modification time, but does have a
modification date, 00:00:00 is used for the time portion.

name Name of the file (same as referencing _file itself without any
attributes).

size Size of the file (in bytes).

type Type of file. Values are:
• file
• directory (also used for PDSs under z/OS)
• unknown
type has meaning in a forfiles statement under OS/400 in the LIB
file system:
• If the value of _file.type is directory, the file type is a Physical file.
• If the value of _file.type is file, the file type is a Save file.
udm-user-3207 Confidential & Proprietary 186

UDM Variables UDM Scripting Language
_halton
The _halton built-in variable specifies a return code value that causes UDM to terminate
if that value is:
• Greater than 0
• Equaled or exceeded by the return code value in the _rc variable

Note: If the _halton value is 0, and the return code in _rc is 0, UDM will not terminate.

Each UDM command has a return code indicating its level of success or failure:
• 0 / none Success or no error
• 4 / warn Warning has been issued
• 8 / error Error has occurred
• 16 / fatal Fatal error has occurred

The value of _halton can be set using the set command. You also can use the
convenience values of none, warn, error, and fatal (indicating 0, 4, 8, and 16,
respectively) to set the value of _halton:
set _halton=error

_keepalive
When a UDM session is established, the UDM Manager periodically sends a keep-alive
message to the transfer servers – to which the transfer servers respond – in order to
make sure the session is still established.

The _keepalive built-in variable contains the interval (in seconds) at which these
messages are sent. If it has a value of 0, no keep-alive messages are sent.

You can change this interval by setting the _keepalive variable using the set command
before a session is established:
set _keepalive=60

_lastmsg
The _lastmsg built-in variable is a data element (that is, a simple array) that contains all
of the messages written in the transaction log for the last network- or file-oriented
command that was issued (open, close, attrib, cd, copy, copydir, delete, or rename).

Whenever a new network- or file-oriented command is issued, the contents of _lastmsg
is cleared before the command is processed so that _lastmsg will contain only messages
relating to that command.

If UDM encounters a print command while processing a network- or file-oriented
command, the value of the msg parameter in that command is appended to _lastmsg as
a new line.

The contents of _lastmsg can be listed at any time by issuing the following command:
data print=_lastmsg
udm-user-3207 Confidential & Proprietary 187

UDM Variables UDM Scripting Language
_lastrc
The _lastrc built-in variable holds the return code of the last command issued.

_lastrc also has two special attributes: message and result.
• message contains a human-readable string indicating what happened with the last

executed statement.
• If a command could not be executed or had improper values, the value of

_lastrc.message is ERROR.
• If a command successfully executed, the value of _lastrc.message is either

SUCCESS or some other message (depending upon the command).
• result holds an integer value that indicates the result of the last command executed.

The meaning of this value depends on the command. Unless otherwise stated:
• -1 indicates failure.
• 0 or a positive value indicates success.
This value does not affect the value of _rc and _lastrc.

_lastrc cannot be set using the set command.

Stoneman’s Tip

You can use the _lastrc variable
in combination with the if statement

to take action based on the return value of the previously issued command:

copy src=myfile if $(_lastrc) EQ 0
delete src=myfile

end
udm-user-3207 Confidential & Proprietary 188

UDM Variables UDM Scripting Language
_lines
The _lines built-in variable specifies whether or not the line number of a command
(relative to the script in which it occurred) is printed with the error if the command cannot
be parsed or is malformed. It has a value of yes or no.
• If the value is yes, the line number is printed.
• If the value is no, the line number is not printed.

_lines can be set using the set command:
set _lines=yes

_path
The _path built-in variable contains the absolute path of the file for the current iteration in
a forfiles loop (see Section 11.10 forfiles Statement).

-path cannot be set using the set command.

_rc
The _rc built-in variable holds the current UDM return code, a numeric value that
indicates the highest return code received from processing all UDM commands up to that
point. The value of _rc is the return code that the UDM Manager returns when it exits.

As with the _halton variable, _rc can be set, via the set command, to either of the
following integers or convenience values:
• 0 / none Success or no error
• 4 / warn Warning has been issued
• 8 / error Error has occurred
• 16 / fatal error Fatal error has occurred

For example:
set _rc=warn
udm-user-3207 Confidential & Proprietary 189

UDM Variables UDM Scripting Language
_time
The _time built-in variable displays the current time.

It has several variable attributes:
• hh resolves to the two-digit hour (24-hour time).
• mm resolves to the two-digit minute.
• ss the number of seconds that have elapsed since the current minute.
• hs resolves to the number of hundredths of a second that have elapsed since the last

second.

You only can reference _time in your scripts; it cannot be set using the set command.

_uuid
The _uuid built-in variable, when referenced, generates a UUID.

For example:
echo $(_uuid)
1732fd12-7b07-4791-a28a-4cf0776db4f7

Stoneman’s Tip

You can use the _time variable
in combination with the print command

 to display custom time information in UDM's transaction log:
print msg="It is now $(_time.hh):$(_time.mm)"

Produces the following output:
Today is now 23:31
udm-user-3207 Confidential & Proprietary 190

UDM Variables UDM Scripting Language
11.6.9 Logical Name Built-In Variables

When a session is established, built-in variables are created for each transfer server and
contain information about each server.

The names of these variables are based on the logical name of the transfer server,
preceded by an underscore. If the primary transfer server is not specified (implying a
two-party transfer session), its built-in variable will have the name _local.

These logical name built-in variables persist only for the duration of the session.

They have three attributes:
1. host: contains the host name of the transfer server.
2. port: holds the port used to connect to the transfer server over.
3. user: contains the userid used to sign into the transfer server.

Examples
The following shows how these built-in variables can be used:
open remote=mymachine port=10000 user=me pwd=mypwd
if $(_lastrc EQ 0)

print msg="Connected to $(_remote.host):$(_remote.port)"
print msg=" as $(_remote.user) from $(_local)"

end

This example produces the following output:
Connected to mymachine:10000

as me from (local)
udm-user-3207 Confidential & Proprietary 191

if Statement UDM Scripting Language
11.7 if Statement
The if statement is used to add conditional branching of UDM commands.

An if statement consists of:
• Comparison operation.
• Series of UDM commands that are carried out if the comparison operation evaluates

to true.
• end statement that indicates the end of the if statement.

For example:
if comparison
 …
 UDM commands
 …
end

If the comparison does not evaluate to true, UDM will pick up execution from the line after
the end statement.

Note: The indentation of commands underneath the conditionals is not required in UDM.
This is done for the sake of readability; you can indent lines in your own scripts if
and as you see fit.

11.7.1 Comparison Operations

In an if statement, a comparison consists of three parts:
1. Left-hand value
2. Comparator
3. Right-hand value

The left-hand and right-hand values can be either:
• Variable reference
• Variable attribute
• Constant

Comparators
A comparator determines the type of comparison to be made between the left-hand and
right-hand values.

There are six comparators: EQ, NE, LT, GT, LE GE.
udm-user-3207 Confidential & Proprietary 192

if Statement UDM Scripting Language
EQ - Equal
The equal comparator, EQ, evaluates to true if both the left and right-hand values are
equal to each other. If one or more of the values contains alpha characters (non-numeric),
the comparison is case insensitive. That is, a word that is all lower case would be equal to
the same word if it were all upper case (for example: dog would be equal to DOG).

Here are some examples of some if statements using the equal comparator:
if $(filename) EQ myfile.txt

print msg="The name of the file is myfile.txt"
end

if 8 EQ $(_lastrc)
print msg="The last command resulted in an error"

end

if $(filename.exists) EQ yes
print msg="The filename variable exists"

end

 NE - Not Equal
The not-equal comparator, NE, evaluates to true if the left-hand value is not the same as
the right-hand value. As with the equal comparator, alpha character comparisons are
case insensitive.

The following are some examples of the not-equal comparator:
if "C:\Program Files\Universal" NE $(mydir)

print msg="This is not the Stonebranch application directory"
end

if 8 NE 0
print msg="This will always print as 8 is not equal to 0"

end

if $(filename.exists) NE no
print msg="The filename variable exists"

end
udm-user-3207 Confidential & Proprietary 193

if Statement UDM Scripting Language
LT - Less Than
The less than comparator, LT, evaluates to true if the left-hand value is less than the
right-hand value. The less than comparator performs a numeric comparison.

The following are examples of the less than comparator:
if 0 LT 8

print msg="0 is less than 8"
end

if $(_rc) LT 8
print msg="No errors have occurred"

end

if $(filename.length) LT 8
print msg="The length of the filename is less than 8"

end

GT - Greater Than
The greater than comparator, GT, evaluates to true if the left-hand value is greater than
the right-hand value. As with the less than comparator, the comparison is between to
numeric values as in this example:
if 8 GT 0

print msg="8 is greater than 0"
end

LE - Less Than or Equal
The less than or equal comparator, LE, is similar to the less than comparator, except that
it evaluates to true if the left-hand value is less than or equal to the right-hand value as in
these examples:
if 8 LE 8

print msg="8 is less than or equal to 8"
end

if $(filename.length) LE 8
print msg="The length of the filename is less than or equal to 8"

end
udm-user-3207 Confidential & Proprietary 194

if Statement UDM Scripting Language
GE - Greater Than or Equal
The greater than or equal comparator, GE, is similar to the greater than comparator,
except that it evaluates to true if the left-hand value is greater than or equal to the
right-hand value as in this example:
if $(filename.length) GE 9

print msg="The filename is longer than 8 characters"
end
udm-user-3207 Confidential & Proprietary 195

if Statement UDM Scripting Language
11.7.2 Adding an Alternate Path with else Statement

Alternate Path without else Statement
Often there are occasions where you may want to take one branch if some condition is
true and another branch if that condition is false, instead of merely picking up execution
after the end statement. (Those lines would be executed if the condition was true as well,
only after executing the statements inside the if-end pair.)

This could be accomplished by two well-phrased if statements, one following the other,
as in this example:
if <$(_rc) GE 8>

echo "There has been an error"
end
if <$(_rc) LT 8>

echo "There has not been an error"
end

Flaws in this Methodology
However, while this is a perfectly valid method, it suffers from two potential flaws:

First and foremost, people may find such logic difficult to read, thus making your UDM
scripts more difficult to maintain, especially by those who had not written them in the first
place.

Second, if the comparison operation contains a variable and evaluates to true for the first
comparison, it is possible something occurs in the statements inside the if-end pair that
changes the value of the variable and makes the second comparison evaluate to true as
well.

For example:
if <$(_lastrc) GE 8>

 echo "The last command was not successful"
end
if <$(_lastrc) LT 8>

echo "The last command was successful"
end

In this example, if the command executed before the first if statement resulted in an
error, the output would have been as follows:
Last command was not successful
Last command was successful

This is because the _lastrc variable holds the value of the last command executed by
UDM. In the example given, the command executed before the first if statement resulted
in an error (for example, result code = 8) and would result in the first if statement
evaluating to true.
udm-user-3207 Confidential & Proprietary 196

if Statement UDM Scripting Language
However, the successful execution of the print command inside the first if statement
would result in _lastrc being set to 0, which would in turn mean the second if
statement would evaluate to true, thus printing the second message. This would not have
been what was intended.

In this contrived example, it is rather easy to see what went wrong and come up with a
workaround: in this case, creating a new global variable into which to save the value of
_lastrc - for example: set newvar=$(_lastrc) - and using the new variable in the
comparison operations instead of _lastrc as its value would not be overwritten. For
longer and more complex scripts, however, this may not be the case.

Alternate Path with else Statement
UDM offers an easy solution with the else statement. As part of the if statement, the
else statement can be used to provide an alternative path to take if the comparison
evaluates to false.

The general format of an if statement when an else statement is used with it is:
if expression
…
[else
…]
end

In this if statement, the parameter for the statement is an expression. If the expression
evaluates to a value that is not equal to zero, the positive branch is taken; otherwise the
negative (else) branch is taken if one exists.

Examples
if <$(_rc) EQ 0>
 echo "Everything worked okay"
else
 echo "Something went wrong"
end

if ("$(myvar.exists)" EQ "yes">
 echo "The variable, myvar, has been defined."
end

Note: The previous style of UDM if statements, shown in the following example, still is
valid:

if <$(_lastrc) GE 8>
print msg="The last command was not successful"

else
print msg="The last command was successful"

end
udm-user-3207 Confidential & Proprietary 197

if Statement UDM Scripting Language
11.7.3 Nested Conditionals

For complex and powerful operations, if statements can be nested inside of each other.

For example:
copy src=$(filename)

if $(_lastrc) EQ 0
delete src=$(filename)

if $(_lastrc) NE 0
print msg="The source file could not be deleted."

end

else
print msg="The copy operation failed."

end

print msg="The operation completed with a return code of $(_rc)."

Stoneman’s Tip

Indenting lines underneath conditionals by putting spaces at the front of
them, although not necessary, provides a visual cue that those lines are to

be executed due to the evaluation of a conditional.
Using this technique with nested conditionals provides an easy way to tell

at which 'level' each of the commands belong.

In addition, leaving a blank line before and after a conditional
(not required by UDM) provides a way to visually indicate

a block of related script commands.
This improves the readability and maintainability of scripts in the future.
udm-user-3207 Confidential & Proprietary 198

if Statement UDM Scripting Language
11.7.4 Returning Early Using the return Command

At times, it is useful to be able to exit from processing a single script file in the middle of
that script file if certain processing conditions are not correct. For this, UDM provides the
return command, which takes the following format:
return [value]

The return command stops processing of the current script and returns control to the
calling script at the point immediately following the script call (just as if the script had
executed completely without calling the return command). If there was not a calling
script, and UDM is not running interactively, UDM will exit. The return command also
can be followed by an optional value. If this is the case, UDM's return code (held by the
_rc built-in variable) is set to this value upon executing the return command.

Stoneman’s Tip

One common use of the return command
 is to exit from a script if the previous operation failed.
(The _halton variable can be used for this situation

if you want to exit from UDM altogether.)
However, if you only want to exit the current script,

you can couple the return command
with an if statement and the _lastrc built-in variable:

if $(_lastrc) NE 0
return $(_lastrc)

end
udm-user-3207 Confidential & Proprietary 199

while Statement UDM Scripting Language
11.8 while Statement
The while statement implements a simple while loop.

The syntax of the while statement is:
while expression
...
end

In this case, the loop iterates (executing the commands between the while and end
statements) as long as the expression evaluates to a value that is not zero.

If the expression evaluates to a value of zero, code execution picks up at the point
immediately following the end of the while loop.

For example:
set n=1
while <$(n) LE 10>
 echo $(n)
 set n=<$(n) + 1>
end
udm-user-3207 Confidential & Proprietary 200

fordata Statement UDM Scripting Language
11.9 fordata Statement
The fordata statement iterates through a data element, once for each line. For each
iteration, a variable provided by the user is set to hold the contents of the line in the data
element corresponding to the current iteration.

The syntax of the fordata statement is:
fordata variable-name=data-element
...
end

Example
set i=1
loaddata mydata=mydata.txt
fordata line=mydata
 echo "$(i): $(line)"

 compare "$(line)" "exit" case=yes

 if <"$(_lastrc.message)" EQ "MATCH">
 echo
 echo "Data contains an 'exit' command"
 echo
 end

 set i=<$(i) + 1>
end

If a data element called mydata.txt contained the following contents:
cd /
ls -al
exit

Running this script against the contents of mydata would produce the following results:
1: cd /
2: ls -al
3: exit
Data contains an 'exit' command
udm-user-3207 Confidential & Proprietary 201

forfiles Statement UDM Scripting Language
11.10 forfiles Statement
UDM provides a powerful iterative loop structure, forfiles, that iterates through a series
of statements for each file found that matches a file specification.

The syntax of the forfiles statement is:
forfiles logical_name=file_spec
 [sortby=attribute-name[,ascending | descending]]

…
UDM commands
…

end

logical_name is the logical name of a transfer server.

file_spec is the file specification used to select files for the iteration (see
Section 11.10.2 forfiles File Specification).

From the specified transfer server, UDM builds a list of files that match the file
specification. UDM then executes all of the commands listed between the forfiles
statement and the end statement, once for each file in the list.

The optional sortby parameter specifies the name of a special attribute
attribute-name of the _file built-in variable (see Table 11.4 _file Built-in Variable –
Special Attributes). The list of files that match file_spec will be sorted based on the
value of attribute-name. ascending and descending specify whether the matching
files are listed in ascending or descending order. (If neither is specified, the list is sorted in
ascending order.)

Since having a sortby attribute in the forfiles loop implies that the file attributes will be
used, the file attributes will be retrieved regardless of whether or not fileattrib=yes is
present.

Examples
To obtain a file list, sorted by creation date (earliest to latest):
forfiles src=*.txt sortby=createdate
 # Do some stuff
end

Top obtain a file list, ordered by file size from largest to smallest:
forfiles src=*.exe sortby=size,descending
 # Do some more stuff
end

An error would be produced if sortby was present without a value or if it referred to an
attribute that does not exist for the _file variable.
udm-user-3207 Confidential & Proprietary 202

forfiles Statement UDM Scripting Language
11.10.1 forfiles Built-In Variables

The forfiles statement utilizes two built-in variables: _file and _path. These variables
are set by UDM to contain the file name and absolute path of each file in the list for each
iteration.

For an example, assume the following:
• Windows machine with logical name nt.
• Directory C:\Example on the Windows machine.
• Three files – file1.txt, file2.txt, and file3.txt – in the directory.

The following script segment prints the file name and absolute path of each file in the
directory:
forfiles nt=C:\Example*

print msg="Filename: $(_file) Abs. Path: $(_path)"
end

Executing this would build a file list containing the files: file1.txt, file2.txt, and
file3.txt. Since there are three files in the list that was built, UDM would iterate through
the loop three times:
1. During the first iteration through the loop, the _file variable would contain

file1.txt and the _path variable would contain C:\Example\file1.txt.
2. During the second iteration, the _file variable would contain file2.txt and the

_path variable would contain C:\Example\file2.txt.
3. During the third and final iteration, the _file variable would contain file3.txt and

the _path variable would contain C:\Example\file3.txt.

This script segment would result in the following output:
Filename: file1.txt Abs. Path: C:\Example\file1.txt
Filename: file2.txt Abs. Path: C:\Example\file2.txt
Filename: file3.txt Abs. Path: C:\Example\file3.txt
udm-user-3207 Confidential & Proprietary 203

forfiles Statement UDM Scripting Language
_file Variable Attributes
The _file variable also has special attributes that further define a file (see Table 11.4 _file
Built-in Variable – Special Attributes).

For efficiency reasons, all of these attributes – other than name and type – are retrieved
only as requested. You can request to retrieve the file attributes by adding
fileattrib=yes to the end of the forfiles call.

For example:

forfiles src=*.txt fileattrib=yes
 echo "$(_file) is $(_file.size) bytes in size."
end

If the information for an attribute cannot be obtained, its value is set to an empty string.

z/OS datasets store only createdate and accessdate. There is no time (createtime and accesstime)
associated with these dates, nor do z/OS datasets store moddate or modtime.

z/OS
udm-user-3207 Confidential & Proprietary 204

forfiles Statement UDM Scripting Language
11.10.2 forfiles File Specification

The file specification portion of the forfiles statement, file_spec, tells UDM how to
build its list of files. It takes the same format as the copy command file specification and
can contain wildcards.

To list all of the members in a PDS on a z/OS system, you can issue the following
commands:
forfiles zos=MYHLQ.MYPDS(*)

print msg=$(_file)
end

This would print the name of each member in a PDS called MYHLQ.MYPDS.

For Windows, UNIX, and OS/400 systems (as well as the HFS file system under z/OS),
you can list all of the files in the current directory with the following UDM commands:
forfiles local=*

print msg=$(_file)
end

To find all of the files ending in .txt in a particular directory, mydir in this example, issue
the following forfiles statement:
forfiles local=mydir/*.txt

print msg=$(_file)
end

A question mark (?) can be used as a wildcard for a single character. In the previous
example, lets assume mydir contains the files: file, file1, file2, and file3.txt.

Executing the following:
forfiles local=mydir/file?

print msg=$(_file)
end

Will result in the following output:
file1
file2

Stoneman’s Tip

The forfiles file specification can contain wildcards
for any UDM files system.

 Under z/OS, however, the wildcards only can be used
to reference a member of a PDS or PDS/E.
udm-user-3207 Confidential & Proprietary 205

forfiles Statement UDM Scripting Language
11.10.3 Breaking Out Using the break Command

The break command is a powerful command that can be issued from inside of a
forfiles loop. It causes UDM to stop iterating through the forfiles loop and resume
execution at the command immediately following the end statement marking the end of
the loop.

Stoneman’s Tip

One use for the forfiles statement is to try and copy a series of files,
deleting the source file if the copy operation was successful.

The following is a sample that accomplishes this task, exiting from the loop
if a file cannot be copied or if, after copying a file, it cannot be deleted:

forfiles local=*
copy local=$(_file)

if $(_lastrc) NE 0
print msg="Could not copy $(_path)"
break

end

delete local=$(_file)

if $(_lastrc) NE 0
print msg="Could not delete $(_path)"
break

end

end
udm-user-3207 Confidential & Proprietary 206

Creating In-Stream Data with the data Command UDM Scripting Language
11.11 Creating In-Stream Data with the data Command
The data command can be used to define in-stream data elements that can be passed as
input for other commands, such as the exec command.

The syntax for the data command is as follows:
data [NAME|print=NAME] [resolve=all|defined|no] [end=ENDSEQUENCE]
[DATA]
end|ENDSEQUENCE

11.11.1 Creating an In-Stream Data Element

An in-stream data element has four parts:
1. Name
2. Optional variable resolution method
3. In-stream data itself
4. End-of-data marker or end sequence

The name uniquely identifies the data element and is used to refer to the data element.

The optional variable resolution method tells UDM whether to resolve variables wrapped
in the $() sequence when the data element is referred to.
• If the resolution method is all (default), all variables are resolved and an error is

issued if the variable is not defined in UDM.
• If the resolution method is defined, only references to variables defined in UDM are

resolved and all other $() references are left as is in the data element.
• If the resolution method is no, UDM does not try to resolve any variable references in

the data when the data element is used.

The data portion of the data element is the actual data that will be used by the command
that is referencing that data element.

Note: The data is used as entered, including any leading spaces or tabs; no trimming is
done.

The end-of-data marker or end sequence marks the end of the data. By default, this is
simply the word end. It must appear separately, on its own line. However, it is possible
that end is valid instream data and you can change the end sequence with the end
parameter of the data command.
udm-user-3207 Confidential & Proprietary 207

Creating In-Stream Data with the data Command UDM Scripting Language
Example
The following example shows how to use the data command in conjunction with the exec
command to look through a series of copied files and display lines with the occurrence of
some string under UNIX:

open remote=yourmachine user=someguy pwd=somepwd

data mydata resolve=all
grep "this is my sequence" $(_file)
exit
end

copy local=*.txt

forfiles remote=*.txt
exec remote cmd=ksh input=mydata

end

close

11.11.2 Printing Data Element Information

Issuing the data command by itself prints a list of the names of all the data elements that
have been defined.

Note: Data elements persist beyond individual UDM transfer sessions.

Issuing the data command with the print parameter and the name of a data element will
print the data in that element.

Continuing with the previous example, issuing:
data print=mydata

Will produce the following output:
----> Begin 'mydata' <----

grep "this is my sequence" $(_file)
exit

----> End 'mydata' <----
udm-user-3207 Confidential & Proprietary 208

Chapter 12
UDM Transfer Operations
12.1 Overview
This chapter provides information on Universal Data Mover (UDM) Transfer Operations.

See Chapter 13 Transfer Operations (z/OS-Specific)and Chapter 14 Transfer
Operations (OS/400-Specific) for transfer information specific to those operating systems.
udm-user-3207 Confidential & Proprietary 209

Transfer Sessions UDM Transfer Operations
12.2 Transfer Sessions

12.2.1 Opening a Transfer Session

UDM transfer operations all occur within the context of a transfer session. This section
details how to open a UDM session.

Opening a Two-Party Transfer Session
All sessions are established using the open command. At its simplest, the open command
specifies the primary and secondary servers for the session:
open logical1=hostname logical2=hostname

In this example, logical1 and logical2 are the user-assigned logical names of the
primary and secondary servers, respectively. Each of these parameters is set to the host
name or IP address of the corresponding server.

For two-party transfer sessions, where the UDM Manager acts as the primary server,
hostname is not the host address of the local machine (this would initiate a three-party
transfer with the primary server running on the local machine). Instead, the host address
is either the name local or the asterisk (*) character:
open machine1=* machine2=somentmachine

In this example, a two-party transfer session is established between the UDM Manager,
acting as the primary server with the logical name machine1, and another machine with
the host name somentmachine, with the logical name machine2.

An alternate method of establishing a two-party transfer is simply to give the secondary
server as a parameter to the open command:
open machine2=somentmachine

In this example, a two-party transfer session is implied. In such cases, the logical name of
the UDM Manager / primary server side of the transfer session always will be local.
udm-user-3207 Confidential & Proprietary 210

Transfer Sessions UDM Transfer Operations
Opening a Three-Party Transfer Session
A three-party transfer session can be opened using the same syntax as a two-party
transfer session. However, both the primary and secondary servers must be specified
explicitly, and the host name of the primary server must be a valid IP or host address:
open machine1=somemvsmachine machine2=somentmachine

In this example, a three-party transfer session is established between a machine with the
host name somemvsmachine, given the logical name machine1, and a machine with the
host name somentmachine, given the logical name machine2.

12.2.2 Session Options

The examples given thus far show the simplest versions of the open command.
Additional options can follow each server name, such as the port on which the Universal
Broker is listening, the codepage that the server uses for text translation, authentication
information, and references for a file from which these options are read (this file may be
encrypted, if desired). At the end of the open command are optional parameters that
specify the type of encryption and compression used for the data transfer operations.

(See Chapter 6 UDM Commands in the Universal Data Mover 3.2.0 Reference Guide for
detailed information on these parameters).

Stoneman’s Tip

 It is important to keep in mind
that the host name of the secondary transfer server

should be specified from the point of view of the primary server,
since it will be making the connection to the secondary server.

Depending on your network configuration,
the host name for the secondary server

might be different from the UDM Manager's perspective
than that of the primary server's.

Stoneman’s Tip

 Unless otherwise specified, UDM transfers file data
using the SSL protocol and the NULL-MD5 cipher suite.
If you do not want to take the performance hit of SSL,

and authentication of the transferred data is not required,
you may want encrypt=NULL-NULL specified as a session option.

However, the NULL-NULL cipher suite must be in the cipher list
for all UDM servers involved in the transfer.
udm-user-3207 Confidential & Proprietary 211

Transfer Sessions UDM Transfer Operations
12.2.3 Closing a Session

When all transfer operations have concluded, you can close a transfer session by issuing
a close command. At this point, UDM is ready to initiate another transfer session.

Alternatively, if you want to exit UDM, you can issue a quit command, which closes the
transfer session and exits the UDM Manager.
udm-user-3207 Confidential & Proprietary 212

File Systems UDM Transfer Operations
12.3 File Systems

12.3.1 File System Overview

Platforms can support one or more file systems or file access methods.
• UNIX and Windows support a single hierarchical file system.
• z/OS support three file systems (or file access methods) under UDM:

1. DSN (data set name, the default when UDM is running under z/OS)
2. DD (ddname defined by a JCL DD statement)
3. HFS (the hierarchical file system supported by USS)

(See Section 12.5 z/OS File System for detailed information on z/OS file systems.)
• OS/400 supports two file systems under UDM:

1. LIB (the default file system)
2. HFS (limited to the root and QOpenSys file systems under IFS)

(See Section 14.2 OS/400 I/O for detailed information on OS/400 file systems.)

All transfer operations on a given server will take place in the server's current file system.
Both servers in a transfer session do not have to be in the same file system. UDM is
capable of reformatting data between different file systems.

Stoneman’s Tip

The default file system under z/OS is DSN,
even if the UDM Manager is executed
from USS (UNIX System Services).
udm-user-3207 Confidential & Proprietary 213

File Systems UDM Transfer Operations
12.3.2 Changing the Current File System

Changing the current file system on a server is a simple matter of executing the filesys
command, which has the following format:
filesys logical_name[={dd|dsn|hfs|lib}]

In this format, the logical name refers to the logical name of the transfer server to send
the filesys command. An optional file system (for example, z/OS's DD, DSN, or HFS) can
be specified after the logical name to change the current file system on that server.
Sending a filesys command with just a logical name returns the current file system of the
server.

Note: A filesys value of dd is available only on z/OS manager for two-party transfer.
udm-user-3207 Confidential & Proprietary 214

UDM Common File System UDM Transfer Operations
12.4 UDM Common File System
UDM provides a set of consistent capabilities for a diverse set of file systems on many
different operating systems. UDM commands attempt to behave in a consistent and
predictable manner regardless of the file system or operating system on which UDM is
running. In order to do so, UDM behavior is based on a Common File System (CFS)
model.

CFS is biased towards the hierarchical file systems found on UNIX, Windows, or HFS
(z/OS or OS/400). CFS terminology and commands then are applied to each of the
UDM-supported file systems on different operating systems.

12.4.1 Common File System Terminology

UDM attempts to make consist use of file system terminology so that it can be applied
consistently to file systems that are not hierarchical.

Table 12.1, below, lists CFS terminology for hierarchical file systems like UNIX, Windows,
and HFS:

CFS Term Description

path Name of a file, which may or may not include a directory. A path is either an
absolute path or a relative path.
Examples:
• /home/homer/phone.txt
• phone.txt
• ../homer/phone.txt

absolute path Full path name of a file, starting at the root directory, network point, or drive
letter.
Examples:
• /home/homer/phone.txt
• \\FILESERVER\homer\phone.txt
• C:\program files\phone.txt

relative path Path name of a file that is relative to the current working directory.
Examples:
• phone.txt
• ./phone.txt
• ../phone.txt
• myfiles/phone.txt
• ../homer/phone.txt
udm-user-3207 Confidential & Proprietary 215

UDM Common File System UDM Transfer Operations
Table 12.1 CFS Terminology for Hierarchical File Systems

file Name of a file. All files are located in a directory. The name does not include a
directory name.
Examples:
• phone.txt
• editor.exe

directory Name of a directory. The name does not include a file. It can be absolute or
relative.
Examples:
• /home/homer
• /
• .
• ..
• C:\program files

current directory Every program that runs on a hierarchical file system has a current directory,
also known as the working directory. For most programs, this is the directory
from which it was invoked.

CFS Term Description
udm-user-3207 Confidential & Proprietary 216

z/OS File System UDM Transfer Operations
12.5 z/OS File System
The z/OS data set file system is a flat file system. There are no concepts of directories.
The files are more commonly referred to as data sets.

z/OS data sets supported by UDM fall into two major categories:
• Sequential

Sequential data set has a data set organization of Physically Sequential (PS).
• Partitioned

Partitioned Data Set (PDS) has a data organization of Partitioned Organization (PO),
which also includes system managed Partitioned Data Set Extended (PDSE)
organization.

A PDS is treated as a directory in CFS. A PDS contains a set of individual files called
members, which is analogous to a directory containing a set of files. A PDS member has
a maximum length of 8 characters.

Table 12.2, below, associates CFS terminology with z/OS partitioned and sequential data
sets. Fully qualified data set names are enclosed in apostrophes.

CFS Sequential Partitioned

path Data set name. A path includes fully
qualified names and relative names.
Examples:
• PHONE.DATA
• 'MYUID.PHONE.DATA'

PDS name and member name in
parenthesis or just a member name. A path
includes fully qualified names and relative
names.
Examples:
• JCL.CNTL(JOBAB)
• 'MYUID.JCL.CNTL(JOBAB)'
• JOBAB

absolute path Fully qualified data set name.
Example:
• 'MYUID.PHONE.DATA'

Fully qualified PDS name and member
name in parenthesis.
Example:
• 'MYUID.JCL.CNTL(JOBAB)'

relative path Data set name without one or more leading
qualifiers. The name is relative to the
current directory.
Examples:
• PHONE.DATA
• DATA

PDS name without its high-level or
mid-level qualifiers and a member name
enclosed in parenthesis or just a member
name. The name is relative to the current
directory.
Examples:
• JCL.CNTL(JOBAB)
• CNTL(JOBAB)
• JOBAB

file Same as path (data set name).
It may be absolute or relative.

Member name only.
Example:
• JOBAB
udm-user-3207 Confidential & Proprietary 217

z/OS File System UDM Transfer Operations
Table 12.2 CFS Terminology Associated with z/OS Data Sets

UDM is capable of running as a JES batch job. In a batch environment data sets may be
allocated dynamically by UDM or UDM may use data sets pre-allocated with JCL DD
statements.

The JCL DD statement allocates the data set and defines its to the batch job environment
as a ddname that the program uses. Although ddnames are not a different file system,
they do have their own naming conventions and behavior relative to UDM's CFS.

Table 12.3, below, associates CFS terminology with z/OS partitioned and sequential data
sets allocated to ddnames.

Table 12.3 CFS Terminology Associated with z/OS ddnames

directory N/A PDS name without the member name. The
directory name may be relative or absolute.
Examples:
• JCL.CNTL
• 'MYUID.JCL.CNTL'

current
directory

Current leading qualifiers.
Note: It may be more than one qualifier
long.
Examples:
• MYUID
• MYUID.DATA

Current leading qualifiers.
Note: It may be more than one qualifier
long or even the full PDS name.
Examples:
• MYUID
• MYUID.JCL
• 'MYUID.JCL.CNTL'

CFS Sequential Partitioned

path ddname defined with a JCL DD statement.
Examples:
• DD1
• PHONE

ddname with a member name enclosed in
parenthesis or just the member name.
Examples:
• INDD(JOBAB)
• MYDATA(PHONE)
• PHONE

absolute path There is only one type of path and that is
absolute. Refer to path above.
• DD1

ddname and member name enclosed in
parenthesis. Refer to path above.

relative path N/A Member name only. The path is relative to
the current directory.

file Same as path (the ddname).
Example:
• DD1

Member name only.
Example:
• JOBAB

directory N/A ddname with which a PDS is allocated.

current
directory

N/A Current ddname with which a PDS is
allocated.
Examples:
• INDD
• OUTDD

CFS Sequential Partitioned
udm-user-3207 Confidential & Proprietary 218

OS/400 File Systems UDM Transfer Operations
12.6 OS/400 File Systems
Universal Data Mover for OS/400 supports two types of file systems:
• LIB (library) file system supports the original, native database file system.
• HFS file system supports the root and QOpenSys file systems under IFS.

Although UDM can access other IFS file systems, only root and QOpenSys are certified.

Currently, Stonebranch, Inc.:
• Does not support other IFS file systems.
• Recommends that users do not use other IFS file systems.
• Provides no warranty for use of other IFS file systems.
• Certifies that users assume all risks in using other IFS file systems.

Risks involved in the use of non-supported IFS files systems include, but are not limited
to:
• Loss of data
• Corrupted data
• Non-recoverable exceptions

12.6.1 HFS

HFS follows the common file system (CFS). It supports stream files under the root and
QOpenSys IFS file systems. Users using UDM to access file systems under IFS, other
than root and QOpenSys, do so at their own risk.
udm-user-3207 Confidential & Proprietary 219

OS/400 File Systems UDM Transfer Operations
12.6.2 LIB

UDM for OS/400 supports the following file types of the LIB (library) file system
• Physical files (source and data)
• Save files

Table 12.4, below, associates CFS terminology with these LIB file types.

Table 12.4 CFS Terminology Associated with LIB File Types

CFS Physical Files (Source and Data) Save Files

path An absolute or relative path.
Examples:
• MYLIB/DATA(NAMES)
• DATA(NAMES)

An absolute or relative path.
Examples:
• MYLIB/BACKUP
• BACKUP

absolute path A fully qualified name containing a library,
file, and member.
Example:
• MYLIB/DATA(NAMES)

A fully qualified name containing a library
and file.
Example:
• MYLIB/BACKUP

relative path A name without a library. The name is
relative to the current directory (library).
Example:
• DATA(NAMES)

A name without a library. The name is
relative to the current directory (library).
Example:
• BACKUP

file Same a path. It may be relative or absolute. Same as path. It may be relative or
absolute.

directory N/A N/A

current
directory

Name of the current library in which you are
working.
Example:
• MYLIB

Name of the current library in which you are
working.
Example:
• MYLIB
udm-user-3207 Confidential & Proprietary 220

Transfer Modes and Attributes UDM Transfer Operations
12.7 Transfer Modes and Attributes

12.7.1 Setting the Transfer Type

There are two basic types of file transfers:
• Binary

Binary transfers move the data as it is, without any translation.
• Text

Text transfers translate the data from the source server's code page to the destination
server's code page as it is transferred from one server to another.

The default transfer type for UDM is binary.

To set the transfer type, use the mode command.
• To set up UDM for text transfers, issue the following command:

mode type=text

• To set up UDM for binary transfers, issue the following command:
mode type=binary

Issuing the mode command by itself displays the current transfer mode. The mode
command also can be used tell UDM to trim trailing spaces at the end of each line (or
record, for record-based file systems such as dd and dsn in z/OS).
udm-user-3207 Confidential & Proprietary 221

Transfer Modes and Attributes UDM Transfer Operations
12.7.2 Transfer Attributes

While the mode command is used to control the settings for transfer operations as a
whole, the attrib command can be used to set up the handling of transfer operations for
each side of the transfer session.

The attrib command can set transfer attributes that apply to either the primary or
secondary server. It takes the following form:
attrib lname[={dd|dsn|hfs}] [attribute 1=value1]…[attribute n=valuen]

Where lname is the logical name of the server, the attributes are to be applied.

By default, any attributes listed in the attrib command are applied to the currently selected
files system unless a specific file system is assigned to the logical name. In that case, the
attributes are applied to the specified file system.

The remainder of the attrib command contains a series of attributes and their values,
some of which will be discussed in further detail in the remainder of this section. If the
attrib command is issued with just a logical name, UDM will list the currently set attributes
for the corresponding server.

Stoneman’s Tip

When you change file systems for a server using the filesys command,
the currently set attributes are those that were applied to that file system type.
In other words, attributes are not carried over from one file system to another.
udm-user-3207 Confidential & Proprietary 222

Transfer Modes and Attributes UDM Transfer Operations
12.7.3 End of Line Sequence

Text mode transfers have the concept of a line in UDM. For record-oriented file systems,
such as z/OS's DD and DSN, and OS/400's LIB, each line is a single record. However, for
UNIX, Windows, and the HFS file system under USS and OS/400, there is no inherent
structure imposed by the operating system on file data.

To determine what constitutes a line in the data for these types of files, UDM looks for an
end of line sequence on the source side of a transfer. This can be any sequence of
characters (including a zero length sequence, in which case the entire file is considered
to be a single line). UDM determines when it has read a complete line of data when this
sequence is encountered.

In addition to the normal printable character sets on each platform, an end of line
sequence also can be:
• \r character sequence, to denote a carriage return character.
• \l sequence, to denote a line feed.
• \n sequence, to indicate a new line character.

The end of line sequence also is used on the destination side of a text transfer. The end
of line sequence set for the destination side of the transfer is appended to the end of each
line of data.

UDM also does this for record-oriented file systems as well. By managing the end of line
sequence this way, UDM easily can be used to translate end of line characters across
platforms (such as a transfer from UNIX to Windows), strip end of line characters from the
data completely, or even add a completely new end of line sequence for use by other
applications. For most operations, though, the end of line sequence will not need to be
changed.

Stoneman’s Tip

When UDM transfers a line of text data from one server to another,
it does not transfer the end of line sequence.

Instead, UDM transfers all of the data in each line
up to the end of line sequence.
udm-user-3207 Confidential & Proprietary 223

Transfer Modes and Attributes UDM Transfer Operations
eol Attribute
The end of line sequence is set with the eol attribute. The default value for eol depends
on the platform and file system selected:
• For Windows-based platforms, the default value is \r\n.
• For UNIX platforms and the HFS file system under USS, the default value is \n.
• For the HFS file system under OS/400, the default is FILE, which makes end of line

terminator consistent with file CCSID.
• For record-oriented file systems (z/OS's dd and dsn, and OS/400's LIB), the value for

eol is not set.

To provide consistent eol definitions under the OS/400 HFS file system, specific ASCII
and EBCDIC values are defined for the symbolic values.
• As ASCII, \n = x0A, \r = x0D, \t = x09 and \l = x0A.
• As EBCDIC, \n = x15, \r = x0D, \t = x05 and \l = x25.

By default, the file CCSID determines the type of eol, ASCII vs. EBCDIC. The default
ASCII eol is \n and the default EBCDIC eol is \r\l.

It is important to note the difference between eol definitions as just described and eol
characters when transferred as data. Due to code page translations and Unicode
mappings that take place during data transfer, translated values may be surprising.

Please refer to appropriate translation tables or Unicode mapping tables to understand
the values used when eol and other control characters are transferred as data. UDM
provides default definitions and allows user-defined eol attribute overrides in order to
avoid translation surprises and associated difficulties.

The following example sets an end of line sequence of an exclamation point (!) for a
transfer server:
attrib mylogicalname eol=!
udm-user-3207 Confidential & Proprietary 224

Transfer Modes and Attributes UDM Transfer Operations
12.7.4 Line Length and Line Operations

Note: The attributes discussed in this subsection apply solely to the destination side of
the transfer.

Other attributes can be used to manipulate transferred data as well.

The linelen attribute is used to specify the length, in characters, of a line of data that
has been transferred. This value is independent of the end of line sequence and, for
record-oriented file systems, the transfer type. If linelen is set to a value other than zero
(its default value), UDM will manipulate the data according to the method specified with
the lineop attribute.

The lineop attribute specifies what happens to each line (or record, from z/OS's dd and
dsn file systems) of data coming from the source transfer. If the value for lineop is none,
the line/record is written as is, however if its length from the source is greater than the
value of linelen, UDM issues an error. If the value of lineop is stream, the data from
the source side of the transfer is treated as a single record and is subdivided when it is
written as a series of lines or records (depending on the file system), each linelen
characters in length. If the value of lineop is trunc, each record or line from the source is
truncated so that it is at most linelen characters in length. Finally, if the value of lineop
is wrap, each line or record from the source side of the transfer that is longer than
linelen characters is wrapped into multiple lines/records so that the maximum length of
each line on the destination side is at most linelen characters long.

Under z/OS (except for the HFS file system), UDM will set the linelen attribute to be the
same as the lrecl allocation option for new data sets or the LRECL DCB attribute of
existing data sets if the value of linelen is zero. UDM also will set the lineop attribute to
a value appropriate for the transfer type and destination allocation attributes if lineop has
previous not be set.

Stoneman’s Tip

Binary data that is transferred from a Windows or UNIX platform
(including HFS under USS)

is looked at by UDM as one large line or record of source data.
The same can be said when transferring text data from these platforms

if the end of line sequence is zero length for the source server
or the end of line sequence does not exist in the source data.
udm-user-3207 Confidential & Proprietary 225

Copying Files with UDM UDM Transfer Operations
12.8 Copying Files with UDM

12.8.1 Simple Copy Operation

At its core, UDM is meant to copy files from one system to another. This is done with the
copy command.

The basic format of the copy command is:
copy sourcelname=filespec [destlname[=filespec]]

The copy command copies the file specified on the server with the logical name
corresponding to sourcelname to the server with the logical name corresponding to
destlname.

If no destination file name is given, the source file name is used (absent the directory
name, regardless of whether or not it was explicitly specified as part of the source file
specification). Likewise, if only a directory is given for the destination file specification, the
source file name is appended to the directory when writing the file.

If a destination file name or complete file name and directory are given for the destination
file specification, that information is used in writing the destination file, regardless of the
source file name.

Examples
The following example copies the file test.txt from a machine with the logical name src
to a file called test.txt on the machine with the logical name dst:
copy src=test.txt dst

The following example copies the test.txt file residing in c:\files from a machine with
the logical name src to a file called test.txt on the machine with the logical name dst:
copy src=c:\files\test.txt dst

The following example copies test.txt from src to the root of drive C on dst. The
destination file is also called test.txt:
copy src=test.txt dst=c:\

The following example copies the file test.txt from src to a file called test.bak in the
root of drive C on dst:
copy src=test.txt dst=c:\test.bak
udm-user-3207 Confidential & Proprietary 226

Copying Files with UDM UDM Transfer Operations
12.8.2 Move Operation

A UDM move operation, using the move command, is similar to a copy operation.

The only difference between using a move command and a copy command is that after
you move a file, it is deleted from the source server from which it was moved.

Stoneman’s Tip

If you want the destination file name
to be the same as that of the source file name,

you do not have to specify the destination system
in the copy command.

The destination will be implied based on the logical name of the source
(if the source is the primary server,

the destination is assumed to be the secondary server,
and vice versa).
udm-user-3207 Confidential & Proprietary 227

Copying Files with UDM UDM Transfer Operations
12.8.3 Copying Multiple Files Using Wildcards

In addition to copying single files, the copy command can be used to copy multiple files by
using wildcards in the source file specification. When wildcards are used, any file
matching the source file specification will be copied.

There are two types of wildcards:
1. Asterisk (*) wildcard matches zero or more characters.
2. Question mark (?) wildcard matches a single character.

Here are some examples of wildcard matching given the following filenames in the source
directory:
• test.txt
• test1.txt
• test2.txt
• test3.txt
• test.bin
• test1.bin
• test2.bin
• test3.bin

A source file specification of * will copy all of the files in the directory, as will *.*,
test*.*, and tes?.*.

A source file specification of *.txt will copy the first three files.

A source file specification of *.bin will copy the last three files.

A source file specification of test?.txt will copy the files test1.txt, test2.txt, and
test3.txt.

Stoneman’s Tip

Wildcards can be used only in the source file specification,
not the destination file specification.

Under some operating systems, it is possible for * and ?
to be valid characters in a filename.

When they appear in the destination portion of a UDM copy operation,
they are treated as file characters and not as wild cards.

Also, keep in mind that while UDM can copy all of the files
at a single directory level in a hierarchical file system,

it will not traverse the directory tree and copy files from directories
at a lower level than the current directory

or the directory explicitly specified in the source file specification.
Wildcards should appear only in the filename portion of the file specification

and not as part of the directory itself.
udm-user-3207 Confidential & Proprietary 228

Copying Files with UDM UDM Transfer Operations
12.8.4 File Extension Attributes

Some file systems support file extensions. In the case where the source filename is used
as the destination filename, UDM can either add an extension or truncate a file's
extension. If the trunctext attribute is set to yes, the extension of the source filename is
truncated when writing the destination file. If the defaultext attribute is set to any value,
that value is appended to the end of the source filename when writing the destination file.

12.8.5 File Creation Options

The createop attribute determines how the destination file is created. By default it has a
value of new, which means that a file with the destination filename (either implicitly or
explicitly specified) must not exist for it to be successfully written by UDM. If a file with that
name does exist when UDM begins a copy operation, an error is issued.

If the value of the createop attribute is replace, the destination file is created if the
destination file does not already exist. If it does exist, it is overwritten with the transferred
data. If the value of createop is append and the file already exists, the data transferred is
appended to the end of the data already in the existing file. If the file does not exist, a new
file is created.

Stoneman’s Tip

File extension attributes only come into play
when a destination filename is not specified.

UDM considers a file extension to be the character sequence
followed by the last period (.) in the filename,

not including a dot character appearing as the first character in the filename.
The character sequence specified by defaultext is appended verbatim.

A dot (.) is not implied at the beginning of this sequence
and must be explicitly included

if it is desired in the destination filename.
udm-user-3207 Confidential & Proprietary 229

Copying Files with UDM UDM Transfer Operations
12.8.6 File Permission Attribute

Under the UNIX operating system, the mode attribute specifies the mode (in UNIX
parlance), or file permissions, of a file created by UDM in a copy operation. Existing files
do not have their modes modified by UDM. They retain the file mode that they had before
the copy operation was initiated.

Note: The mode attribute is not to be confused with the mode command, which is used to
set the type of file transferred (and trim option).

The mode attribute is set using the attrib command.

The value of mode is either a set of three numbers, or nothing. Each number in the set
corresponds to one or more individuals for whom access is granted for the file:
• First number Owner of the file.
• Second number Users in the group assigned to the file.
• Third number Everyone else.

The value of each number is the sum of values representing file permissions:
• 0 No permissions.
• 1 Permission to execute the file.
• 2 Permission to write to the file.
• 4 Permission to read from the file.

Thus, a value of 7 for the first number would provide the file owner with permission to
read, write, and execute a file. A value of 6 for the second number would provide users in
the group assigned to the file with permission to read from the file and write to the file, but
not to execute the file. A value of 0 for the third number would provide everyone else with
no permissions for the file.

By default, the mode attribute is not set. The default mode of a newly created file by UDM
is dependent upon the user's umask or the mode of the source file in a UDM transfer.

Examples
The following example provides the owner, group, and everyone else permission to read,
write, and execute the file:
attrib local mode=777 (

The following example provides the owner permission to read, write, and execute the file;
members of the file's group permission to read and execute the file; and everyone else no
permissions.
attrib local mode=750

The following example provides the owner permission to read and write the file; and no
permissions to the file's group and everyone else.
attrib local mode=600
udm-user-3207 Confidential & Proprietary 230

Copying Files with UDM UDM Transfer Operations
Defaults
By default, the mode attribute is not set.

The default mode of a newly created file by UDM is dependent upon either:
• User's umask attribute.
• Mode of the source file in a UDM transfer.

The latter case comes into play if both the source and destination instances of UDM are:
• Version 3.2 or greater.
• Running under some form of the UNIX operating system or its derivatives (such as

Linux).

The umask attribute is used in specifying the mode if a UDM version prior to 3.2.0 is
involved in the transfer. Version 3.2.0 (and greater) versions can be changed to behave
this way as well by setting the mode attribute to 0 on the destination side of the transfer.

For example:
attrib dest_logical_name mode=0

12.8.7 Destination umask

Under UNIX platforms and the HFS file system under z/OS USS, the umask attribute can
be used to define the file's permissions in accordance to UNIX standards (see Defaults in
Section 12.8.6 File Permission Attribute, above).

See Table 7.2 Common File System Attributes in the Universal Data Mover 3.2.0
Reference Guide for a detailed description of umask.

12.8.8 Transaction-Oriented Transfers

A transaction oriented transfer is a file transfer where the destination file is written using a
temporary filename. Once the file transfer has been completed, the file is renamed to the
appropriate destination filename. To turn on transaction-oriented transfers, set the trans
attribute for the server on the destination side of the transfer to yes.

Note: UDM for OS/400 LIB file system does not support transaction-oriented transfers.
udm-user-3207 Confidential & Proprietary 231

Copying Files with UDM UDM Transfer Operations
12.8.9 Changing the Current Directory in UDM

The cd command is an easy way to change the current directory in the UDM Common
File System, discussed earlier in this section.

By default, when the manager is involved in a two-party transfer, the current directory for
primary server is the path in which the manager was launched under. Under z/OS, this
would be the high-level qualifier for the user id the manager is running as. The secondary
server (as well as the primary server in a three-party transfer) has a default path of the
authenticated user's home directory for hierarchical file systems and a high level qualifier
corresponding to the authenticated user for dd and dsn file systems.

A user can change the current path for a specific server by issuing a cd command:
cd lname[=current-directory]

In this example:
• lname is the logical name of the transfer server to change its default path.
• current-directory is the new current directory to set.

If the cd command is issued with only a logical name, UDM displays the current directory
for the corresponding transfer server.
udm-user-3207 Confidential & Proprietary 232

Auditing Transfer Operations UDM Transfer Operations
12.9 Auditing Transfer Operations

12.9.1 Logging File Transfer Operations

When the message level in the UDM server's configuration is set to audit, the server
writes audit messages to the broker log for each file transferred.

The following is an example of the audit messages produced:
NV3950A [1110470739] Transferring from: host: 'Enderlyn.local'
(10.0.0.101), user: 'root', file: '/Volumes/Archive/VPC
Images/.DS_Store'

UNV3951A [1110470739] Transferring to: host: 'Aluminum.local'
(10.0.0.100), user: 'kevin', file: '/Users/kevin/Desktop/tmp/.DS_Store'

UNV3952A [1110470739] Successfully transferred '/Volumes/Archive/VPC
Images/.DS_Store' on 'Enderlyn.local' to
'/Users/kevin/Desktop/tmp/.DS_Store' on 'Aluminum.local'

The first message is written when the transfer server receives a request to initiate a file
transfer and contains the host name of the source machine, the IP address of the source
machine, the user authenticated with UDM at the source of the transfer, and the name of
the source file to be transferred.

The second message is written when the destination transfer server acknowledges the
file transfer requested and contains the host name of the destination machine, the IP
address of the destination machine, the user authenticated with UDM at the destination of
the transfer, and the destination filename that will be used.

The third message produced indicates that the file was transferred successfully. This
message contains the source and destination filenames and host names.

The UDM Manager also can produce these messages when it is involved in a two-party
transfer session (though much of the information will be redundant with its standard
information messages) by setting its message level to audit. The manager's audit
messages are written to stderr (sysout under z/OS).
udm-user-3207 Confidential & Proprietary 233

Auditing Transfer Operations UDM Transfer Operations
12.9.2 Reporting Transfer Progress

For long transfer operations, it is often useful to see periodic indications of the operation's
progress.

You can get this information by turning on progress reporting using the report command:
report progress=yes

This will cause the UDM manager to issue periodic updates regarding the progress of a
file being transferred. The interval these updates are given is the same as the keep alive
interval.

Progress messages look as follows:
1024000 bytes processed
udm-user-3207 Confidential & Proprietary 234

Chapter 13
Transfer Operations

(z/OS-Specific)
13.1 Overview
This chapter provides information on Universal Data Mover (UDM) transfer operations
that are specific to the z/OS operating system.
• z/OS I/O
• UDM Commands under z/OS
• Copying Load Modules
udm-user-3207 Confidential & Proprietary 235

z/OS I/O Transfer Operations (z/OS-Specific)
13.2 z/OS I/O
This section provides an overview of the z/OS file systems.

13.2.1 Data Sets

There are a variety of data sets on z/OS. The UDM-supported data set organizations and
data set attributes are listed below.

Data Set Names
A z/OS data set name is composed of one or more qualifiers separated by periods. A data
set has a maximum length of 44 characters.

A qualifier has an maximum length of eight characters. The first character of a qualifier
must start with A-Z, @, #, or $. The remaining characters can be 0-9, A-Z, @, #, $, or -.

The first qualifier is commonly referred to as the high-level qualifier (HLQ).

An example data set name is SYS1.CEE.CEEPRC, where:
• SYS1 is the high-level qualifier.
• CEE is the second qualifier.
• CEEPRC is the third and last qualifier.

In some applications contexts, the HLQ can be left off. TSO and ISPF are such
applications. UDM also behaves in this manner. A distinction is the made between a data
set that specifies the HLQ and one that does not specify the HLQ. When the HLQ is
specified, it is referred to as a fully qualified data set name and is enclosed in
apostrophes.
udm-user-3207 Confidential & Proprietary 236

z/OS I/O Transfer Operations (z/OS-Specific)
Data Set Organization
A data set's organization is obtained from the VTOC's format-1 DSCB. If the data set is
cataloged, the DSCB is only read for non-VSAM catalog entries.

The following organizations are supported:
• Physical Sequential
• Partitioned Organization
• Partitioned Data Set Extended
• Generation Data Set

The following organizations are not supported:
• Indexed sequential
• Direct
• Unmovable
• VSAM

Any organization not listed is undetermined.

Record Format
The following record formats are supported:
• Fixed length
• Variable length
• Undefined length
• Blocked
• Fixed length standard
• Variable length spanned
• ISO/ANSI control character
• Machine control character

Block Size
There are three different types of block sizes:
1. User specified block size that cannot exceed 32,760.
2. System determined block size that cannot exceed 32,760.
3. Block sizes supported by the Large Block Interface (LBI) that permits sizes up to 2G.

LBI is supported by DFP on tape devices only at this time.
udm-user-3207 Confidential & Proprietary 237

z/OS I/O Transfer Operations (z/OS-Specific)
13.2.2 Generation Data Group and Generation Data Sets

A Generation Data Group (GDG) is a catalog entry used to maintain a group of
Generation Data Sets (GDS).

GDS's are referred to with absolute names or relative names:
• Absolute name has the form of GDG.G0000V00.
• Relative name has the form of GDG(n), where:

• n = 0 for the current GDS
• n = -1 for the previous GDS
• n = +1 for a new GDS

Allocation
Allocation attributes for a GDS are obtained differently depending on whether the data set
name is an absolute or relative form.

Absolute Name
Allocation attributes for an absolute name are provided like any other data set through
JCL keywords or allocation options.

Relative Name
Allocation attributes for relative names are provided with one of the following methods:
1. By referring to a cataloged data set from which attributes are copied.

a. DCB=(dsname)
b. LIKE=dsname
c. REFDD=ddname

2. By referring to a model Data Set Control Block (DSCB) on the volume on which the
GDG is cataloged. This cannot be used for SMS managed data sets.
a. DCB=(modeldsname,yourattributes)

3. By using the DATACLAS and LIKE allocation keywords.
4. Through the assignment of a DATACLAS by a data class ACS routine.
udm-user-3207 Confidential & Proprietary 238

z/OS I/O Transfer Operations (z/OS-Specific)
13.2.3 Catalogs

There are two types of catalogs:
1. Integrated Catalog Facility (ICF)
2. VSAM Catalogs

Note: IBM has dropped support for VSAM Catalogs as of January 1, 2000; UDM does
not support them.

Symbolic Names
A catalog entry can be defined with symbolic names for the volume serial number. UDM
does resolve the symbolic names when they are found for the volume serial number.

Catalog Entry Types
A catalog entry is defined as a specific type. UDM only supports the non-VSAM type
entry. A catalog entry type can by any one of the following:
• Non-VSAM Data Set
• Generation Data Set
• Cluster
• Alternate Index
• VSAM Path
• Alias
• User Catalog Connector
• Tape Volume Catalog Library
• Tape Volume Catalog Volume

13.2.4 Allocation

Data set allocation is the process of obtaining access to the data set.

If the data set already exists, it resides on a device, such as a tape or, more likely, a disk.
In order to allocate an existing data set, the device must be known. A volume serial name
or number and a unit name or number represents an I/O device in z/OS.

The unit and volume serial number (volser) can be specified explicitly or specified
implicitly (with a catalog entry).

Allocation can be performed with JCL or dynamically. Dynamic allocation requires
allocation attributes to be specified by the user. UDM dynamic allocation of a data set that
has been migrated by HSM (or similar three-party product) will result in the data set being
recalled. UDM will wait until the recall is complete and then continue processing.
udm-user-3207 Confidential & Proprietary 239

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
13.3 UDM Commands under z/OS
This section describes the behavior of UDM commands when working with z/OS data
sets and ddnames.

13.3.1 attrib (Attribute) Command

z/OS data sets can be allocated statically with JCL DD statements or dynamically with the
z/OS Dynamic Allocation service (aka SVC 99).

Table 13.1, below, lists the dynamic allocation attributes that can be specified via the
attrib (Attribute) command. For complete details on an allocation attribute, refer to the
IBM JCL Reference.

Note: When performing a z/OS-to-z/OS copy and the destination file system is DSN,
UDM uses the following allocation attributes obtained from the source file
(assuming the file system is DD or DSN): blksize, dirblocks, dsorg, lrecl,
primspace, secspace, and spaceunit.

If you do not want to use the source files values for these allocation attributes, you
can override them by issuing an attrib command with the attributes that you want
to change before the copy operation.

Attribute Name Description

abnormaldisp • Disposition of a data set after the job ends abnormally.
• Equivalent to the third position sub-parameter of the JCL DISP parameter:

DISP=(status,normaldisp,abnormaldisp).
• Default is DELETE: it can be set with the UDM configuration option

ALLOC_ABNORMAL_DISP.

avgrec • Indication that the unit of allocation space specified with the spaceunit
attribute is records and that the primary space and secondary space values are
in units of 1's, K's, or M's.

• Equivalent to the JCL AVGREC parameter: AVGREC=size.
• No default or configuration option.

blksize • Block size with which the data set is allocated.
• Equivalent to the JCL BLKSIZE parameter: BLKSIZE=size.
• Default is 27998: it can be set with the UDM configuration option

ALLOC_BLKSIZE.

blkszlim • Block size limit when there is not block size specified from any source.
• Equivalent to the JCL BLKSZLIM parameter: BLKSZLIM=size.
• No default or UDM configuration option.

dataclas • SMS data class name.
• Equivalent to the JCL DATACLAS parameter: DATACLAS=name.
• No default: it can be set with the UDM configuration option ALLOC_DATACLAS.
udm-user-3207 Confidential & Proprietary 240

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
datasetseq • Data set sequence number that specifies the relative position of a tape data set
on the volume.

• Equivalent to the data set sequence sub-parameter of the JCL LABEL
parameter: LABEL=(datasetseq,,,,).

• No default or UDM configuration option.

ddndcbref • DCB reference to a ddname.
• Equivalent to the ddname sub-parameter of the JCL DCB parameter:

DCB=ddname.
• No default or UDM configuration option.

den • Tape density to use.
• Equivalent to the DEN sub-parameter of the JCL DCB parameter:

DCB=DEN=density.
• No default or UDM configuration option.

dirblocks • Number of directory blocks to allocate for a partitioned data set.
• Equivalent to the third positional parameter of the second positional parameter

of the JCL SPACE parameter: SPACE=(, (,, dirblocks), . . .).
• Default is 20: it can be set with the UDM configuration option

ALLOC_DIR_BLOCKS.

dsndcbref • DCB reference to a cataloged data set name.
• Equivalent to the data set name sub-parameter of the JCL DCB parameter:

DCB=dsn.
• No default or UDM configuration option.

dsntype • Type of SMS data set to allocate.
• Equivalent to the JCL DSNTYPE parameter: DSNTYPE=type.
• No default or UDM configuration option.

dsorg • Data set organization with which the data set is allocated.
• Equivalent to the JCL DSORG parameter: DSORG=org.
• Default is PS: it can be set with the UDM configuration option ALLOC_DSORG.

expdt • Expiration date of the data set.
• Equivalent to the JCL EXPDT parameter: EXPDT=date.
• No default or UDM configuration option.

label • Data set label type used for mostly tape data sets.
• Equivalent to the label sub-parameter of the JCL LABEL parameter:

LABEL=(,label,,,).
• No default or configuration option.

like • SMS data set name from which to model data set attributes.
• Equivalent to the JCL LIKE parameter: LIKE=dsname.
• No default or UDM configuration option.

lrecl • Logical record length with which the data set is allocated.
• Equivalent to the JCL LRECL parameter: LRECL=len.
• Default is 1024: it can be set with the UDM configuration option

ALLOC_LRECL.

mgmtclas • SMS management class name.
• Equivalent to the JCL MGMTCLAS parameter: MGMTCLAS=name.
• No default: it can be set with the UDM configuration option

ALLOC_MGMTCLAS.

normaldisp • Disposition of a data set after the job ends.
• Equivalent to the JCL DISP parameter:

DISP=(status,normaldisp,abnormaldisp).
• Default is CATLG: it can be set with the UDM configuration option

ALLOC_NORMAL_DISP.

Attribute Name Description
udm-user-3207 Confidential & Proprietary 241

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
password • Password for password protected data sets.
• No JCL equivalent.

primspace • Primary amount of space to allocate for the data set.
• Equivalent to the first positional parameter of the second positional parameter of

the JCL SPACE parameter: SPACE=(, (primspace,), . . .).
• Default is 15: it can be set with the UDM configuration option

ALLOC_PRIM_SPACE.

pwdprotect • Specification for whether or not the data set is password protected.
• Equivalent to the PASSWORD or NOPWREAD sub-parameters of the JCL

LABEL parameter: LABEL=(,,{PASSWORD|NOPWREAD},,).
• Value must be either PASSWORD or NOPWREAD.

recfm • Record format with which the data set is allocated.
• Equivalent to the JCL RECFM parameter: RECFM=fmt.
• Default is VB: it can be set with the UDM configuration option ALLOC_RECFM.

refdd • ddname from which to copy SMS data set attributes.
• Equivalent to the JCL REFDD parameter: REFDD=ddname.
• No default or configuration option.

retpd • Retention period of the data set.
• Equivalent to the JCL RETPD parameter: RETPD=date.
• No default or configuration option.

rlse • Specification for whether or not to release unused space when the data set is
unallocated.

• Equivalent to the sub-parameter RLSE of the JCL SPACE parameter:
SPACE=(,(,,),RLSE).

• Default is no. There is no UDM configuration option.
• Setting the attribute value to yes turns on the attribute.

secspace • Secondary amount of space to allocate for the data set.
• Equivalent to the second positional parameter of the second positional

parameter of the JCL SPACE parameter:
SPACE=(, (, secspace), . . .).

• Default is 15: it can be set with the UDM configuration option
ALLOC_SEC_SPACE.

spaceunit • Allocation unit used to specify the space to allocate for the data set.
• Equivalent to the first positional parameter of the JCL SPACE parameter:

SPACE=(unit, . . .).
• Default is TRK: it can be set with the UDM configuration option

ALLOC_SPACE_UNIT.

status • Status of the data set to be allocated.
• Equivalent to the first positional parameter of the JCL DISP parameter:

DISP=(status,normaldisp,abnormaldisp).
• Default is: OLD for input and output data sets that exist, NEW for output data

sets that don't exist.
• Default input status can be set with UDM configuration option

ALLOC_INPUT_STATUS.
• Default output status can be set with UDM configuration option

ALLOC_OUTPUT_STATUS.

storclas • SMS storage class name.
• Equivalent to the JCL STORCLAS parameter: STORCLAS=name.
• No default: default value can be set with UDM configuration option

ALLOC_STORCLAS.

Attribute Name Description
udm-user-3207 Confidential & Proprietary 242

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
Table 13.1 attrib Command - Dynamic Allocation Attributes

unit • Unit on which the data set is allocated.
• Equivalent to the JCL UNIT parameter: UNIT=unit.
• Default is SYSALLDA: it can be set with UDM configuration option

ALLOC_UNIT.

unitcnt • Number of units to allocate for a multi-volume data set.
• Equivalent to the unit count sub-parameter JCL UNIT parameter:

UNIT=(,unitcnt,).
• No default or UDM configuration option.

volcnt • Number of volumes to allocate for a multi-volume data set.
• Equivalent to the volume count sub-parameter JCL VOL parameter:

VOL=(,,,volcnt,).
• No default or UDM configuration option.

volseq • Volume sequence number on which a multi-volume data set starts.
• Equivalent to the volume sequence number sub-parameter JCL VOL

parameter: VOL=(,,volseq,,).
• No default or UDM configuration option.

volser • Volume serial number on which the data set is allocated.
• Equivalent to the SER sub-parameter of the JCL VOL parameter:

VOL=SER=volser.
• No default: default value can be set with UDM configuration option

ALLOC_VOLSER.

Attribute Name Description
udm-user-3207 Confidential & Proprietary 243

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
13.3.2 cd (Change Directory) Command

The cd (Change Directory) command moves the current position within a file system.
Position means different things depending on the file system.

This section describes the behavior of the cd command for each file system.

DSN (data set name) File System
The DSN (data set name) file system has no directories. The cd command treats each
data set qualifier as a directory in regards to traversing and positioning within the data set
name space.

UDM initializes the current directory to a high-level qualifier equal to the user identifier
with which UDM executes.

A cd value can be enclosed in apostrophes ('). One or more qualifiers enclosed in
apostrophes replaces the current directory value.

A cd value not enclosed in apostrophes is concatenated to the current directory value
separated by a period (.), effectively moving up in the hierarchy.

There are two special directory (qualifier) names:
1. Current directory - represented by a single period (.)

Directory name . makes no change.
2. Previous directory - represented by two periods (..).

Directory name .. moves back one qualifier.

Examples
Table 13.2, below, provides examples of positioning within the data set file system using
the cd command. The examples assume the following:
• User ID of TOM123
• UDM logical name SRV

Table 13.2 cd Command in DSN File System

Current Directory before cd cd command Current Directory after cd

TOM123 cd srv=data TOM123.DATA

TOM123.DATA cd srv=app1.jcl TOM123.DATA.APP1.JCL

TOM123.DATA.APP1.JCL cd srv=.. TOM123.DATA.APP1

TOM123.DATA.APP1 cd srv='GAM789.DATA' GAM789.DATA

GAM789.DATA cd srv=.. GAM789

GAM789 cd srv=.. GAM789
udm-user-3207 Confidential & Proprietary 244

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
DD (ddname) File System
The DD (ddname) file system, like the DSN file system, has no directories. DD is the
simplest form of file system in UDM.

A ddname is defined with a JCL DD statement. All the allocation attributes are specified
with on the JCL DD statement.

UDM initializes the current directory to blanks in the DD file system.

A cd value specifies an allocated ddname to use as the current directory.
udm-user-3207 Confidential & Proprietary 245

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
13.3.3 copy (Copy) Command

The copy command copies files between two systems. The source and destination files
are specified with a file specification. The file specification syntax depends on the file
system being referenced. This section describes the syntax and semantics of the copy
command's file specification.

The copy command also can be used to copy load modules (see Section 13.4 Copying Load Modules).

DSN File System
The semantics of a file specification is determined primarily by whether a sequential or a
partitioned file is being referenced. A sequential file is treated as a single entity in regards
to reading and writing. A partitioned file is treated as a composite of multiple sequential
files each operated on individually.

Sequential Data Sets
A file is considered sequential if it has a data set organization of Physical Sequential (PS).

A file is referenced directly as a fully qualified name enclosed in apostrophes (') or as a
relative name composed of one or more qualifiers concatenated to the current working
directory value to form a fully qualified name. The qualifiers . and .. , which are used in the
cd command, do not have any special meaning in a file specification. They most likely will
result in an invalid fully-qualified data set name.

Included in the sequential category are generation data sets. A data set is considered a
generation data set if it had a generation data group catalog entry and the data set name
includes a generation relative number (for example: (0), (+1), (-1)).

Table 13.3, below, provides some examples of copy command file specifications for
sequential data sets. The examples assume a UDM logical name of SRV.

Table 13.3 copy Command File Specifications for Sequential Data Sets

Note: In the case of a destination file specification, if no destination file is specified and
the attribute usefqn is set to no (default) for the source dsn transfer server, only
the part of the data set name matching the source mask in the copy operation is
used as the destination file name. If the attribute userfqn is set to yes on the
source, the destination data set name is composed of the source current working
directory concatenated with the source file name (the fully qualified file name).

z/OS

Current Directory File Specification Result

TOM123 copy srv=data TOM123.DATA

TOM123 copy srv=app1.jcl TOM123.APP1.JCL

TOM123 copy srv='GAM789.APP2.DATA' GAM789.APP2.DATA
udm-user-3207 Confidential & Proprietary 246

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
Partitioned Data Sets
A file is considered partitioned if it has a data set organization of Partitioned Organization
(PO) or a system managed type of Partitioned Data Set Extended (PDSE).

A file is referenced directly as a fully qualified name enclosed in apostrophes (') or as a
relative name composed of one or more qualifiers concatenated to the current working
directory value to form a fully qualified name. The qualifiers . and .. that are used in the
cd command do not have any special meaning in a file specification and will most likely
result in an invalid fully-qualified data set name.

A partitioned data set member requires an additional member name as part of the file
specification. The member name is enclosed within parenthesis as in APP.PDS(DATA1),
where APP.PDS is the partitioned data set name and DATA1 is the member name.

Table 13.4 provides some examples of copy command destination file specifications for
partitioned data sets. The examples assume that the fully qualified names are PDS's and
a UDM logical name of SRV.

Table 13.4 copy Command Destination File Specifications for Partitioned Data Sets

Table 13.5 provides some examples of copy command source file specifications for
partitioned data sets. The examples assume that the fully qualified names are PDS's and
a UDM logical name of SRV.

Table 13.5 copy Command Source File Specifications for Partitioned Data Sets

Note:
• Member names are restricted to ISPF member naming conventions.
• The createop attribute values REPLACE and NEW apply to the member names and

not to the partitioned data set.

Current Directory copy Command Result

TOM123 copy local=app1 srv=data TOM123.DATA(APP1)

TOM123.DATA copy local=app1 TOM123.DATA(APP1)

TOM123.DATA copy local=app1
srv='GAM789.APP2.DATA'

GAM789.APP2.DATA(APP1)

TOM123.DATA copy local=app1 srv=PDS(PR01) TOM123.DATA.PDS(PR01)

Current Directory copy Command Result

TOM123 copy srv=data(app1) local=app1.txt TOM123.DATA(APP1)

TOM123.DATA copy srv=app1 local=app1.txt TOM123.DATA(APP1)

TOM123.DATA copy srv='GAM789.DATA(APP1)'
local=app1.txt

GAM789.DATA(APP1)
udm-user-3207 Confidential & Proprietary 247

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
DD File System
The semantics of a file specification is determined primarily by whether the ddname being
referenced has a sequential or a partitioned data set allocated.

A ddname allocating a sequential data set is referred to as a sequential ddname, and a
ddname allocating a partitioned data set is referred to as a partitioned ddname in the
following text for purposes of brevity.

Sequential ddnames
A ddname is considered sequential if it allocates a data set with an organization of
Physical Sequential (PS). A ddname reference is always a fully qualified name. A
ddname must not be enclosed in apostrophes (').

There are three possible sequential ddname destination file specifications:
1. Name of the ddname defined by a JCL DD statement.
2. Current working directory value which is set to the name of a ddname and no

destination file specification.
3. Source file specification if the current working directory value set to blanks and no

destination file specification is provided.

There is one possible sequential ddname source file specification:
1. Name of the ddname defined by a JCL DD statement.

Table 13.6 provides some examples of copy command destination file specifications for
sequential ddnames. The examples assume that ddname APPDD1 is defined with a JCL
DD statement and a UDM logical name of SRV.

Table 13.6 copy Command Destination File Specifications for Sequential ddnames

Table 13.7 provides an example of copy command source file specifications for
sequential ddnames. The examples assume that ddname APPDD1 is defined with a JCL
DD statement and a UDM logical name of SRV.

Table 13.7 copy Command Source File Specification for Sequential ddnames

Note: The createop attribute values REPLACE and NEW are not applicable to the
sequential ddname file system.

Current Directory copy Command Result

copy local=app1.txt srv=appdd1 APPDD1

APPDD1 copy local=app1.txt APPDD1

copy local=app1 APP1

Current Directory copy Command Result

copy srv=appdd1 local=app1.txt APPDD1
udm-user-3207 Confidential & Proprietary 248

UDM Commands under z/OS Transfer Operations (z/OS-Specific)
Partitioned ddnames
A ddname is considered partitioned if it allocates a data set with an organization of
Partition Organization (PO) or a system managed type of Partitioned Data Set Extended
(PDSE). A ddname reference is always a fully-qualified name. A ddname must not be
enclosed in apostrophes (').

A partitioned data set member requires an additional member name as part of the file
specification. The member name is enclosed within parenthesis as in APPDD(DATA1),
where APPDD is the ddname and DATA1 is the member name.

There are three possible partitioned ddname destination file specifications:
1. Name of the ddname defined by a JCL DD statement followed by a member name

enclosed in parenthesis.
2. Current working directory value set to the name of a ddname defined by a JCL DD

statement, and a member name specified as the destination file specification.
3. Current working directory value set to the name of a ddname defined by a JCL DD

statement, and a member name specified by the source file specification if no
destination file specification is provided.

There are two possible partitioned ddname source file specification:
1. Complete name of the ddname defined by a JCL DD statement followed by a member

name enclosed in parenthesis.
2. Current working directory value set to the name of a ddname defined by a JCL DD

statement and a member name specified as the source file name.

Table 13.8 provides some examples of copy command destination file specifications for
partitioned ddnames. The examples assume that ddname APPDD1 is defined with a JCL
DD statement and a UDM logical name of SRV.

Table 13.8 copy Command Destination File Specifications for Partitioned ddnames

Table 13.9 provides an example of copy command source file specifications for
sequential ddnames. The examples assume that ddname APPDD1 is defined with a JCL
DD statement and a UDM logical name of SRV.

Table 13.9 copy Command Source File Specifications for Sequential ddnames

Note: The createop attribute values REPLACE and NEW are applicable to members of
a partitioned ddname.

Current Directory copy Command Result

copy local=app1.txt srv=appdd1(data1) APPDD1(DATA1)

APPDD1 copy local=app1.txt srv=data1 APPDD1(DATA1)

APPDD1 copy local=app1 APPDD1(APP1)

Current Directory copy Command Result

copy srv=appdd1(data1) local=app1.txt APPDD1(DATA1)

APPDD1 copy srv=data1 local=app1.txt APPDD1(DATA1)
udm-user-3207 Confidential & Proprietary 249

Copying Load Modules Transfer Operations (z/OS-Specific)
13.4 Copying Load Modules
UDM for z/OS provides the ability to copy load modules.

Note: Version 3.2.0 or greater of UDM must be used on both the source and destination
sides of the transfer operation for a load module to be properly copied and usable.

The syntax for copying load modules is the same as any copy operation involving
PDS/Es. However, there are some differences in how the copy operation takes place
when the command to copy load module(s) is issued.

On the source side of the transfer, UDM uses IEBCOPY to unload the load modules,
matching the source file mask from the PDS/E in which they reside into a temporary data
set. It is this temporary data set that is transferred to the destination system. As a result,
when UDM displays the status messages indicating that it is copying a file, it is the name
of the temporary file that is displayed, since that is what is actually being transferred.

A temporary file name is also used on the destination side of the transfer. After the
temporary file has been transferred, the load modules are ‘unpacked,’ using IEBCOPY, into
a staging PDS/E (also using a temporary data set name). This PDS/E is created using the
same attributes as the source PDS/E. From there, IEBCOPY is called a final time to move
the load modules from the staging PDS/E to the final destination PDS/E. At this point, all
of the temporary files are cleaned up.

The two-step process on the destination side of the transfer is used in case the blocking
of the final destination data set does not match that of the source PDS/E.
udm-user-3207 Confidential & Proprietary 250

Copying Load Modules Transfer Operations (z/OS-Specific)
13.4.1 Example

Figure 13.1, below, illustrates an example script of a load module transfer.

Figure 13.1 Load Module Transfer Script - Example

This simple script will copy all of the load modules from a PDS/E on the source system
named MYHLQ.UDM.TESTLM to a newly created PDS/E on the destination system named
YOURHLQ.TEST.LOAD.

Figure 13.2, below, illustrates an example of the output that is received when running a
script such as that illustrated in Figure 13.1.

Figure 13.2 Load Module Transfer Script - Output

open src=* dst=dst-zos

attrib dst createop=new

copy src=’MYHLQ.UDM.TESTLM(*)’ dst=’YOURHLQ.TEST.LOAD’

Data session established using cipher: NULL-MD5

Two-party session established with 2 (component 1208550125)

Transfer mode settings:

type=binary

trim=no

Session options:

Keep Alive Interval: 120

Network Fault Tolerant: yes

src: Packaging up the following files in
 'MYHLQ.UDMTMP.STC07047.R2EED53.N0000000'

src: LM1

src: LM2

src: tmp

src: 'MYHLQ.UDMTMP.STC07047.R2EED53.N0000000' is being transferred in binary
 mode

src: 'YOURHLQ.UDMTMP.JOB07063.RD36420.N0000000' will be used as the
 destination filname

dst: Unpacking from 'YOURHLQ.UDMTMP.JOB07063.RD36420.N0000000'

src: 'MYHLQ.UDMTMP.STC07047.R2EED53.N0000000' transfered successfully in
 0:01:55.

src: 10566891 bytes read 10566891 bytes written

src: Transfer operation complete. 1 file(s) copied in 0:01:55.448.

src: 10566891 bytes transferred (91529.44 bytes per second)
udm-user-3207 Confidential & Proprietary 251

Copying Load Modules Transfer Operations (z/OS-Specific)
At the beginning of the copy operation, the source side indicates that it is packaging the
load modules into a temporary data set, MYHLQ.UDMTMP.STC07047.R2EED53.N0000000.
This is the temporary data set that is transferred using a data set name of
YOURHLQ.UDMTMP.JOB07063.RD36420.N0000000 on the destination side. It is from
YOURHLQ.UDMTMP.JOB07063.RD36420.N0000000 that the load modules are unpacked
into the temporary staging data set before being moved into the final destination PDS/E,
YOURHLQ.TEST.LOAD, which was specified in the copy command.

As you can see, some of the output from a copy operation involving load modules may
vary from the output when copying other types of data sets. However, the nomenclature
of the copy command has not changed.

Likewise, attributes such as CREATEOP, DIRBLOCKS, and others work the same way with
load modules as they do with other types of data sets. This includes the caveat that the
attribute settings must be compatible with the type of data set(s) involved in the transfer.

13.4.2 Error Reporting

It is possible for the IEBCOPY portions of a load module transfer to fail. If this occurs, UDM
prints the output from IEBCOPY in the transaction log.

13.4.3 Special Attributes

UDM uses heuristics in determining the space attributes for allocating the temporary data
sets. The volume that these data sets reside is chosen by the system.

The TMPVOLSER attribute lets you set the volume on which the temporary files will be
allocated.
• Setting this attribute on the source side specifies the location of the temporary

sequential data set that will be transferred.
• Setting this attribute on the destination side specifies the volume for the temporary

transfer file as well as the volume used by the temporary staging PDS/E.

The TMPPRIMSPACE, TMPSECSPACE, and TMPSPACEUNIT attributes specify the amount of
primary space and secondary space used when allocating the temporary files as well as
the space unit used.
• When set on the source side, these attributes affect the temporary sequential data set

that will be transferred.
• When set on the destination side, these attributes are used in allocating the

temporary transfer file and the temporary staging PDS/E.

The TMPDIRBLOCKS attribute is used only on the destination side. It specifies the number
of directory blocks used by the staging PDS/E.

Note: Although you can override these attributes, it is not recommended.
udm-user-3207 Confidential & Proprietary 252

Chapter 14
Transfer Operations

(OS/400-Specific)
14.1 Overview
This section describes information that is specific to OS/400 file transfer operations:
• OS/400 I/O
• Codepage - CCSID mappings
• UDM commands under OS/400
udm-user-3207 Confidential & Proprietary 253

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2 OS/400 I/O
This section describes the file systems and file types available in UDM for OS/400.

14.2.1 File Systems

UDM for OS/400 supports two types of file systems:
1. LIB (Library) file system
2. HFS (IFS: root and QOpenSys)

The default file system for UDM on the OS/400 is LIB.

14.2.2 HFS (for OS/400) File System

HFS follows the CFS rules in Section 12.4 UDM Common File System.

It supports stream files under the root and QOpenSys IFS file systems. Users using UDM
to access file systems under IFS, other than root and QOpenSys, do so at their own risk.

HFS also provides enhanced eol handling and eol attribute values for the mixed ASCII
and EBCIDIC environment. See Section 12.7.3 End of Line Sequence for details.

14.2.3 LIB File System

LIB follows the extensions to CFS outlined in Section 8.5.2 LIB.

File Types
UDM for OS/400 supports three file types of the LIB file system:
1. Data Physical Files
2. Source Physical Files
3. Save Files

The type of file created in a copy command on the destination side is governed by the
OS/400-specific FILETYPE attribute (see Table 14.2 OS/400-Specific LIB File Attributes
for Creating New Files).

The default file type created in a copy command is a data physical file.
udm-user-3207 Confidential & Proprietary 254

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2.4 Data Physical Files Support

UDM for OS/400 supports data physical files with a CCSID and with no DDS (default
CCSID of 65535).

If a DDS is attached to a data physical file on the source side, that same DDS is used
when doing an OS/400 to OS/400 copy on the destination side unless the DDSFILE,
DDSLIB, and/or DDSMBR attributes are overridden on the destination side to indicate a
different DDS or no DDS is to be used.

The DDS itself is not copied, so it must reside on the destination side.

There is one exception: if the source side is a file created via FTP, the created file has an
associated DDS file. The associated DDS specifies a single field and DDS source
identified by the file is deleted following completion of the job under which the file was
created. When UDM identifies a file created by FTP, it ignores the DDS and copies the file
as though no DDS exists.

When copying any file to a destination data physical file with the DDSFILE, DDSLIB, and
DDSMBR attributes set to point to the file, library, and member of an existing DDS, that
DDS is attached to the destination file.

In either case, whether from the source or explicitly on the destination side, if a DDS is
used on the destination side, the resulting file's CCSID is determined by the DDS or by
the job CCSID settings if not provided by the DDS.

If the source file has no DDS, or if the destination attributes specify no DDS (or are
overridden to do so to prevent the source attributes used in an OS/400 to OS/400 copy),
the destination data physical file is created with a CCSID of 65535 (meaning no
translation).

UDM will issue an informational message if you try to transfer a source file that has a
DDS in text mode that tells the user corruption is likely. This is because text translation on
the field level is governed by the DDS. UDM does not support independent field-level text
translation.

Caution about Text Mode Transfer of Files with DDS
In general, files with DDS should be transferred using binary mode only.

There are instances when a user may want to use text mode. However, without an
advanced user's thorough understanding of CCSID and code page, unexpected results
will occur.

As of Universal Products for OS/400, release 3.2.0, when the correct conditions are met,
UDM maps the code page attribute associated with the data stream to a CCSID. This
occurs only when data is transferred to a data physical file in text mode with an
associated DDS file.

This mapping is used on the LIB file open to obtain translation between the data stream
and data in fields with CCSIDs other than 65535. The translation is done by OS/400;
UDM is in no way involved with this translation process.
udm-user-3207 Confidential & Proprietary 255

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2.5 Source Physical Files Support

Source physical files have a common, known DDS. This DDS specifies the following
record format:
• First six bytes contain a sequence number
• Next six bytes contain a line modification date
• Remaining number of bytes are text data This length can be between 1 and 32754

bytes for single-byte character systems.

A single attribute, USESRCSEQ (with values of YES or NO) governs whether or not the
sequence number and modification date are included in the source record when
transferring a source physical file. How this happens depends on the mode type of the
transfer. By default, this value is set to NO, meaning sequence numbers and modification
dates are to be stripped.

When writing a source physical file, the USESRCSEQ attribute specifies whether or not
source sequence information is expected to be included in the source data. If the value is
set to NO, UDM generates sequence number and modification date information.
Otherwise, the first 12 bytes of each source record contain that information. This value is
sent as a source attribute in OS/400 to OS/400 copies, so unless it is overridden, it
automatically will tell the destination side if the sequence numbers are in the data.
Allowing this option to be set permits the effective copying of source physical files from
non-400 systems that already contain sequence number information.

When creating UDM sequence data, two additional destination side attributes are used.
• SEQSTART specifies the starting sequence number of the first record written and

range from 0000.01 to 9999.99. The default is 0001.00.
• SEQINCR indicates how much the sequence number is incremented from record to

record. Valid values are 00.01 to 99.99. The default value is 01.00.

SEQSTART and SEQINCR are sent as source attributes, but used on the destination side
only when a new file is being created. If UDM is replacing or appending to an existing
source physical file, the values of SEQSTART and SEQINCR of the existing destination
file are used.
udm-user-3207 Confidential & Proprietary 256

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2.6 Copying Source Physical Files

Source physical files can be copied in both text and binary mode.

There are three possible copy operations involving source physical files:
1. Like Copies of Source Physical File Data
2. Non-Source Physical to Source Physical Copies
3. Source Physical to Non-Source Physical Copies

Like Copies of Source Physical File Data
OS/400 to OS/400 copy: both the source and destination are source physical files.

In this case, if the sequence and date fields are not stripped from the source, this data is
written as is to the destination. If the fields are stripped, the SEQSTART and SEQINCR
attributes define how the sequence data is generated (described later in this section) and
the current date is placed in the date field.

Non-Source Physical to Source Physical Copies
Non-source physical file is the source and a source physical file is the destination.

In this case, the SECSTART and SEQINCR attributes are used to create the sequence
number and the date field is seeding with the current date.

Source Physical to Non-Source Physical Copies
Source records are read and formatted as described above and the destination system
writes them out as dictated by its attributes.
udm-user-3207 Confidential & Proprietary 257

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2.7 Save Files Support

Save (SAVF) files are essentially binary archives of data. They may contain one or more
objects inside. These objects can be extracted individually or in their entirety.

UDM for OS/400 supports NEW and REPLACE operations for CREATEOP when a Save
file is the destination file type. It does not support append operations on Save files.

SAVF to SAVF Transfers
Copying a Save file to a Save file always should be performed via a binary transfer,
regardless of the mode type setting. All of the source data is read in binary and written in
binary. This type of transfer succeeds only if the CREATEOP is set to NEW or REPLACE.

If the destination Save file already exists, and the CREATEOP is set to APPEND, UDM
issues an error and aborts the transfer.

Non-SAVF to SAVF Transfers
As with all cases when a Save file is involved, a binary transfer should be forced. The
source data is written to the destination in the form it is read. Only the values of NEW and
REPLACE are supported for CREATEOP on the destination side when the destination file
type is a Save file.

Note: The non-Save file must be a file that originally was created as a Save file on an
OS/400 system and then stored as a binary file on a non-OS/400 system.

SAVF to Non-SAVF Transfers
Data is read and transferred automatically in binary to the destination machine.
udm-user-3207 Confidential & Proprietary 258

OS/400 I/O Transfer Operations (OS/400-Specific)
14.2.8 File Specifications

File specifications in the LIB file system consist of up to three components - library, file,
and member - that take the following form:
LIBRARY/FILE(MEMBER)

Note: Data physical files and source physical files have members. Save files do not.

14.2.9 Wild Cards

In source file specifications in the LIB file system for the delete command and for the copy
command and file specifications for the forfiles statement, wildcards can appear in the
library, file, and/or member portions. An asterisk (*) represents a match of zero or more
characters. A question mark (?) represents a match of exactly one character,

Wildcards only apply to the library, file or member portion of the fully qualified file name in
which they appear. For example, in the statement COPY SRC=ABC/DEF*, the wildcard
only applies to the file portion of the name and an error will result because the user did
not provide a member name. To copy all of the files that begin with DEF, along with all of
their members from library ABC, use the format COPY SRC=ABC/DEF*(*). Likewise, to
copy all of the files and their members in libraries that begin with ABC, use the format
COPY SRC=ABC*/*(*).

In destination file specifications, wild cards are not allowed.

Examples

COPY SRC=ABC*/DEF*

Copies all files beginning with DEF from all libraries beginning with ABC.

COPY SRC=ABC/DEF(*)

Copies all the members in the physical file DEF in the library ABC.

DELETE SRC=MYLIB/MYFILE?

Deletes all files in the library MYLIB starting with MYFILE and containing one additional
character.

FORFILES SRC=*/*(*)

Lists all members in all files in all libraries.
udm-user-3207 Confidential & Proprietary 259

Codepage - CCSID Mappings Transfer Operations (OS/400-Specific)
14.3 Codepage - CCSID Mappings
Information that is stored, moved, and displayed on OS/400 has a CCSID (Coded
Character Set IDentifier) number associated with it. UDM uses these CCSID numbers,
where appropriate, when creating data files, transferring data, and storing data.

Each language available on OS/400 has an associated CCSID. The CCSID identifies the
mapping of numeric representations associated with each letter or symbol represented by
the computer. It also identifies the glyphs required to represent those characters and
symbols when displayed. UDM is not concerned about the display aspect of a CCSID or
the associated data, only about the mapping between these numeric representations.

Code pages provide one mechanism of mapping (translating) between these numeric
representations. Another means of representing these mappings is to use two CCSIDs:
one for the data origin and another for the data destination. For example, when writing
data to a file on OS/400, the data stream being sent to the file has an associated CCSID
and the file itself has an associated CCSID. In this way, the operating system knows how
to provide the translation between data to be written to a file and the data that is
physically on the disk file.

For UDM on OS/400, the data stream CCSID is established via the code page to CCSID mapping file which is
controlled by the UDM Manager CODEPAGE_TO_CCSID_MAP configuration file option and the UDM Server
CODEPAGE_TO_CCSID_MAP configuration file option.

Of course, the translation also works the other way around, when data is read from a disk
it is translated from the physical disk back to the data stream. One special CCSID is
65535, which indicates that no translation is to take place.

When transferring data between computer systems UDM allows the specification of a
code page for each system. For example:
open source=winsys45 user=id1 pwd=mypwd codepage=iso8859-1
destination=os400trex user=id2 pwd=newpwd codepage=IBM037

This tells UDM that the two code pages iso8859-1 and IBM037 are to be used for
mapping data between the two systems.

Very often, the numeric portion of a code page also is a CCSID to which the code page
relates. In this case, the numeric representations represented by the code page are the
same as those represented by the CCSID. One example of this common identification is
the code page IBM037 and the CCSID 037. This code page and CCSID represent the
native numeric representation of data under OS/400.

The default code page for UDM is IBM037. This is the internal code page, as well as the
default external code page used for the control session and data session, unless
overridden by the configuration file or the CODEPAGE parameter on the open command
(data session only).

OS/400
udm-user-3207 Confidential & Proprietary 260

Codepage - CCSID Mappings Transfer Operations (OS/400-Specific)
14.3.1 CCSID Mapping

In order to get data to and from a file with a given CCSID, a corresponding CCSID
matching the data session code page must be used in order to map the data correctly.

The data stream CCSID is mapped from the code page via the code page to CCSID
mapping table. By default, internal tables provide this mapping; however, see the UDM
Manager CODEPAGE_TO_CCSID_MAP configuration option or the UDM Server
CODEPAGE_TO_CCSID_MAP configuration option in the UDM Reference Guide
regarding setting up an external file.

If a mapping cannot be made, the following occurs:
1. Warning is issued to the user.
2. Copy operation fails.

ASCII code pages can map to CCSIDs that are available in the HFS file system but not
the LIB file system. If one of these code pages is used, a different warning should be
issued that lets the user know that the mapping will work for HFS, but the behavior in the
LIB file system is indeterminate.

Table 14.1, below, contains those mappings.

Note: If a code page contains a dash (-) in the name (for example, ISO8859-1), an
underscore (_) must replace the (-) when the code page is used in a UDM
script.

Code Page CCSID HFS LIB

IBM037 037 √ √

IBM273 273 √ √

IBM277 277 √ √

IBM278 278 √ √

IBM280 280 √ √

IBM284 284 √ √

IBM500 500 √ √

IBM1047

IBM1140 1140 √ √

IBM1141 1141 √ √

IBM1142 1142 √ √

IBM1143 1143 √ √

IBM1144 1144 √ √

IBM1145 1145 √ √

IBM1146 1146 √ √

IBM1147 1147 √ √

IBM1148 1148 √ √
udm-user-3207 Confidential & Proprietary 261

Codepage - CCSID Mappings Transfer Operations (OS/400-Specific)
Table 14.1 CCSID Mappings

ISO8859-1 819 √

ISO8859-2 912 √

ISO8859-4 914 √

ISO8859-5 915 √

ISO8859-6 1089 √

ISO8859-7 813 √

ISO8859-8 916 √

ISO8859-9 920 √

ISO8859-13 921 √

ISO8859-15 923 √

PC437 437 √

PC737 737 √

PC775 775 √

PC850 850 √

PC852 852 √

PC855 855 √

PC857 857 √

PC860 860 √

PC861 861 √

PC862 862 √

PC863 863 √

PC864 864 √

PC865 865 √

PC866 866 √

PC869 869 √

PC874 874 √

WIN1250 1250 √

WIN1251 1251 √

WIN1252 1252 √

WIN1253 1253 √

WIN1254 1254 √

WIN1255 1255 √

WIN1256 1256 √

WIN1257 1257 √

WIN1258 1258 √

Code Page CCSID HFS LIB
udm-user-3207 Confidential & Proprietary 262

Command Reference Transfer Operations (OS/400-Specific)
14.4 Command Reference
This section describes UDM command behavior when working with the LIB and HFS file
systems.

14.4.1 attrib (Attribute) Command

UDM provides three attribute levels. In order of precedence, from lowest to highest, they
are:
1. Default (lowest priority)
2. Source
3. Override (highest priority)

When a user sets an attribute, the override attribute level is being set. Default attributes
are those set by UDM at startup. Source attributes are attributes that UDM obtains from
the source file and uses for the destination file. For example, when transferring a file one
OS/400 LIB location to another, UDM reads the record length of the source file and uses
the source file record length to create the destination file. If the source file is on UNIX or in
the HFS file system, record length has no meaning and the source attribute is not set.

In addition to the standard UDM file attributes (CREATEOP, EOL, LINELEN, LINEOP,
PADLINE, and TRUNCEXT), OS/400-specific file attributes are required in order to create
new files in the LIB and HFS file systems. However, not all attributes are required for all
file types. (For information on which attributes can be used with each file type, refer to
OS/400 online documentation.)

File Attributes
The following file attributes tables (Table 14.2 and Table 14.3) provides the following
information about OS/400-specific file attributes and the file types for which they are
required:

Name
Name of the attribute to be used in the LIB file system

Description
Description of the attribute

Source
Indication of whether or not the attribute is a source attribute. A source attribute is one
whose destination side value is taken from its source side unless the user explicitly has
overridden the destination side value. Source attributes are used only when both of the
these conditions apply:
• Copying from one OS/400 system to another
• Both source and destination are in the LIB file systems
udm-user-3207 Confidential & Proprietary 263

Command Reference Transfer Operations (OS/400-Specific)
Value
Values that can be assigned to the attribute

UDM Default
UDM default value that is assigned to an attribute if a value is not otherwise assigned. A
UDM default of NULL identifies the attribute as available to be set, but not set initially. If
the attribute value is NULL (or empty string), the system default is used.

System Default
OS/400 system default value that is assigned to an attribute if its UDM default is NULL or
empty string. An attribute can have different system defaults for different file types.

File Type
Types of files in the LIB and HFS file systems to which an attribute applies:
• LIBLibrary
• PF Data physical file
• SP Source physical file
• SAVFSave file
• Stream

LIB File System Attributes
Table 14.2 identifies attributes that are unique to the LIB file system.

Name Description Source Value UDM
Default

System
Default

File
Type

ACCPTH Access path type ARRIVAL, KEYED NULL ARRIVAL SP

ALWDLT Allow delete operation √ YES, NO NULL YES PF, SP

ALWUPD Allow update operation √ YES, NO NULL YES PF, SP

ASPDEV ASP device ASP, ASPGRPPRI,
SYSTEM, device
name

NULL ASP LIB

ASPNUM ASP number LIBASP, 1-32,
ASPDEV

NULL LIBASP
for SAVF,
1 for LIB

LIB,
SAVF

AUT Authority LIBCRTAUT, ALL,
CHANGE,
EXCLUDE, USE
²

NULL LIBCRTAUT
for
LIB,PF,SP
EXCLUDE
 for SAVF

LIB, PF,
SP, SAVF

CCSID * CCSID of the file (source
physical files only). For data
physical files, the DDS (if one
is given) determines its
CCSID; if no DDS is given, the
value is 65535.

√ EBCDIC CCSIDs CODEPAGE SP
udm-user-3207 Confidential & Proprietary 264

Command Reference Transfer Operations (OS/400-Specific)
CRTAUT Create authority SYSVAL, ALL,
CHANGE,
EXCLUDE, USE,
authority name

NULL LIB

DDSLIB Library of the DDS used to
describe the file

√ empty string PF

DDSFILE File of the DDS used to
describe the file

√ empty string PF

DDSMBR Member of the DDS used to
describe the file

√ empty string PF

DLTPCT Maximum percentage of
deleted records allowed

1-100, NONE NULL NONE PF

EXPDATE Expiration date for member √ date, NONE NULL NONE PF, SP

FILETYPE Type of file to create when
creating a new file

√ DATA, SRC, SAVF DATA PF, SP,
SAVF

FRCRATIO Records to a force write integer, NONE NULL NONE PF, SP

GENLVL Generation severity level 0-30 NULL 20 PF

LIBTYPE Type of library created when
creating a library

√ PROD, TEST PROD LIB

LVLCHK Record format level check √ YES, NO NULL YES PF

MAXMBRS Maximum number of members √ integer, NOMAX NULL 1 for PF,
NOMAX
for SP

PF, SP

MAXRCDS Maximum number of records 1-2146762800,
NOMAX

NULL SAVF

OPTION Source listing options SRC, NOSRC,
SOURCE,
NOSOURCE, LIST,
NOLIST, SECLVL,
NOSECLVL,
EVENTF,
NOEVENTF
(up to four
repetitions)

empty string PF

RCDLEN Record length if no DDS is
used

√ integer 92 PF, SP

REUSEDLT Reuse deleted records √ YES, NO NULL NO PF

SEQSTART Beginning sequence number
used when writing to a source
physical file

√ 0000.01 – 9999.99 1.00 SP

SEQINCR Amount to increment
sequence number by when
writing a record to a source
physical file

√ 00.01 – 99..99 1.00 SP

SHARE Share open data path √ YES, NO NULL NO PF, SP,
SAVF

Name Description Source Value UDM
Default

System
Default

File
Type
udm-user-3207 Confidential & Proprietary 265

Command Reference Transfer Operations (OS/400-Specific)
Table 14.2 OS/400-Specific LIB File Attributes for Creating New Files

HFS Attributes
Table 14.3 identifies attributes that are unique to the HFS file system. (Currently, there is
only one HFS unique attribute, CCSID.)

Table 14.3 OS/400 -Specific HFS File Attributes for Creating New Files

SIZE Member size √ • Single values:
NOMAX

• Other values:
Comma-separa
ted element list

• Element 1:
Initial number of
records
1-2147483646,

• Element 2:
Increment
number of
records Integer,

• Element 3:
Maximum
increments
Integer (EX:
10000,1000,3)

size_attrib
configuration
file entry if
provided;
otherwise
empty string

10000,1000,
3 for PF,
10000,1000,
499 for SP

PF, SP

USESRCSEQ Sequence number and
modification date information:
• On Source side: retain

this information when
copying a source physical
file

• On Destination side:
Record data includes this
information

√ YES, NO NO SP

WAITFILE Maximum file wait time integer, IMMED,
CLS

NULL 30 for PF
IMMED for
SP, SAVF

PF, SP,
SAVF

WAITRCD Maximum record wait time integer, IMMED,
NOMAX

NULL 60 PF, SP

* With CCSID set to CODEPAGE, when the UDM CCSID attribute is not set either explicitly or implicitly via an OS/400 to
OS/400 file transfer, the CCSID associated with the code page via the code page to CCSID mapping tables gets used as
the CCSID attribute value. One implication is that, by default, files may be created with the CCSID associated with the
codepage option.

Name Description Source Value UDM
Default

System
Default

File
Type

Name Description Source Value UDM
Default

System
Default

File
Type

CCSID CCSID of the file √ EBCDIC and ASCII
CCSIDs

CODEPAGE stream
udm-user-3207 Confidential & Proprietary 266

Command Reference Transfer Operations (OS/400-Specific)
14.4.2 call (Call) Command

To invoke a script, the member name is required and can be *FILE:

call mylib/myfile(myscript)

Specifying *FILE invokes the normal default OS/400 file search order.

To invoke a script included as an inline file in a database job, the call must specify *FIRST
as the database member name.

The following example illustrates both:
• Invocation of an inline script, CALLME, using the STRUDM command from a database

job.
• Invocation of an inline script, CALL1, using the CALL command from a database job.

//BCHJOB JOB(testcall) ENDSEV(10) OUTQ(mytest/UDMOUTQ) LOGCLPGM(*YES)
LOG(2 20 *SECLVL) MSGQ(*USRPRF)
//DATA FILE(CALL1) ENDCHAR(ENDDATAFILE)
print msg="I made it to call1 - an inline file"
ENDDATAFILE
//DATA FILE(CALLME) ENDCHAR(ENDDATAFILE)
OPEN S=AS400V5 USER=qatest PWD=***** PORT=4311
CALL CALL1(*FIRST)
CLOSE
ENDDATAFILE
STRUDM SCRFILE(CALLME)
//ENDBCHJOB
udm-user-3207 Confidential & Proprietary 267

Command Reference Transfer Operations (OS/400-Specific)
14.4.3 cd (Change Directory) Command

When you authenticate with a UDM Server running under OS/400, the current library is
set to the default library for that user.

In file operations where the library is not identified explicitly as a part of the file
specification, the current library is used instead.

Example:
COPY SRC=C:\MYFILE DST=MYFILE(MYMEMB)

With a current library set to MYUSER, this command will result in a destination file
specification name of MYUSER/MYFILE(MYMEMB).

You can change the current library by issuing the cd (Change Directory) command with
the new library name as in this example:
CD DST=YOURUSER

There is a special case, when using UDM from one OS/400 machine to another, where
the source library name can be used instead (see Section 14 Samples for more details).
In order for this to work, you must first clear the destination current library by issuing the
following command:
CD DST=..
udm-user-3207 Confidential & Proprietary 268

Command Reference Transfer Operations (OS/400-Specific)
14.4.4 copy (Copy) Command

In both the HFS and LIB file systems, if a file with multi-byte characters, including DBCS
(Double Byte Character Set), is transferred using UDM in text mode, data loss or
corruption can occur. This is because UDM is basically SBCS (Single Byte Character Set)
in nature.

If an SBCS code page is used for the data transfer in text mode, some data can be
translated into characters that do not translate back to the same data when written to the
target file.

To transfer these type of files, users normally should use binary mode and should be very
careful if they find it necessary to use text mode.

14.4.5 File Specification Rules

File specifications can appear in a variety of UDM commands, from copy to forfiles.

On OS/400, a simple set of rules governs how the full file specification used in an
operation is constructed.

Since there are still subtle differences between source and destination side file
specifications, in terms of how they are derived, separate rules are provided for each type
of specification:
• Source File Specification
• Destination File Specification

• Source and Destination in LIB
• Destination (only) in LIB
udm-user-3207 Confidential & Proprietary 269

Command Reference Transfer Operations (OS/400-Specific)
Source File Specification Rules
The following rules apply to file specifications that are in the source position in a copy
command.

(In all examples, CURLIB is the current library.)

1. If the file specification contains only the file portion, the current library is pre-pended to
the name to refer directly to a file with no member component.

Example:

COPY SRC=MYFILE
The absolute path derived would be CURLIB/MYFILE.

2. If the file specification contains only file and member portions, the current library is
pre-pended to the name to refer to a specific member in a file.

Example:

COPY SRC=MYFILE(MYMBR)
The absolute path derived would be CURLIB/MYFILE(MYMBR).

3. If the file specification contains only library and file portions, an absolute path without
a member component is used.

Example:

COPY SRC=MYLIB/MYFILE
The absolute path would be exactly as given: MYLIB/MYFILE.

4. If a file specification contains library, file, and member portions, all of those
components are used explicitly in the absolute path.

Example:

COPY SRC=MYLIB/MYFILE(MYMBR)
The absolute path would be MYLIB/MYFILE(MYMBR).
udm-user-3207 Confidential & Proprietary 270

Command Reference Transfer Operations (OS/400-Specific)
Destination File Specification Rules
Destination path names follow many of the same rules as source path names, with one
big exception: all or part of the destination path name may be derived using a name (or
names, in the case of OS/400 to OS/400 LIB file system copies) coming from the source
side of a transfer operation.

Source and Destination in LIB File System
The following rules apply for OS/400 to OS/400 transfers where both the source and
destination are operating in the LIB file system.

In these example, the current destination library is DSTLIB and the absolute path of the
source file being copied is MYLIB/MYFILE(MYMBR).
1. If the destination file specification contains an empty path (no library, file, or member

portions), the file and member portions are derived from the source path. If the
destination file is to be a save file, the absolute path in this case would be
DSTLIB/MYFILE. If the destination file is to be a physical file, the absolute path would
be DSTLIB/MYFILE(MYMBR).

Examples:

COPY SRC=MYLIB/MYFILE(MYMBR)
The result is a destination name of DSTLIB/MYFILE(MYMBR) if the destination file
type is a physical file.

COPY SRC=MYLIB/MYFILE
The result is a destination name of DSTLIB/MYFILE if the destination file type is a
save file.

2. If the destination file specification contains only a file portion, the current library is
pre-pended to the absolute path. In this case, if the destination file is to be a save file,
the absolute path would be DSTLIB/YOURFILE. If the destination file is to be a
physical file, the absolute path would be DSTLIB/YOURFILE(MYMBR).

Examples:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOURFILE
The result is a destination name of DSTLIB/YOURFILE(MYMBR) if the destination file
type is a physical file.

COPY SRC=MYLIB/MYFILE DST=YOURFILE
The result is a destination name of DSTLIB/YOURFILE if the destination file type is a
save file.

3. If the destination file specification contains only a file portion (with an empty member),
the result is exactly the same as when just a destination file name is given.

Example:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOURFILE()
The result is a destination name of DSTLIB/YOURFILE(MYMBR) if the destination file
type is a physical file.
udm-user-3207 Confidential & Proprietary 271

Command Reference Transfer Operations (OS/400-Specific)
4. If the destination file specification contains only file and member portions, the
resulting absolute path is DSTLIB/YOURFILE(YOURMBR) if a physical file is wanted.

Example:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOUFILE(YOURMBR)
The result is a destination name of DSTLIB/YOURFILE(YOURMBR) if the destination
file type is a physical file.

5. If the destination file specification contains only a library portion, that library is used
instead of the current library. In this case, an absolute path of YOURLIB/MYFILE is
used if a save file is wanted. If a physical file is wanted, an absolute path of
YOURLIB/MYFILE(MYMBR) is used.

Examples:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOURLIB/
The result is a destination name of YOURLIB/MYFILE(MYMBR) if the destination file
type is a physical file.

COPY SRC=MYLIB/MYFILE DST=YOURLIB/
The result is a destination name of YOURLIB/MYFILE if the destination file type is a
save file.

6. If the destination file specification contains only library and file portions, an absolute
path of YOURLIB/YOURFILE is derived if a save file is wanted. If a physical file is
wanted, YOURLIB/YOURFILE(MYMBR) is used.

Examples:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOURLIB/YOURFILE
The result is a destination name of YOURLIB/YOURFILE(MYMBR) if the destination
file type is a physical file.

COPY SRC=MYLIB/MYFILE DST=YOURLIB/YOURFILE
The result is a destination name of YOURLIB/YOURFILE if the destination file type is
a save file.

7. If the destination file specification contains library and file portions, as well as an
empty member name, the result is exactly the same as when the file specification
contains only library and file portions.

Example:

COPY SRC=MYLIB/MYFILE(MYMBR) DST=YOURLIB/YOURFILE()
The result is a destination name of YOURLIB/YOURFILE(MYMBR) if the destination
file type is a physical file.
udm-user-3207 Confidential & Proprietary 272

Command Reference Transfer Operations (OS/400-Specific)
8. If the destination file specification contains a complete absolute path (library, file, and
member portions), the source file name has no effect on the destination path in any
way. In this case, if the destination file type is a save file, YOURLIB/YOURFILE is
used. If the destination file type is a physical file, YOURLIB/YOURFILE(YOURMBR)
is used.

Examples:

COPY SRC=MYLIB/MYFILE(MYMBR)DST=YOURLIB/YOURFILE(YOURMBR)
The result is a destination name of YOURLIB/YOURFILE(YOURMBR) if the
destination file type is a physical file.

COPY SRC=MYLIB/MYFILE DST=YOURLIB/YOURFILE
The result is a destination name of YOURLIB/YOURFILE if the destination file type is
a save file.

9. In cases where a member is specified explicitly in the destination file name and the
destination file type is a save file, an error is issued.

Note: If the user issues a cd dst-logical-name=.. command to blank out the
current library on the destination side, the library name in the absolute path
of the source file is used in the destination absolute path in cases where no
library is specified explicitly.

This works only for OS/400 to OS/400 copies where both operating systems are
operating in the LIB file system.

Example:

CD DST=..
COPY SRC=MYLIB/MYFILE(MYMBR)
The result is a destination of MYLIB/MYFILE(MYMBR), using the source's library, file,
and member names, because none are supplied explicitly in the copy command. The
current directory on the destination side is empty because the command cd DST=..
was issued.
udm-user-3207 Confidential & Proprietary 273

Command Reference Transfer Operations (OS/400-Specific)
Destination (only) in LIB File System
Transfers where only the destination is operating in the LIB file system produce slightly
different results.

The following rules apply for:
• Copies from non-OS/400 machines to an OS/400 machine operating in the LIB file

system
• Copies from OS/400 machines working in the HFS file system to an OS/400 machine

operating in the LIB file system,

These operations do not make use of source attributes describing all the library and file
portions of the source file specification.

(in the following example, the source file being copied is MYFILE and the current library
on the destination side is MYDSTLIB.)
1. If the destination file specification contains an empty path (no library, file, or member

portions), the source file name is used for the file and member names on the
destination side. If the destination file is to be a save file, the absolute path in this
case would be DSTLIB/MYFILE. If the destination file is to be a physical file, the
absolute path would be DSTLIB/MYFILE(MYFILE).

Example:

COPY SRC=MYFILE
DSTLIB/MYFILE(MYFILE) will be used as the destination name if the destination file
type is a physical file and DSTLIB/MYFILE will be used if the destination file type is a
save file.

2. If the destination file specification contains only a file portion, the current library is
pre-pended to the absolute path and the source file name is used for the member (if it
applies). In this case, if the destination file is to be a save file, the absolute path would
be DSTLIB/YOURFILE. If the destination file is to be a physical file, the absolute path
would be DSTLIB/YOURFILE(MYFILE).

Example:

COPY SRC=MYFILE DST=YOURFILE
DSTLIB/YOURFILE(MYFILE) will be used as the destination name if the destination
file type is a physical file and DSTLIB/YOURFILE will be used if the destination file
type is a save file.

3. If the destination file specification contains only a file portion and an empty member
portion, the result is exactly the same as when the file specification contains only file
portion.

Example:

COPY SRC=MYFILE DST=YOURFILE()
DSTLIB/YOURFILE(MYFILE) will be used as the destination name if the destination
file type is a physical file.
udm-user-3207 Confidential & Proprietary 274

Command Reference Transfer Operations (OS/400-Specific)
4. If the destination file specification contains only file and member portions, the
resulting absolute path is DSTLIB/YOURFILE(YOURMBR) if a physical file is wanted.

Example:

COPY SRC=MYFILE DST=YOURFILE(YOURMBR)
DSTLIB/YOURFILE(YOURMBR) will be used as the destination name if the
destination file type is a physical file.

5. If the destination file specification contains only a library portion, that library is used
instead of the current library. In this case, an absolute path of YOURLIB/MYFILE is
used if a save file is wanted. If a physical file is wanted, an absolute path of
YOURLIB/MYFILE(MYFILE) is used.

Example:

COPY SRC=MYFILE DST=YOURLIB/
YOURLIB/MYFILE(MYFILE) is used as the destination name if the destination file
type is a physical file or YOURLIB/MYFILE if the destination file type is a save file.

6. If the destination file specification contains only library and file portions, an absolute
path of YOURLIB/YOURFILE is derived if a save file is wanted. If an absolute path of
YOURLIB/YOURFILE(MYFILE) is used if a physical file is wanted,

Example:

COPY SRC=MYFILE DST=YOURLIB/YOURFILE
YOURLIB/YOURFILE(MYFILE) is the destination name if a physical file is wanted
and YOURLIB/YOURFILE is used if a save file is wanted.

7. If the destination file specification contains library and file portions, as well as an
empty member portion, the result is exactly the same as when the specification
contains only a library and file portions.

Example:

COPY SRC=MYFILE DST=YOURLIB/YOURFILE
YOURLIB/YOURFILE(MYFILE) is the destination name if a physical file is wanted.

8. If the destination file specification contains a complete absolute path (library, file, and
member portions), the source file name has no effect on the destination path in any
way. In this case, if the destination file type is a physical file,
YOURLIB/YOURFILE(YOURMBR) is used.

Example:

COPY SRC=MYFILE DST=YOURLIB/YOURFILE(YOURMBR)
YOURLIB/YOURFILE(YOURMBR) is the destination if the destination file type is a
physical file.

9. In cases where a member is specified explicitly in the destination file name and the
destination file type is a save file, an error is issued.
udm-user-3207 Confidential & Proprietary 275

Command Reference Transfer Operations (OS/400-Specific)
14.4.6 delete (Delete) Command

The delete (Delete) command in the UDM for OS/400 LIB file system takes the following
form:
DELETE logical-name=file-mask

delete Command Requirements
The delete command has the following requirements:
• It can be used to remove files and members, but not libraries.

Note: For the protection of the file system, UDM for OS/400 does not allow users to
delete libraries.

delete Command Forms
With UDM for OS/400, the file mask, which can contain wild cards in any portion (library,
file and member) takes one of the following forms.

Table 14.4 delete Command Forms with UDM under OS/400

Name Description

DELETE logical-name=LIBRARY/FILE Deletes any files (including Save files) in the libraries
that match the mask.

DELETE logical-name=FILE Deletes any files (including Save files) in the current
directory (library) that match the mask.

DELETE logical-name=LIBRARY/FILE(MEMBER) Deletes any members where the library, file, and
member portions of their fully qualified names match
the appropriate elements of the mask

DELETE logical-name=FILE(MEMBER) Deletes any members in the current directory whose
file and member portions of their fully qualified
names match the appropriate elements of the mask
udm-user-3207 Confidential & Proprietary 276

Command Reference Transfer Operations (OS/400-Specific)
14.4.7 rename (Rename) Command

The rename (Rename) command in the UDM for OS/400 LIB file system takes the
following form.

RENAME logical-name old-name new-name

rename Command Requirements
The rename command has the following requirements:
• Libraries cannot be renamed.
• A single object level (file or member) can be renamed only with a single call. The

name of a file and one of its members cannot be renamed with a single call. All other
cases result in a failure.

• Wild cards are not allowed.
• It can be used only at the file and member level; it cannot be used to rename libraries,

However, rename can be used to move existing files to existing libraries.
• It cannot be used to move a member from one file to another, since the destination file

may not have the same attributes (for example, record length) as the source file. This
could result in corrupt (or seemingly corrupt) data.

• It cannot be used to move a file from one library to another because it should not be
used to create new libraries.
udm-user-3207 Confidential & Proprietary 277

Command Reference Transfer Operations (OS/400-Specific)
rename Command Forms

Table 14.5 rename Command Forms

Name Description

RENAME logical-name LIBRARY/FILE
LIBRARY/FILE

Renames the file in the old portion with file name in
the new portion. The library in the new name portion
of the rename must match the library name in the old
name portion.

RENAME logical-name FILE FILE Renames the file in the current library in the old
portion with the new file name in the current
directory (library).

RENAME logical-name FILE LIBRARY/FILE Renames the file in the current directory with the file
name in the new portion. The library in the old name
portion must be the current library.

RENAME logical-name LIBRARY/FILE FILE Renames the file in the given library with the name
of the file in the new portion, if the library name in the
old portion is the same as the current library

RENAME logical-name LIBRARY/FILE(MEMBER)
LIBRARY/FILE(MEMBER)

Renames the old member name with the new
member name. Both the library and file name
portions in the old and new member names must
match

RENAME logical-name FILE(MEMBER)
FILE(MEMBER)

Renames the member in the old name with the
name of the member in the new name. The FILE
portion of each name must be the same

RENAME logical-name FILE(MEMBER)
LIBRARY/FILE(MEMBER)

Renames the member in the old name with the
name of the member in the new name if the library
specified in the old name is the same as the current
library and both file name portions match

RENAME logical name LIBRARY/FILE(MEMBER)
FILE(MEMBER)

Renames the member in the old name with the
name of the member in the new name if the library
specified in the new name is the same as the current
library and both file name portions match
udm-user-3207 Confidential & Proprietary 278

Chapter 15
Remote Execution
15.1 Overview
This chapter provides information on Universal Data Mover (UDM) remote execution.

UDM provide two commands for remote execution:
• exec Command
• execsap Command
udm-user-3207 Confidential & Proprietary 279

exec Command Remote Execution
15.2 exec Command

15.2.1 Executing Remote Commands within UDM

If you have a licensed version of the Universal Command (UCMD) Manager, version 3.1.1
or later, on the same system with the UDM Manager, you can execute system commands
on remote machines using the exec command.

The exec command has the following format:
exec logical-name|host-name [cmd|cmdref|stc]=command [user=userid

pwd=password] [port=port] [codepage=codepage] [file=filename]
[xfile=filename] [key=key] [option=option] [mergelog=yes|no]
[trace=yes|no] [input=data-element] [svropt=server-options]
[stdout=data-element] [stderr=data-element]

The first parameter of the exec command is either:
• Logical name (logical-name) of a transfer server (valid only if a transfer session has

been established)
• Host name (host-name) of the machine on which you want to execute the command.

Note: You must have the UCMD Server and Universal Broker installed on the machine
on which the command is to be executed.

The second parameter is the command type, which is either:
• cmd (command)
• cmdref (command reference)
• stc (started task)

For any of these three types, the value (command) is the remote command to be
executed. (See the Universal Command 3.2.0 User Guide for more information about
command types.)

UDM must authenticate a user on the remote machine in order to execute a command.
• If a logical name is specified in the first parameter, the user and pwd values are

inherited from the same options specified in the open command for that logical name.
These inherited values can be overridden by specifying them explicitly in the exec
command.

• If a host name is specified in the first parameter, the user and pwd values must be
specified explicitly in the exec command.

The port and codepage values are inherited from the UDM Manager's configuration file
unless overridden explicitly in the call to the exec command.
• port specifies which port the Universal Broker is listening on for the remote machine.
• codepage specifies to which codepage the output of the remote command is

translated.
udm-user-3207 Confidential & Proprietary 280

exec Command Remote Execution
The user, pwd, port, and codepage parameters can be stored in an external file instead
of being specified explicitly in the exec command.
• If a plain text file is used, use the file parameter to specify the name of this file.
• If the file was encrypted with Universal Encrypt, use the xfile parameter to specify

the name of this file.

If an encryption key other than the Universal Encrypt default was used, specify that key
with the key parameter.

These parameters, and the format of the file containing these parameters, work exactly
like the corresponding option in the open command.

The option parameter is used to pass options to the UCMD Server (see the
SCRIPT_OPTIONS option for UCMD Manager in the Universal Command 3.2.0
Reference Guide for more details).

Two streams of data come back from the remote command. By default, output from
standard out and standard error of the remote command are written to standard out and
standard error by the UDM Manager (SYSPRINT and SYSOUT, respectively, under
z/OS). The mergelog option can be set to yes if you want both output streams written to
the UDM transaction log (standard out under UNIX, Windows, and OS/400; SYSPRINT
under z/OS).

By default, if the UDM Manager is invoked with tracing turned on, tracing will be turned on
in the UCMD Manager when UDM invokes it via the exec command. Likewise, if trace is
turned off in the UDM Manager, the UCMD Manager is invoked with tracing turned off.
You can override this behavior for the UCMD Manager invocation by setting the trace
option in the call to the exec command.

There are some commands that require input from standard input. To provide this input,
you must create a data element with the data command containing the input. Specifying
the name of the data element with the input parameter will cause the information in the
data element to be sent over as standard input to the remote command.

The svropt parameter can be used to override UCMD Server options.

Note: UDM does not require a space before the server options, as does Universal
Command.

The stdout and stderr parameters specify data elements to contain standard out and
standard error, respectively, from the remote command. If the data elements do not exist,
they are created. If the data elements do exist, they are overwritten with the output from
the remote command. If the value portion refers to an existing non-data element variable
or the name of a built-in variable (that is, any variable beginning with an underscore), an
error is issued.

The exec command output will still be written to UDM stdout (the transaction log) and
UDM stderr, where appropriate, even with the presence of the stdout and/or stderr.
udm-user-3207 Confidential & Proprietary 281

exec Command Remote Execution
15.2.2 Return Values

When the exec command is invoked, the return value from the exec command indicates
whether or not UDM was able to invoke the remote command. The return value from the
exec command will be 0 (none) if the remote command was invoked.

Upon successful invocation of the remote command, it might be useful to have the return
value of the remote command itself in addition to whether or not the remote command
could be executed. The remote command's return value is stored in the built-in variable
_execrc.

15.2.3 exec Command Examples

The following example uses the exec command to execute a simple directory listing on a
Windows machine that is part of a transfer session:
exec winmachine cmd="dir c:\"

The following example uses the exec command to invoke a started task:
exec mvsmachine stc="mytask,parm=$(TASK_PARM)"

The following example calls the exec command that uses a data element for input to the
remote command:
Define the data element

data shellinput
echo "Comparing $(_file) with $(_file).old:"
diff $(_file) $(_file).old
exit

end

Rename all existing files on the destination

forfiles dst=*
rename dst $(_file) $(_file).old

end

Copy the new files over and compare them

forfiles src=*
copy src=$(_file)
exec dst cmd="sh" input=shellinput

end
udm-user-3207 Confidential & Proprietary 282

execsap Command Remote Execution
15.3 execsap Command

15.3.1 Triggering SAP Events within UDM

If you have a licensed version of the Universal Connector (version 3.1.1 or later) on the
same system with the UDM Manager, you can execute SAP events using the execsap
command.

The execsap command has the following format:
execsap [host=host-name]|destination type=event|generic

[eventid=event-id] [parm=event-parm] [client=client]
[user=userid] [pwd=password] [codepage=codepage]
[file=filename] [xfile=filename] [key=key] [mergelog=yes|no]
[trace=yes|no]

Note: UDM does not support the execsap command for OS/400 and Windows.

The first parameter of the execsap command is either:
• Host parameter with an SAP destination entry
• Name of a destination in your SAP RFC file

The type parameter specifies the type of action being performed. A specified type of
event requires that an SAP event ID be specified with the eventid parameter.

Note: For version 3.2.0, the only valid type is event, which triggers an SAP event.

An event parameter can be passed to the SAP event using the parm parameter.

The client parameter specifies the SAP client.

UDM must authenticate a user SAP in order to execute an SAP action. The user ID and
password can be specified with the user and pwd parameters, respectively.

The codepage is inherited from the UDM Manager's configuration file unless explicitly
overridden in the call to the execsap command. The codepage specifies to which
codepage the output of the remote command is translated.
udm-user-3207 Confidential & Proprietary 283

execsap Command Remote Execution
The user, pwd, and codepage parameters can be stored in an external file instead of
being specified explicitly in the execsap command syntax.
• If a plain text file is used, the file parameter specifies the name of this file.
• If the file was encrypted with Universal Encrypt, the xfile parameter specifies the

name of this file.

If an encryption key was used other than Universal Encrypt's default, that key can be
specified with the key parameter. This options and the format of the file containing the
options work exactly like the corresponding option in the open command.

Two streams of data come back from the SAP execution. By default, output from standard
out and standard error is written to standard out and standard error by the UDM Manager
(SYSPRINT and SYSOUT, respectively, under z/OS). The mergelog option can be set to
yes if you want both output streams written to the UDM transaction log (standard out
under UNIX, Windows, and OS/400; SYSPRINT under z/OS).

By default, if the UDM Manager is invoked with tracing turned on, tracing will be turned on
in Universal Connector (USAP) when UDM invokes it via the execsap command.
Likewise, if trace is turned off in the UDM Manager, USAP is invoked with tracing turned
off. You can override this behavior for the USAP invocation by setting the trace
parameter in the call to the execsap command.

15.3.2 execsap Command Example

The following is an example of executing an SAP event using the execsap command:
execsap sapdest type=event eventid=MYEVENT parm=MYPARM +

user=me pwd=mypwd
udm-user-3207 Confidential & Proprietary 284

Chapter 16
Return Code Processing
16.1 Overview
Universal Data Mover (UDM) return codes, particularly for batch operations, are used to
gauge the degree of success of a job. Each job generates a return code that indicates the
status of the job when it ended.

16.1.1 UDM Return Codes
Table 16.1, below, organizes UDM return codes into four categories.

Table 16.1 UDM Return Codes

Each return code category has an integer value and a convenient value.
Processed commands return only integers as return code values. The convenient values
can be used when setting return codes in the _rc and/or _halton variables via the set
command (see Section 16.3.1 Return Codes in set (Set) Command).

Category Value Description

Success 0 / none All commands completed successfully.

Warning 4 / warn Non-critical error in operation.

Error 8 / error UDM command failed to execute because it was:
• Inappropriately issued (for example, a copy command was issued

before a transfer session had been established).
• Malformed; that is, grammatically correct but either:

• Missing required parameters.
• Containing invalid parameters.

Fatal 16 / fatal Fatal error has occurred; UDM cannot continue and must exit.
A fatal error is one that prevents UDM from running:
• Failure to allocate memory.
• Failure to initialize portions of the UDM application.
• Parser errors (grammatically incorrect scripting language).
udm-user-3207 Confidential & Proprietary 285

Return Codes in UDM Built-In Variables Return Code Processing
16.2 Return Codes in UDM Built-In Variables
During processing, UDM keeps track of the return codes from processed commands.

_lastrc Variable
The _lastrc built-in variable holds the return code of the last command issued. It also
has a special attribute, message, that contains a human-readable string indicating what
happened with the last executed statement.

_rc Variable
The _rc built-in variable holds the highest-numbered return code that UDM has received
(and placed in the _lastrc built-in variable) from all processed commands during the
current session.

_rc also can be set via the set command (see 16.3 Setting Return Codes).

_halton Variable
The _halton built-in variable specifies a return code that, if equaled or exceeded by the
return code in _rc, causes UDM to exit.

Otherwise, when UDM exits, it returns the highest-numbered return code that it received
to the UDM Manager.

_halton only can be set via the set command (see 16.3 Setting Return Codes).

(For detailed information on these variable, see Chapter 11 UDM Scripting Language.)
udm-user-3207 Confidential & Proprietary 286

Setting Return Codes Return Code Processing
16.3 Setting Return Codes

16.3.1 Return Codes in set (Set) Command

You can use the set command to manage UDM's return code and UDM’s action based
on this return code. The set command lets you set any of the following return code
values (integer or convenient) in both the _halton variable and the _rc variable:
• 0 / none
• 4 / warn
• 8 / error
• 16 / fatal

The following example sets the value of _rc to 0 and the _halton condition to error:
set _rc=0 _halton=error

The set command also can be used to set other UDM Manager variables. See
Section 6.45 set in the Universal Data Mover 3.2.0 Reference Guide for detailed
information on using the set command.

Note: You cannot use the set command to set the _lastrc variable.

Issuing the set Command
1. If the set command is issued without any parameters (variables), all of the global

variables and their current values are displayed.
2. If the set command is issued with variable names but no following equal signs (=),

the values to which the variables resolve are displayed.
3. If the set command is issued with variable names followed by an equal signs (=) but

no values, the values are set to an empty string.

16.3.2 Return Codes in return (Return) Command
You also can use the return command to set the return code value (integer only) in the
_rc variable. (See Section 6.42 return in the Universal Data Mover 3.2.0 Reference
Guide for detailed information on using this command.)

Stoneman’s Tip

Issuing the set command by itself, with no parameters,
will display the values of all of the UDM Manager's internal variables

that can be set by the user.
udm-user-3207 Confidential & Proprietary 287

Appendix A
Examples
A.1 Overview
This chapter provides operating-specific examples that demonstarte the use of Universal
Data Mover:
• UDM Manager for z/OS Examples
• UDM Manager for UNIX and Windows Examples
• UDM Manager for OS/400 Examples

The first example in each section provides a line-by-line explanation of that example.
udm-user-3207 Confidential & Proprietary 288

UDM Manager for z/OS Examples Examples
A.2 UDM Manager for z/OS Examples
This section describes how to use UDM in the z/OS environment.

It provides specific examples for the following topics, which explain how to use UDM in a
two-party mode between z/OS and UNIX:
• Copy a File to an Existing z/OS Sequential Data Set
• Copy a z/OS Sequential Data Set to a File
• Copy a Set of Files to an Existing z/OS Partitioned Data Set
• Copy a File to a New z/OS Sequential Data Set
• Copy a Set of Files to a New z/OS Partitioned Data Set

For each topic, there is an example (as appropriate) for both the DSN and DD file
systems.

Note: These z/OS examples apply equally as well to the Windows operating systems,
with appropriate changes for the file system syntactical differences.
udm-user-3207 Confidential & Proprietary 289

UDM Manager for z/OS Examples Examples
A.2.1 Copy a File to an Existing z/OS Sequential Data Set

These examples copy, in text mode, one sequential file to another. This is the simplest
form of data transfer.

DD file system

For this first z/OS example, the following is a line-by-line explanation:
1. Line 1 turns on command echo, which results in each command being printed out

prior to processing.
2. Line 2 sets the error condition value on which script processing halts. Any error

greater than or equal to warn halts script processing.
3. Line 3 opens a session between the local UDM Manager and a remote UDM server

running on host sol9. The host sol9 is given the logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if
successfully verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the local file system from the default of DSN to DD. The file system
type dictates the syntax and semantics of file specifications, such as in the copy
command.

5. Line 5 changes the current directory of the UDM server unix running on host sol9.
6. Line 6 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages (for example, ASCII and EBCDIC) and
process the end-of-line characters.

7. Line 7 is the copy command that actually moves the data between systems. It copies
file data10.txt on server unix to the local UDM Manager ddname APOUT. Recall
that line 4 sets the local file system type to DD; hence, APOUT is referencing a
ddname.

8. Line 8 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=dd

5 cd unix=/opt/app/data

6 mode type=text

7 copy unix=data10.txt local=APOUT

8 quit

/*
udm-user-3207 Confidential & Proprietary 290

UDM Manager for z/OS Examples Examples
DSN file system

The DSN file system example is basically the same as the DD file system example, with
these changes:
• Removal of the filesys command (line 4 in the DD file system example), since the

default file system for the z/OS manager is DSN.
• Addition of the line 6, which sets the local attribute createop.

The createop attribute controls how a file is created. By default, its value is new,
indicating that only new files are created and existing files are not written over
(replaced). In this example, the value is being set to replace, which specifies that if the
file exists, it should be replaced; otherwise, it is created.

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 attrib local createop=replace

7 copy unix=data10.txt local='app.data.daily'

8 quit

/*
udm-user-3207 Confidential & Proprietary 291

UDM Manager for z/OS Examples Examples
A.2.2 Copy a z/OS Sequential Data Set to a File

These examples copy, in text mode, a sequential data set on z/OS to a remote UNIX
system.

Note: A text transfer, by default, does not trim spaces from the end of a record. If the
data set being copied is a fixed record format, each record is padded with spaces
so that the record length equals the logical record length of the data set. If you do
not want the trailing spaces copied, they must be trimmed. Variable record formats
do not normally have trailing spaces, so trimming normally is not required.

DD file system

DSN file system

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=dd

5 cd unix=/opt/app/data

6 mode type=text trim=yes

7 copy local=apout unix=data10.txt

8 quit

/*

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text trim=yes

6 copy local='app.data.daily' unix=data10.txt

7 quit

/*
udm-user-3207 Confidential & Proprietary 292

UDM Manager for z/OS Examples Examples
A.2.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set

These examples copy, in text mode, multiple files with one copy command to an already
allocated partitioned data set (PDS) on a z/OS system.

The file names used to create the member names in the destination PDS are the source
file names.

However, note that file names on UNIX and Windows file systems often have a file
extension as part of their name. A file extension is a suffix separated from the file's base
name with a period (for example, BASE.TXT). The period in the file extension is not a
valid character in PDS member names, so UDM must be instructed to remove the file
extensions before copying them into the PDS.

The truncext attribute is used to instruct UDM to remove file name extensions from the
source file prior to using the name as the destination member name.

This example assumes that the remote UNIX directory /opt/app/data contains the
following list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The result of the copy operation will create the following members in PDS APP.DATA.PDS:
• DATA001
• DATA002
• DATA003
udm-user-3207 Confidential & Proprietary 293

UDM Manager for z/OS Examples Examples
DD file system

DSN file system

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.PDS,DISP=SHR

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 filesys local=dd

4 cd unix=/opt/app/data

5 mode type=text

6 attrib local truncext=yes

7 copy unix=*.txt local=apout

8 quit

/*

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt local='app.data.daily'

7 quit

/*
udm-user-3207 Confidential & Proprietary 294

UDM Manager for z/OS Examples Examples
A.2.4 Copy a File to a New z/OS Sequential Data Set

This example copies, in text mode, a file from a remote UNIX system to a sequential data
set on z/OS. The data set does not exist on z/OS; UDM is instructed to create it.

The data set is dynamically allocated based on the local UDM dynamic allocation
attributes. UDM provides default attributes that can be changed to meet local
requirements. The UDM defaults, as they are delivered, create a sequential, variable
block record data set with a logical record length of 1024.

The sample below changes the record length to 256 in order to demonstrate how to set
dynamic allocation attributes.

A DD file system sample is not provided, since creating a new data set with JCL is the
same in UDM as it is in any batch application. There are no UDM specific requirements.

DSN file system

Note: All file names in the UNIX system must be within the eight-character range to be
transferred successfully.

Almost all data set allocation attributes can be specified as UDM attributes, providing you
with the ability to dynamically allocate any supported data set.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be check to verify they meet your intentions. Although UDM checks
attribute values, some values are provided by the system from sources that UDM cannot
verify and can result in invalid or unintentional attribute combinations.

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local lrecl=256

6 copy data10.txt local='app.data.daily'

7 quit

/*
udm-user-3207 Confidential & Proprietary 295

UDM Manager for z/OS Examples Examples
A.2.5 Copy a Set of Files to a New z/OS Partitioned Data Set

This example copies, in text mode, a set of files from a remote UNIX system to a
partitioned data set on z/OS. The data set does not exist on z/OS; UDM is instructed to
create it.

The data set is dynamically allocated based on the local UDM dynamic allocation
attributes. UDM provides default attributes that can be changed to meet local
requirements. The UDM defaults as they are delivered create a sequential, variable block
record data set with a logical record length of 1024.

This example changes the data set organization from sequential (PS) to partitioned (PO)
and adjusts the data set's space allocation to space units of cylinders, primary space to 1,
secondary space to 2, and directory blocks to 10.

DSN file system

Note: Line 5 is continued onto line 6 with the line continuation character (+).

//S1 EXEC UDMPRC
//UNVSCR DD *
1 set _echo=yes _halton=warn
2 open unix=sol9 user=top098 pwd=p100m
3 cd unix=/opt/app/data
4 mode type=text
5 attrib local dsorg=po spaceunit=cyl primspace=1 secspace=2 +
6 dirblocks=10 truncext=yes
7 copy unix=*.txt local='app.data.pds'
8 quit
/*
udm-user-3207 Confidential & Proprietary 296

UDM Manager for UNIX and Windows Examples Examples
A.3 UDM Manager for UNIX and Windows Examples
This section describes how to use UDM in the Windows and UNIX environments.

It provides specific examples for the following topics, which explain how to use UDM in a
two-party mode:
• Simple File Copy to the Manager
• Simple File Copy to the Server
• Copy a Set of Files

Each example illustrates a procedure that occurs under the platform's default file system.

(See Section A.2 UDM Manager for z/OS Examples for z/OS examples that apply equally
as well to the Windows operating systems.)
udm-user-3207 Confidential & Proprietary 297

UDM Manager for UNIX and Windows Examples Examples
A.3.1 Simple File Copy to the Manager

This example copies, in text mode, one file to another. This is the simplest form of data
transfer.

For this UNIX and Windows example, the following is a line-by-line explanation:
1. Line 1 turns on command echo, which results in each command being printed out

prior to processing.
2. Line 2 sets error condition value on which script process halts. Any error equal to or

greater than 4 halts script processing. A value of 4 effectively means halt on any error
or warning.

3. Line 3 opens a session between the local UDM Manager and a remote UDM Server
running on host sol9. The host sol9 is given the a logical name of unix. The open
command also provides user credentials for the UDM Server to verify and, if success
verified, specifies the user ID with which the UDM Server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages and process the end-of-line characters.
6. Line 6 is the copy command that actually moves the data between systems. It copies

file data10.txt on server unix to the local UDM Manager as data10.txt.
7. Line 7 executes the quit command, which closes all sessions and exits UDM with the

highest exit code set.

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy unix=data10.txt

7 quit
udm-user-3207 Confidential & Proprietary 298

UDM Manager for UNIX and Windows Examples Examples
A.3.2 Simple File Copy to the Server

This example copies, in text mode, a sequential data set on the UDM Manager machine
to a remote UNIX system.

For this UNIX and Windows example, the following is a line-by-line explanation:
1. Line 1 turns on command echo, which results in each command being sent to stdout

prior to processing.
2. Line 2 sets error condition value on which script process halts. Any error equal to or

greater than 4 halts script processing. A value of 4 effectively means halt on any error
or warning.

3. Line 3 opens a session between the local UDM Manager and a remote UDM server
running on host sol9. The host sol9 is given the a logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if success
verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages and process the end-of-line characters.
6. Line 6 is the copy command that actually moves the data between systems. It copies

file data10.txt in the root directory on drive C of the Windows machine to the UNIX
Server as data10.txt.

7. Line 7 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy local=c:\data10.txt

7 quit
udm-user-3207 Confidential & Proprietary 299

UDM Manager for UNIX and Windows Examples Examples
A.3.3 Copy a Set of Files

This example copies, in text mode, multiple files with one copy.

This example assumes that the remote UNIX directory /opt/app/data contains the
following list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The following files will be created on the destination machine:
• data001.txt
• data002.txt
• data003.txt

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt

7 quit
udm-user-3207 Confidential & Proprietary 300

UDM Manager for OS/400 Examples Examples
A.4 UDM Manager for OS/400 Examples
This section describes how to use UDM in the OS/400 environment.

It provides specific examples for the following topics, which explain how to use UDM in a
two-party mode between OS/400 and UNIX:
• Copy a File to an Existing OS/400 File
• Copy an OS/400 Data Physical File to a File
• Copy a Set of Files to an Existing Data Physical File
• Copy a File to a New OS/400 Data Physical File
• Copy a File to a New OS/400 Source Physical File
• Copy a Set of Files to a New Data Physical File on OS/400
• Copy Different Types of OS/400 Files using forfiles and $(_file.type)
• Invoke a Script from a Batch Job

Note: These examples apply equally as well to the Windows operating system, with
appropriate changes for the file system syntactical differences.

Each topic provides an example for the LIB file system.

The first topic, Copy a File to an Existing OS/400 File, also provides an example specific
to the HFS file system. For other examples similar to those used in the HFS file system,
see Section UDM Manager for UNIX and Windows Examples.
udm-user-3207 Confidential & Proprietary 301

UDM Manager for OS/400 Examples Examples
A.4.1 Copy a File to an Existing OS/400 File

These examples copy, in text mode, one sequential file to another. This is the simplest
form of data transfer.

LIB file system

For this first OS/400 example, the following is a line-by-line explanation:
1. Line 1 turns on command echo, which results in each command being sent to stdout

prior to processing.
2. Line 2 sets the error condition value on which script processing halts. Any error

greater than or equal to warn halts script processing.
3. Line 3 opens a session between the local UDM Manager and a remote UDM server

running on host sol9. The host sol9 is given the logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if
successfully verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages (for example, ASCII and EBCDIC) and
process the end-of-line characters.

6. Line 6 is the copy command that actually moves the data between systems. It copies
file data10.txt on server unix to the local UDM Manager library: MYLIB Data
Physical File APPDATA member DAILY.

7. Line 7 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
udm-user-3207 Confidential & Proprietary 302

UDM Manager for OS/400 Examples Examples
HFS file system

This HFS file system example is basically the same as the LIB file system example, with
these changes:
• Addition of line 4, which changes the local file system from the default of LIB to HFS.

The file system type dictates the syntax and semantics of file specifications, such as
in the copy command.

• Addition of line 7, which sets the local attribute createop.
The createop attribute controls how a file is created. By default, its value is new,
which indicates that only new files are created and existing files are not written over
(replaced). In this case, its value is being set to replace, specifying that if the file
exists, it should be replaced; otherwise, it is created.

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=hfs

5 cd unix=/opt/app/data

6 mode type=text

7 attrib local createop=replace

8 copy unix=data10.txt local=/opt/appdata

9 quit
udm-user-3207 Confidential & Proprietary 303

UDM Manager for OS/400 Examples Examples
A.4.2 Copy an OS/400 Data Physical File to a File

This example copies, in text mode, a Data Physical File on OS/400 to a remote UNIX
system.

Note: A text transfer, by default, does not trim spaces from the end of a record. If the
data set being copied is a fixed record format, each record is padded with spaces
so that the record length equals the logical record length of the data set. If you do
not want the trailing spaces copied, they must be trimmed.

LIB file system

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text trim=yes

6 copy local=MYLIB/APPDATA(DAILY) unix=data10.txt

7 quit
udm-user-3207 Confidential & Proprietary 304

UDM Manager for OS/400 Examples Examples
A.4.3 Copy a Set of Files to an Existing Data Physical File

This example copies, in text mode, multiple files with one copy command to an already
allocated Data Physical File on an OS/400 system.

The file names used to create the member names in the destination Data Physical File
are the source file names. However, note that file names on UNIX and Windows file
systems often have a file extension as part of their name. A file extension is a suffix
separated from the file's base name with a period (for example, BASE.TXT). Member
names are limited to 10 characters on the OS/400 system, so UDM must be instructed to
remove the file extensions before copying them into the PDS.

The truncext attribute is used to instruct UDM to remove file name extensions from the
source file prior to using the name as the destination member name.

This example assumes that the remote UNIX directory /opt/app/data contains the
following list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The result of the copy operation will create the following members in Data Physical File
APPDATA:
• DATA001
• DATA002
• DATA003

LIB file system

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt local=MYLIB/APPDATA

7 quit
udm-user-3207 Confidential & Proprietary 305

UDM Manager for OS/400 Examples Examples
A.4.4 Copy a File to a New OS/400 Data Physical File

This example copies, in text mode, a file from a remote UNIX system to a data physical
file on OS/400. The Data Physical File does not exist on OS/400; UDM is instructed to
create it.

The file type created defaults to a Data Physical File. The Data Physical File is allocated
based on the local UDM allocation attributes. UDM provides default attributes that can be
changed to meet local requirements. The UDM defaults, as delivered, create a Data
Physical File with a logical record length of 92 and maximum members of 1.

This example changes the record length to 80, and the maximum members to unlimited
(nomax), in order to demonstrate how to set allocation attributes.

LIB file system

Almost all data set allocation attributes can be specified as UDM attributes giving you the
ability to dynamically allocate any supported Data Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be checked to verify they meet your intentions. Although UDM
checks attribute values, some values are provided by the system from sources that UDM
cannot verify and can result in invalid or unintentional attribute combinations.

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local rcdlen=80 maxmbrs=nomax

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
udm-user-3207 Confidential & Proprietary 306

UDM Manager for OS/400 Examples Examples
A.4.5 Copy a File to a New OS/400 Source Physical File

This example copies, in text mode, a file from a remote UNIX system to a Source
Physical File on OS/400. The Source Physical File does not exist on OS/400; UDM is
instructed to create it.

The Source Physical File is allocated based on the local UDM allocation attributes. UDM
provides default attributes that can be changed to meet local requirements. The UDM
defaults, as delivered, create a Data Physical File with a logical record length of 92 and
maximum members of 1.

This example changes the file type to src in order to demonstrate how to set allocation
attributes.

LIB file system

Almost all data set allocation attributes can be specified as UDM attributes giving you the
ability to dynamically allocate any supported Data Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be checked to verify they meet your intentions. Although UDM
checks attribute values, some values are provided by the system from sources that UDM
cannot verify and may result in invalid or unintentional attribute combinations.

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local filetype=src

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
udm-user-3207 Confidential & Proprietary 307

UDM Manager for OS/400 Examples Examples
A.4.6 Copy a Set of Files to a New Data Physical File on OS/400

This example copies, in text mode, a set of files from a remote UNIX system to a data
physical file on OS/400. The data file does not exist on OS/400; UDM is instructed to
create it.

The data set is allocated based on the local UDM allocation attributes. UDM provides
default attributes that can be changed to meet local requirements. The UDM defaults, as
delivered, create a data physical file with a logical record length of 92 and maximum
members of 1.

This example changes the record length to 80 and the maximum members to unlimited
(nomax).

LIB file system

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local maxmbrs=nomax rcdlen=80 truncext=yes

6 copy unix=*.txt local=MYLIB/APPDATA

7 quit
udm-user-3207 Confidential & Proprietary 308

UDM Manager for OS/400 Examples Examples
A.4.7 Copy Different Types of OS/400 Files using forfiles and $(_file.type)

Physical files are considered directories in UDM because they contain 1+ member. Save
files are considered files because they do not contain any members. The forfiles
statement and the variable $(_file.type) allow you to do a wildcard copy on both save
and physical files in the LIB file system.

This example copies a mix of files (Save and Physical) from an OS/400 system in a single
operation, using the forfiles statement and the $(_file.type) variable attribute.

forfiles src=MYLIB/*

if $(_file.type) EQ directory

copy src=$(_path)(*)

else

copy src=$(_path)

end

end
udm-user-3207 Confidential & Proprietary 309

UDM Manager for OS/400 Examples Examples
A.4.8 Invoke a Script from a Batch Job

To invoke a script included as an inline file in a database job, the call must specify *FIRST
as the database member name.

The following example illustrates both:
• Invocation of an inline script, CALLME, using the STRUDM command from a database

job.
• Invocation of an inline script, CALL1, using the CALL command from a database job.

LIB file system
//BCHJOB JOB(testcall) ENDSEV(10) OUTQ(mytest/UDMOUTQ) LOGCLPGM(*YES)

LOG(2 20 *SECLVL) MSGQ(*USRPRF)

//DATA FILE(CALL1) ENDCHAR(ENDDATAFILE)

print msg="I made it to call1 - an inline file"

ENDDATAFILE

//DATA FILE(CALLME) ENDCHAR(ENDDATAFILE)

OPEN S=AS400V5 USER=qatest PWD=***** PORT=4311

CALL CALL1(*FIRST)

CLOSE

ENDDATAFILE

STRUDM SCRFILE(CALLME)

//ENDBCHJOB
udm-user-3207 Confidential & Proprietary 310

Appendix B
Customer Support
Stonebranch, Inc. provides customer support, via telephone and e-mail, for Universal
Data Mover and all Universal Products.

TELEPHONE

Customer support via telephone is available 24 hours per day, 7 days per week.

North America

(+1) 678 366-7887, extension 6

(+1) 877 366-7887, extension 6 [toll-free]

Europe

+49 (0) 700 5566 7887

E-MAIL

All Locations

support@stonebranch.com

Customer support contact via e-mail also can be made via the Stonebranch website:

www.stonebranch.com
udm-user-3207 Confidential & Proprietary 311

950 North Point Parkway, Suite 200
Alpharetta, Georgia 30005
U.S.A.

	Summary of Changes
	Contents
	List of Figures
	List of Tables
	Preface
	Document Structure
	Format
	Conventions
	Vendor References

	Document Organization

	Chapter 1 Overview
	1.1 Introduction to Universal Data Mover
	1.2 Transfer Components
	1.2.1 Manager
	1.2.2 Primary Server
	1.2.3 Secondary Server

	1.3 Transfer Sessions
	1.3.1 Logical Names
	1.3.2 Two-Party Transfer Sessions
	1.3.3 Three-Party Transfer Sessions

	Chapter 2 Features
	2.1 Overview
	2.2 Configuration
	2.2.1 Configuration Methods
	2.2.2 Command Line
	2.2.3 Command Line File
	2.2.4 Environment Variables
	2.2.5 Configuration File
	2.2.6 Configuration File Syntax

	2.3 Remote Configuration
	2.3.1 Unmanaged Mode
	2.3.2 Managed Mode
	Selecting Managed Mode

	2.3.3 Universal Broker Startup

	2.4 Universal Configuration Manager
	2.4.1 Availability
	2.4.2 Accessing the Universal Configuration Manager
	2.4.3 Navigating through Universal Configuration Manager
	2.4.4 Modifying / Entering Data
	Rules for Modifying / Entering Data

	2.4.5 Saving Data
	2.4.6 Accessing Help Information
	2.4.7 Universal Data Mover Installed Components
	Universal Data Mover Manager
	Universal Data Mover Server

	2.5 Network Data Transmission
	2.5.1 Secure Socket Layer Protocol
	Data Privacy and Integrity
	Peer Authentication

	2.5.2 Universal Products Protocol
	Data Privacy and Integrity

	2.5.3 Universal Products Application Protocol
	Low-Overhead
	Secure
	Extensible

	2.5.4 Configurable Attributes

	2.6 Fault Tolerance
	2.6.1 Network Fault Tolerance
	2.6.2 Open Retry
	2.6.3 Component Management

	2.7 z/OS CANCEL Command Support
	2.7.1 Exit Codes
	2.7.2 Security Token

	2.8 Universal Access Control List
	2.8.1 UACL Configuration
	2.8.2 UACL Entries
	Client Identification
	Certificate-Based and Non Certificate-Based UACL Entries

	2.8.3 Types of UACL Rules
	udm_access
	udm_mgr_access
	udm_cert_access

	2.8.4 Proxy Certificates

	2.9 Message and Audit Facilities
	2.9.1 Message Types
	2.9.2 Message ID
	2.9.3 Message Levels
	2.9.4 Message Destinations

	2.10 X.509 Certificates
	2.10.1 Sample Certificate Directory
	2.10.2 Sample X.509 Certificate
	Certificate Fields

	2.10.3 SSL Peer Authentication
	Certificate Verification
	Certificate Revocation
	Certificate Identification
	Certificate Support

	Chapter 3 Universal Data Mover Manager for z/OS
	3.1 Overview
	3.2 Usage
	3.2.1 JCL Procedure
	3.2.2 DD Statements in JCL
	3.2.3 JCL
	3.2.4 Configuration
	3.2.5 Configuration Options
	3.2.6 Command Line Syntax

	3.3 Examples of UDM Manager for z/OS
	3.4 Security
	3.4.1 Data Set Permissions

	Chapter 4 Universal Data Mover Manager for Windows
	4.1 Overview
	4.2 Usage
	4.2.1 Modes of Operation
	Running UDM in Interactive Mode
	Running UDM in Batch Mode

	4.2.2 Configuration
	4.2.3 Configuration Options
	4.2.4 Command Line Syntax

	4.3 Examples of UDM Manager for Windows

	Chapter 5 Universal Data Mover Manager for UNIX
	5.1 Overview
	5.2 Usage
	5.2.1 Modes of Operation
	Running UDM in Interactive Mode
	Running UDM in Batch Mode

	5.2.2 Configuration
	5.2.3 Configuration Options
	5.2.4 Command Line Syntax

	5.3 Examples of UDM Manager for UNIX
	5.4 Security
	5.4.1 File Permissions
	5.4.2 Configuration Files

	Chapter 6 Universal Data Mover Manager for OS/400
	6.1 Overview
	6.2 Usage
	6.2.1 Universal Products for OS/400 Commands
	6.2.2 Modes of Operation
	Running UDM Interactively
	Running UDM from a Script
	Running UDM in Batch Mode

	6.2.3 Configuration
	6.2.4 Configuration Options
	6.2.5 Command Line Syntax

	6.3 Examples of UDM Manager for OS/400
	6.4 Security
	6.4.1 Object Permissions

	Chapter 7 Universal Data Mover Server for z/OS
	7.1 Overview
	7.2 Component Definition
	7.3 Configuration
	7.3.1 Configuration File
	7.3.2 Configuration Options

	7.4 Security
	7.4.1 File Permissions
	7.4.2 Configuration Files
	7.4.3 Universal Data Mover Server User ID
	7.4.4 User Authentication
	7.4.5 Universal Access Control List
	UACL Entries
	UACL Examples

	Chapter 8 Universal Data Mover Server for Windows
	8.1 Overview
	8.2 Component Definition
	8.3 Configuration
	8.3.1 Configuration File
	8.3.2 Configuration Options

	8.4 Security
	8.4.1 File Permissions
	8.4.2 Configuration Files
	8.4.3 Universal Data Mover Server User ID
	8.4.4 User Authentication
	8.4.5 Universal Access Control List
	UACL Entries
	Updating the Universal Data Mover Server ACL Entries

	Chapter 9 Universal Data Mover Server for UNIX
	9.1 Overview
	9.2 Component Definition
	9.3 Configuration
	9.3.1 Configuration File
	9.3.2 Configuration Options

	9.4 Security
	9.4.1 File Permissions
	9.4.2 Configuration Files
	9.4.3 Universal Data Mover Server User ID
	9.4.4 User Authentication
	9.4.5 Universal Access Control List
	UACL Entries
	UACL Examples

	Chapter 10 Universal Data Mover Server for OS/400
	10.1 Overview
	10.2 Component Definition
	10.3 Configuration
	10.3.1 Configuration File
	10.3.2 Configuration Options

	10.4 Security
	10.4.1 Object Permissions
	10.4.2 Universal Data Mover Server User Profile
	10.4.3 User Authentication
	10.4.4 Universal Access Control List
	UACL Entries
	UACL Examples

	Chapter 11 UDM Scripting Language
	11.1 Overview
	11.2 UDM Commands
	11.3 UDM Command Format
	11.3.1 Basic Rules
	Parameters
	Spaces
	Escape Sequences
	Line Continuation
	Comments

	11.3.2 Sample UDM Script
	11.3.3 Expressions
	Appearance
	Integer Only
	Delimiters
	Operand / Operator Delimiters
	Operator Precedence
	Nesting
	Operations

	11.3.4 Strings in Expressions
	Index Position and Sequence

	11.3.5 Examples of Expressions

	11.4 Script Files
	11.4.1 Invoking UDM in Batch Mode with Commands from a Script File
	11.4.2 Invoking UDM Interactively with Commands from a Script File
	11.4.3 Invoking Scripts from within Scripts
	11.4.4 Parameter Processing

	11.5 Subroutines
	11.5.1 Usage
	Defining a Subroutine
	Invoking a Subroutine
	Sequence of Defining / Invoking a Subroutine
	Nesting / Recursion of Subroutines

	11.5.2 Example
	Output

	11.6 UDM Variables
	11.6.1 Variable Types
	Variable Names

	11.6.2 Variable Reference
	11.6.3 Script Variables
	11.6.4 Global Variables
	11.6.5 Scope of Script and Global Variables
	Variable Scope Scripts

	11.6.6 User-Defined Variables
	11.6.7 Variable Attributes
	exists Attribute
	length Attribute

	11.6.8 Built-in Variables
	_date
	_echo
	_execrc
	_file
	_halton
	_keepalive
	_lastmsg
	_lastrc
	_lines
	_path
	_rc
	_time
	_uuid

	11.6.9 Logical Name Built-In Variables
	Examples

	11.7 if Statement
	11.7.1 Comparison Operations
	Comparators
	EQ - Equal
	NE - Not Equal
	LT - Less Than
	GT - Greater Than
	LE - Less Than or Equal
	GE - Greater Than or Equal

	11.7.2 Adding an Alternate Path with else Statement
	Alternate Path without else Statement
	Alternate Path with else Statement

	11.7.3 Nested Conditionals
	11.7.4 Returning Early Using the return Command

	11.8 while Statement
	11.9 fordata Statement
	Example

	11.10 forfiles Statement
	11.10.1 forfiles Built-In Variables
	_file Variable Attributes

	11.10.2 forfiles File Specification
	11.10.3 Breaking Out Using the break Command

	11.11 Creating In-Stream Data with the data Command
	11.11.1 Creating an In-Stream Data Element
	Example

	11.11.2 Printing Data Element Information

	Chapter 12 UDM Transfer Operations
	12.1 Overview
	12.2 Transfer Sessions
	12.2.1 Opening a Transfer Session
	Opening a Two-Party Transfer Session
	Opening a Three-Party Transfer Session

	12.2.2 Session Options
	12.2.3 Closing a Session

	12.3 File Systems
	12.3.1 File System Overview
	12.3.2 Changing the Current File System

	12.4 UDM Common File System
	12.4.1 Common File System Terminology

	12.5 z/OS File System
	12.6 OS/400 File Systems
	12.6.1 HFS
	12.6.2 LIB

	12.7 Transfer Modes and Attributes
	12.7.1 Setting the Transfer Type
	12.7.2 Transfer Attributes
	12.7.3 End of Line Sequence
	eol Attribute

	12.7.4 Line Length and Line Operations

	12.8 Copying Files with UDM
	12.8.1 Simple Copy Operation
	Examples

	12.8.2 Move Operation
	12.8.3 Copying Multiple Files Using Wildcards
	12.8.4 File Extension Attributes
	12.8.5 File Creation Options
	12.8.6 File Permission Attribute
	Examples
	Defaults

	12.8.7 Destination umask
	12.8.8 Transaction-Oriented Transfers
	12.8.9 Changing the Current Directory in UDM

	12.9 Auditing Transfer Operations
	12.9.1 Logging File Transfer Operations
	12.9.2 Reporting Transfer Progress

	Chapter 13 Transfer Operations (z/OS-Specific)
	13.1 Overview
	13.2 z/OS I/O
	13.2.1 Data Sets
	Data Set Names
	Data Set Organization
	Record Format
	Block Size

	13.2.2 Generation Data Group and Generation Data Sets
	Allocation

	13.2.3 Catalogs
	Symbolic Names
	Catalog Entry Types

	13.2.4 Allocation

	13.3 UDM Commands under z/OS
	13.3.1 attrib (Attribute) Command
	13.3.2 cd (Change Directory) Command
	DSN (data set name) File System
	Examples
	DD (ddname) File System

	13.3.3 copy (Copy) Command
	DSN File System
	Sequential Data Sets
	Partitioned Data Sets
	DD File System
	Sequential ddnames
	Partitioned ddnames

	13.4 Copying Load Modules
	13.4.1 Example
	13.4.2 Error Reporting
	13.4.3 Special Attributes

	Chapter 14 Transfer Operations (OS/400-Specific)
	14.1 Overview
	14.2 OS/400 I/O
	14.2.1 File Systems
	14.2.2 HFS (for OS/400) File System
	14.2.3 LIB File System
	File Types

	14.2.4 Data Physical Files Support
	Caution about Text Mode Transfer of Files with DDS

	14.2.5 Source Physical Files Support
	14.2.6 Copying Source Physical Files
	Like Copies of Source Physical File Data
	Non-Source Physical to Source Physical Copies
	Source Physical to Non-Source Physical Copies

	14.2.7 Save Files Support
	SAVF to SAVF Transfers
	Non-SAVF to SAVF Transfers
	SAVF to Non-SAVF Transfers

	14.2.8 File Specifications
	14.2.9 Wild Cards
	Examples

	14.3 Codepage - CCSID Mappings
	14.3.1 CCSID Mapping

	14.4 Command Reference
	14.4.1 attrib (Attribute) Command
	File Attributes
	LIB File System Attributes
	HFS Attributes

	14.4.2 call (Call) Command
	14.4.3 cd (Change Directory) Command
	14.4.4 copy (Copy) Command
	14.4.5 File Specification Rules
	Source File Specification Rules
	Destination File Specification Rules

	14.4.6 delete (Delete) Command
	delete Command Requirements
	delete Command Forms

	14.4.7 rename (Rename) Command
	rename Command Requirements
	rename Command Forms

	Chapter 15 Remote Execution
	15.1 Overview
	15.2 exec Command
	15.2.1 Executing Remote Commands within UDM
	15.2.2 Return Values
	15.2.3 exec Command Examples

	15.3 execsap Command
	15.3.1 Triggering SAP Events within UDM
	15.3.2 execsap Command Example

	Chapter 16 Return Code Processing
	16.1 Overview
	16.1.1 UDM Return Codes

	16.2 Return Codes in UDM Built-In Variables
	_lastrc Variable
	_rc Variable
	_halton Variable

	16.3 Setting Return Codes
	16.3.1 Return Codes in set (Set) Command
	Issuing the set Command

	16.3.2 Return Codes in return (Return) Command

	Appendix A Examples
	A.1 Overview
	A.2 UDM Manager for z/OS Examples
	A.2.1 Copy a File to an Existing z/OS Sequential Data Set
	DD file system
	DSN file system

	A.2.2 Copy a z/OS Sequential Data Set to a File
	DD file system
	DSN file system

	A.2.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set
	DD file system
	DSN file system

	A.2.4 Copy a File to a New z/OS Sequential Data Set
	DSN file system

	A.2.5 Copy a Set of Files to a New z/OS Partitioned Data Set
	DSN file system

	A.3 UDM Manager for UNIX and Windows Examples
	A.3.1 Simple File Copy to the Manager
	A.3.2 Simple File Copy to the Server
	A.3.3 Copy a Set of Files

	A.4 UDM Manager for OS/400 Examples
	A.4.1 Copy a File to an Existing OS/400 File
	LIB file system
	HFS file system

	A.4.2 Copy an OS/400 Data Physical File to a File
	LIB file system

	A.4.3 Copy a Set of Files to an Existing Data Physical File
	LIB file system

	A.4.4 Copy a File to a New OS/400 Data Physical File
	LIB file system

	A.4.5 Copy a File to a New OS/400 Source Physical File
	LIB file system

	A.4.6 Copy a Set of Files to a New Data Physical File on OS/400
	LIB file system

	A.4.7 Copy Different Types of OS/400 Files using forfiles and $(_file.type)
	A.4.8 Invoke a Script from a Batch Job
	LIB file system

	Appendix B Customer Support
	TELEPHONE
	E-MAIL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

