
Stonebranch
Solutions

Version 4.3.0

Infitran
User Guide

infitran-user-4301

Infitran

User Guide

Stonebranch Solutions 4.3.0
Document Name Infitran 4.3.0 User Guide

Document ID infitran-user-4301

Components z/OS UNIX Windows IBM i HP NonStop

Universal Connector √ √

Universal Data Mover √ √ √ √

Universal Enterprise Controller √ √

Universal Enterprise Controller
Client Applications

√

Universal Event Monitor √ √ √

Universal Event Monitor for SOA √ √

Universal Certificate √ √ √

Universal Control √ √ √ √

Universal Database Dump √ √ √

Universal Database Load √ √ √

Universal Display Log File √

Universal Encrypt √ √ √ √

Universal Event Log Dump √

Universal Message Translator √ √ √ √

Universal Query √ √ √ √

Universal Return Code √

Universal Spool List √ √ √ √

Universal Spool Remove √ √ √ √

Universal Submit Job √

Universal Write to Operator √
infitran-user-4301 Confidential & Proprietary 3

Stonebranch Documentation Policy

This document contains proprietary information that is protected by copyright. All rights reserved.
No part of this publication may be reproduced, transmitted or translated in any form or language or

by any means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission, in writing, from the publisher. Requests for

permission to make copies of any part of this publication should be mailed to:

Stonebranch, Inc.
950 North Point Parkway, Suite 200

Alpharetta, GA 30005 USA
Tel: (678) 366-7887
Fax: (678) 366-7717

Stonebranch, Inc.® makes no warranty, express or implied, of any kind whatsoever, including any
warranty of merchantability or fitness for a particular purpose or use.

The information in this documentation is subject to change without notice.

Stonebranch shall not be liable for any errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this document.

All products mentioned herein are or may be trademarks of their respective owners.

© 2008-2011 by Stonebranch, Inc.

All rights reserved.
infitran-user-4301 Confidential & Proprietary 4

Summary of Changes
Changes for Infitran 4.3.0 User Guide
(infitran-user-4301)
November 22, 2011

• General documentation improvements.

Changes for Infitran 4.3.0 User Guide
(infitran-user-4300)
March 31, 2011

Universal Broker 4.3.0.0
• Updated Universal Broker for UNIX File Permissions and Universal Broker User

Account information in Section 7.2.1 Universal Broker of Chapter 7 Security.
• Specified that the Universal Broker service can be configured to execute with the

Local System account or with a specially configured Administrative account in:
• Section 7.2.1 Universal Broker / Universal Broker User Account of Chapter 7

Security.
• Section 9.5.2 Starting Universal Broker for Windows / Windows Service of

Chapter 9 Component Management.

Universal Automation Center Registration 4.3.0.0

• Added Universal Automation Center Registration in Section 1.4 Infitran Components.
• Added Section 8.4.11 Universal Automation Center Registration Server Installed

Component.
• Added the Universal Automation Center Registration Server component to the

following in Section 9.3 Starting Components of Chapter 9 Component Management:
• Starting Automatically
• Starting via Universal Control
infitran-user-4301 Confidential & Proprietary 5

Summary of Changes
Changes for Infitran 4.2.0 User Guide
(infitran-user-4201)
October 29, 2010

• Created links from Stonebranch Solutions components to their corresponding
reference guides in Section 1.4 Infitran Components.

• Removed requirement for licensed version of Universal Command in Section 3.1
Overview of Chapter 3 Remote Execution.

• Replaced z/OS examples with Windows and UNIX examples in Chapter 14
Databases.

Changes for Infitran 4.2.0 User Guide
(infitran-user-4200)
August 6, 2010

• This is the first version of the Infitran 4.2.0 User Guide. Information on Infitran
features, and examples of how those features can be implemented, have been
moved from Universal Products 4.1.0 user guides to this document.
infitran-user-4301 Confidential & Proprietary 6

Contents
Summary of Changes . 5

Contents . 7

List of Figures . 20

List of Tables . 25

Preface . 27

Document Structure . 27

Document Organization . 30

1 Infitran Overview . 32

1.1 What is Infitran? . 32

1.2 What can Infitran do for Me? . 33

1.3 Infitran Features . 34

1.4 Infitran Components . 36
I-Activity Monitor . 38
I-Management Console . 38
I-Administrator . 38
Universal Automation Center Registration . 39
Universal Certificate . 39
Universal Control . 39
Universal Database Dump . 39
Universal Database Load . 40
infitran-user-4301 Confidential & Proprietary 7

Contents
Universal Display Log File . 40
Universal Encrypt . 40
Universal Event Log Dump . 40
Universal Message Translator . 40
Universal Products Install Merge . 40
Universal Query . 40
Universal Return Code . 40
Universal Spool List . 41
Universal Spool Remove . 41
Universal Submit Job . 41
Universal Write-to-Operator . 41

1.5 Limited Use Components . 42
Limitations of Use . 42
Limitations of Use . 42
Limitations of Use . 43

2 Transferring Files to / from Remote Systems . 44

2.1 Overview . 44

2.2 Transfer Operation Components . 45
2.2.1 Manager . 45
2.2.2 Primary Server . 45
2.2.3 Secondary Server . 45

2.3 Transfer Sessions . 46
2.3.1 Logical Names . 46
2.3.2 Two-Party Transfer Sessions . 46
2.3.3 Three-Party Transfer Sessions . 46

2.4 Transferring Files Examples . 48
2.4.1 Copy a File to an Existing z/OS Sequential Data Set . 50
2.4.2 Copy a z/OS Sequential Data Set to a File . 52
2.4.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set 53
2.4.4 Copy a File to a New z/OS Sequential Data Set . 55
2.4.5 Copy a Set of Files to a New z/OS Partitioned Data Set 56
2.4.6 Simple File Copy to the Manager . 57
2.4.7 Simple File Copy to the Server . 58
2.4.8 Copy a Set of Files . 59
2.4.9 Copy a File to an Existing IBM i File . 60
2.4.10 Copy an IBM i Data Physical File to a File . 62
2.4.11 Copy a Set of Files to an Existing Data Physical File 63
2.4.12 Copy a File to a New IBM i Data Physical File . 64
infitran-user-4301 Confidential & Proprietary 8

Contents
2.4.13 Copy a File to a New IBM i Source Physical File . 65
2.4.14 Copy a Set of Files to a New Data Physical File on IBM i 66
2.4.15 Copy Different Types of IBM i Files using forfiles and $(_file.type) 67
2.4.16 Invoke a Script from a Batch Job . 68

3 Remote Execution . 69

3.1 Overview . 69

3.2 Execution Primer . 71
3.2.1 Remote Execution Requirements . 72

3.3 Remote Execution Examples . 77
3.3.1 Windows Directory Listing Using a Batch File - Default Directory 78
3.3.2 Windows Directory Listing Using a Batch File - Returned File 80
3.3.3 UNIX Listing Using a Shell Script . 82
3.3.4 UNIX - Integrating UDM with FTP Using a Shell Script 85
3.3.5 UNIX - Integrating UDM with FTP Using a Command Reference 87
3.3.6 IBM i from Windows, UNIX, or IBM i - exec Command Return Codes 89

4 Remote Execution for SAP Systems . 92

4.1 Overview . 92

4.2 Remote Execution of SAP Examples . 93
4.2.1 Raising an SAP Event for z/OS Example . 94
4.2.2 Raising an SAP Event for UNIX Example . 96

5 Web Services Execution . 98

5.1 Overview . 98

5.2 Web Services Examples . 99
5.2.1 Inbound JMS Implementation . 100

ActiveMQ Topic . 101
Websphere Queue . 102
MQ Series Queue: . 103
Triggering an Event . 104

5.2.2 Inbound SOAP Implementation . 106

6 Event Monitoring and File Triggering . 111

6.1 Overview . 111

6.2 Universal Event Monitor . 112
6.2.1 Storing Event Definitions and Event Handlers . 114
6.2.2 Monitoring a Single Event . 116
infitran-user-4301 Confidential & Proprietary 9

Contents
6.2.3 Monitoring Multiple Events . 118

6.3 UEMLoad . 120
6.3.1 Controlling Database Access . 121

Access via UEMLoad Utility . 121
Universal Access Control List . 122

6.4 Event Monitoring and File Triggering Examples . 123
Universal Event Monitoring Examples . 123

6.4.1 Starting an Event-Driven Server . 125
6.4.2 Refreshing an Event-Driven UEM Server . 126
6.4.3 Executing Command/Script Using a Stored Event Handler Record

in z/OS . 127
6.4.4 Handling an Event With a Script in z/OS . 128
6.4.5 Handling an Expired Event in z/OS . 130
6.4.6 Continuation Character - in z/OS Handler Script . 131
6.4.7 Continuation Character + in z/OS Handler Script . 132
6.4.8 Continuation Characters - and + in z/OS Handler Script 133
6.4.9 Using a Stored Event Handler Record in Windows 134
6.4.10 Executing a Script for a Triggered Event Occurrence in Windows . . . 135
6.4.11 Handling an Expired Event in Windows . 137
6.4.12 Adding a Single Event Record for Windows . 138
6.4.13 Adding a Single Event Handler Record for Windows 139
6.4.14 Listing All Event Definitions for Windows . 140
6.4.15 Exporting the Event Definition and Event Handler Databases for

Windows . 141
6.4.16 List a Single Event Handler Record for Windows 142
6.4.17 Listing Multiple Event Definitions and Event Handlers Using

Wildcards for Windows . 143
6.4.18 Add Record(s) Using a Definition File for Windows 144
6.4.19 Add Record(s) Remotely, Using a Definition File Redirected from

STDIN for Windows . 145
6.4.20 Add Record(s) Remotely, Using a Definition File Redirected from

STDIN (for z/OS) for Windows . 146
6.4.21 Definition File Format for Windows . 147
6.4.22 Using a Stored Event Handler Record in UNIX . 149
6.4.23 Executing a Script for a Triggered Event Occurrence in UNIX 150
6.4.24 Handling an Expired Event in UNIX . 152
6.4.25 Adding a Single Event Record for UNIX . 153
6.4.26 Adding a Single Event Handler Record for UNIX 154
6.4.27 Listing All Event Definitions for UNIX . 155
6.4.28 Exporting the Event Definition and Event Handler Databases for

UNIX . 156
infitran-user-4301 Confidential & Proprietary 10

Contents
6.4.29 List a Single Event Handler Record for UNIX . 157
6.4.30 Listing Multiple Event Definitions and Event Handlers Using

Wildcards for UNIX . 158
6.4.31 Add Record(s) Using a Definition File for UNIX . 159
6.4.32 Add Record(s) Remotely, Using a Definition File Redirected from

STDIN for UNIX . 160
6.4.33 Add Record(s) Remotely, Using a Definition File Redirected from

STDIN (for z/OS) for UNIX . 161
6.4.34 Definition File Format for UNIX . 162

7 Security . 164

7.1 Overview . 164

7.2 Security of Infitran Components . 165
7.2.1 Universal Broker . 166

File Permissions . 166
Configuration Files . 167
Universal Access Control List . 167
Universal Broker User Account . 168

7.2.2 Universal Data Mover Manager Security . 170
File Permissions . 170
Configuration Files . 170

7.2.3 Universal Data Mover Server . 171
File Permissions . 171
Configuration Files . 171
Universal Data Mover Server User ID . 172
Universal Data Mover Server User Profile . 172
User Authentication . 172

7.2.4 Universal Event Monitor Manager . 174
File Permissions . 174
Data Privacy . 174
RACF Protection . 174
Configuration Files . 175

7.2.5 Universal Event Monitor Server . 176
Data Privacy . 176
File Permissions . 176
Configuration Files . 176
User Authentication . 177

7.2.6 Universal Control Manager . 178
File Permissions . 178
Configuration Files . 178
infitran-user-4301 Confidential & Proprietary 11

Contents
Universal Configuration Manager . 178
RACF Protection . 179

7.2.7 Universal Control Server . 180
File Permissions . 180
Configuration Files . 180
Universal Control Server User ID . 180
User Authentication . 181

7.2.8 Universal Event Log Dump . 182
Event Log Access . 182
Configuration Files . 182

7.2.9 Universal Spool List . 182
7.2.10 Universal Spool Remove . 182

7.3 Encryption . 183
7.3.1 Encrypting Files . 183
7.3.2 Transferring Encrypted Files between Servers . 184

Security Considerations . 184

7.4 Encryption Examples . 185
7.4.1 Creating Encrypted Command File for z/OS . 186
7.4.2 Using Encrypted Command File on z/OS . 187
7.4.3 Creating Encrypted Command File for Windows . 188
7.4.4 Using Encrypted Command File on Windows . 189
7.4.5 Creating Encrypted Command File for UNIX . 190
7.4.6 Using Encrypted Command File on UNIX . 191
7.4.7 Creating Encrypted Command File for IBM i . 192
7.4.8 Using Encrypted Command File on IBM i . 193

7.5 Universal Access Control List . 194
7.5.1 UACL Configuration . 195
7.5.2 UACL Entries . 196

Client Identification . 196
Request Identification . 200
Certificate-Based and Non Certificate-Based UACL Entries 201

7.6 Universal Access Control List Examples . 202
7.6.1 Universal Broker for z/OS . 203
7.6.2 Universal Data Mover Server for z/OS . 204
7.6.3 Universal Control Server for z/OS . 205
7.6.4 Universal Broker for Windows . 206
7.6.5 Universal Data Mover Server for Windows . 207
7.6.6 Universal Control Server for Windows . 208
7.6.7 Universal Event Monitor Server for Windows . 209
7.6.8 Universal Broker for UNIX . 210
infitran-user-4301 Confidential & Proprietary 12

Contents
7.6.9 Universal Data Mover Server for UNIX . 211
7.6.10 Universal Control Server for UNIX . 212
7.6.11 Universal Event Monitor Server for UNIX . 213
7.6.12 Universal Broker for IBM i . 214
7.6.13 Universal Data Mover Server for IBM i . 215
7.6.14 Universal Control Server for IBM i . 216

7.7 X.509 Certificates . 217
7.7.1 Sample Certificate Directory . 218
7.7.2 Sample X.509 Certificate . 219
7.7.3 Certificate Fields . 220
7.7.4 SSL Peer Authentication . 221

Certificate Verification . 221
Certificate Revocation . 221
Certificate Identification . 222
Certificate Support . 222

7.8 Creating Certificates Examples . 223
7.8.1 Creating a Certificate Authority Certificate . 224
7.8.2 Creating a Certificate . 225

8 Configuration Management . 226

8.1 Overview . 226

8.2 Configuration Methods . 227
Universal Broker / Servers Configuration Method . 227

8.2.1 Command Line . 228
8.2.2 Command File . 230
8.2.3 Environment Variables . 231
8.2.4 Configuration File . 233

Configuration File Syntax . 235

8.3 Remote Configuration . 236
8.3.1 Unmanaged Mode . 236
8.3.2 Managed Mode . 237

Selecting Managed Mode . 237
8.3.3 Universal Broker Start-up . 239

8.4 Universal Configuration Manager . 240
8.4.1 Availability . 240
8.4.2 Accessing the Universal Configuration Manager . 242
8.4.3 Navigating through Universal Configuration Manager 244
8.4.4 Modifying / Entering Data . 244

Rules for Modifying / Entering Data . 244
infitran-user-4301 Confidential & Proprietary 13

Contents
8.4.5 Saving Data . 245
8.4.6 Accessing Help Information . 245
8.4.7 Universal Data Mover Installed Components . 246

Universal Data Mover Manager . 246
Universal Data Mover Server . 247

8.4.8 Universal Event Monitor Installed Components . 248
Universal Event Monitor Manager . 248
Universal Event Monitor Server . 249

8.4.9 Universal Enterprise Controller Component . 250
8.4.10 Universal Broker Installed Component . 251
8.4.11 Universal Automation Center Registration Server Installed

Component . 252
8.4.12 Stonebranch Solutions Utilities Installed Components 253

Universal Control Manager . 253
Universal Control Server . 254
Universal Event Log Dump . 255
Universal Query . 256

8.5 Configuration Refresh . 257
8.5.1 Configuration Refresh Via Universal Control . 258

Configuration Refresh for Universal Event Monitor Server 258
8.5.2 Configuration Refresh Via Universal Configuration Manager 259
8.5.3 Universal Broker Configuration Options Refresh . 259

8.6 Refreshing via Universal Control Examples . 260
8.6.1 Refreshing Universal Broker from z/OS . 261
8.6.2 Refreshing a Component from z/OS . 263
8.6.3 Refreshing Universal Broker via Universal Control from Windows 264
8.6.4 Refreshing a Component via Universal Control from Windows 265
8.6.5 Refreshing Universal Broker via Universal Control from UNIX 266
8.6.6 Refreshing a Component via Universal Control from UNIX 267
8.6.7 Refreshing Universal Broker via Universal Control from

IBM i . 268
8.6.8 Refreshing a Component via Universal Control from IBM i 269

8.7 Merging Configuration Options during an Upgrade Installation Examples . . 270
Files Used in Examples . 271

8.7.1 Merge Files Using Program Defaults . 272
8.7.2 Merge Files Introducing New Options . 273
8.7.3 Merge Files Using Installation-Dependent Values . 274

9 Component Management . 275

9.1 Overview . 275
infitran-user-4301 Confidential & Proprietary 14

Contents
9.2 Component Definition . 276
9.2.1 Universal Event Monitor Component Definition . 276

9.3 Starting Components . 277
Starting Manually . 277
Starting via Manager . 277
Starting Automatically . 277
Starting via Universal Control . 277

9.4 Stopping Components . 278

9.5 Starting / Stopping Universal Broker Examples . 279
9.5.1 Starting / Stopping Universal Broker for z/OS . 280

Start Universal Broker . 280
Stop Universal Broker . 280

9.5.2 Starting Universal Broker for Windows . 281
Console Application . 281
Windows Service . 282

9.5.3 Starting Universal Broker for UNIX . 283
Daemon . 283
Console Application . 284

9.5.4 Starting, Ending and Working With Universal Broker
for IBM i . 285

Commands . 286

9.6 Starting / Stopping Universal Enterprise Controller Examples 287
9.6.1 Starting / Stopping Universal Enterprise Controller for z/OS 288

Starting UEC . 288
Stopping UEC . 288
System MODIFY Command . 289

9.6.2 Starting / Stopping Universal Enterprise Controller
for Windows . 290

9.7 Starting / Stopping Components via Universal Control Examples 291
9.7.1 Starting a z/OS Component via Universal Control 292
9.7.2 Stopping a z/OS Component via Universal Control 293
9.7.3 Starting a Windows Component via Universal Control 294
9.7.4 Stopping a Windows Component via Universal Control 295
9.7.5 Starting a UNIX Component via Universal Control 296
9.7.6 Stopping a UNIX Component via Universal Control 297
9.7.7 Starting an IBM i Component via Universal Control 298
9.7.8 Stopping an IBM i Component via Universal Control 299

9.8 Maintaining Universal Broker Definitions in the Universal Enterprise
 Controller Database . 300

9.8.1 List All Defined Universal Brokers . 301
infitran-user-4301 Confidential & Proprietary 15

Contents
9.8.2 Export a Specific, Defined Universal Broker . 301
9.8.3 Export Events . 301
9.8.4 Delete a Specific, Defined Universal Broker . 302
9.8.5 Add Specific Defined Universal Broker via deffile . 303
9.8.6 Add Existing Universal Brokers to a Broker Group 304
9.8.7 Delete Existing Universal Brokers from a Broker Group 304
9.8.8 Export Events into ARC Format for z/OS . 305
9.8.9 Retrieve Archived File and Export into XML for z/OS 305
9.8.10 Export Events into ARC Format for Windows . 306
9.8.11 Retrieve Archived File and Export into CSV for Windows 306

10 Messaging and Auditing . 307

10.1 Overview . 307

10.2 Messaging . 308
10.2.1 Message Types . 308
10.2.2 Message ID . 309
10.2.3 Message Levels . 309
10.2.4 Message Destinations . 310

z/OS Message Destinations . 310
UNIX Message Destinations . 310
Windows Message Destinations . 311
IBM i Message Destinations . 311

10.3 Auditing . 312

10.4 Creating Write-to-Operator Messages Examples . 313
10.4.1 Issue WTO Message to z/OS Console . 314
10.4.2 Issue WTO Message to z/OS Console and Wait for Reply 315

11 Message Translation . 316

11.1 Overview . 316

11.2 Usage . 317
11.2.1 Translation Table . 317

Translation Table Format . 317
Translation Table Fields . 318

11.2.2 Matching Algorithm . 318

11.3 Message Translation Examples . 319
11.3.1 Translating Error Messages (Part 1) . 320
11.3.2 Translating Error Messages (Part 2) . 321
11.3.3 Execute Universal Message Translator from z/OS 322
11.3.4 Execute Universal Message Translator from Windows 323
infitran-user-4301 Confidential & Proprietary 16

Contents
11.3.5 Execute Universal Message Translator from UNIX 324
11.3.6 Execute Universal Message Translator from IBM i 325

12 Monitoring and Alerting . 326

12.1 Overview . 326

12.2 Monitoring of All Agents . 327
12.2.1 Monitored Information . 327
12.2.2 Polling . 327
12.2.3 Alerts . 327

Alert Types . 328

12.3 Querying for Job Status and Activity . 329

12.4 Querying for Job Status and Activity Examples . 330
12.4.1 Universal Query Output . 331
12.4.2 Universal Query for z/OS . 332
12.4.3 Universal Query for UNIX and Windows . 333
12.4.4 Universal Query for IBM i . 334

13 Windows Event Log Dump . 335

13.1 Overview . 335

13.2 Windows Event Log Dump Examples . 336
13.2.1 Execute Universal Event Log Dump from a Windows Server 337

14 Databases . 338

14.1 Overview . 338

14.2 Component Information Database . 339

14.3 Universal Event Monitor Databases . 340
14.3.1 Event Definition Database . 341
14.3.2 Event Handler Database . 342
14.3.3 Event Spool Database . 343
14.3.4 Controlling Access to Universal Event Monitor Database 344

14.4 Universal Enterprise Controller Databases . 345
14.4.1 Database Files . 345
14.4.2 Database Management . 345

Automated Database Cleanup . 345
Memory Management . 346

14.5 Database Backup and Recovery . 347
14.5.1 Database Backups . 347
14.5.2 General Database Recovery Procedures . 348
infitran-user-4301 Confidential & Proprietary 17

Contents
14.5.3 Database Recovery for Universal Broker . 349
z/OS . 349
UNIX . 349
Windows . 350
IBM i . 350

14.5.4 Database Recovery for Universal Enterprise Controller 351
z/OS . 351
Windows . 352

14.6 Listing Infitran Database Records Examples . 353
14.6.1 List Universal Broker Database . 354

Windows . 354
UNIX . 354

14.6.2 List Universal Event Monitor Spool Database Records 355
Windows . 355
UNIX . 355

14.6.3 List Universal Broker Detail for a Component . 356
Windows . 356
UNIX . 356

14.6.4 List Standard Out for a Component . 357
Windows . 357
UNIX . 357

14.7 Removing Infitran Database Records . 358
14.7.1 Remove Component Records . 359

Windows . 359
UNIX . 359

14.7.2 Remove Component Records: Change Universal Broker
Database Directory . 360

Windows . 360
UNIX . 360

15 Fault Tolerance Implementation . 361

15.1 Overview . 361

15.2 Network Fault Tolerance . 362
15.2.1 Open Retry . 363
15.2.2 Component Management . 363

16 Network Data Transmission . 365

16.1 Overview . 365
16.1.1 SSS (Secure Socket Layer) Protocol . 366
infitran-user-4301 Confidential & Proprietary 18

Contents
Data Privacy and Integrity . 366
Peer Authentication . 368

16.1.2 Stonebranch Solutions Protocol . 369
Data Privacy and Integrity . 369

16.1.3 Stonebranch Solutions Application Protocol . 370
Low-Overhead . 370
Secure . 370
Extensible . 371

16.1.4 Configurable Options . 372

17 z/OS Cancel Command Support . 376

17.1 Overview . 376
17.1.1 Exit Codes . 377
17.1.2 Security Token . 377

A Glossary . 378

B ustomer Support . 384

Index . 385
infitran-user-4301 Confidential & Proprietary 19

List of Figures
2 Transferring Files to / from Remote Systems . 44

Figure 2.1 Infitran Transfer Sessions ... 47

3 Remote Execution . 69

Figure 3.1 Remote Execution Components: UCMD Manager and Server 70
Figure 3.2 Remote z/OS Execution Using an IP Address ... 73
Figure 3.3 Remote z/OS Execution Using a Host Name .. 73
Figure 3.4 Remote z/OS Execution Using a UDM Logical Session Name 73
Figure 3.5 Remote Windows Execution Using an IP Address ... 74
Figure 3.6 Remote Windows Execution Using a Host Name ... 74
Figure 3.7 Remote Windows Execution Using a UDM Logical Session Name 74
Figure 3.8 Remote UNIX Execution Using an IP Address .. 75
Figure 3.9 Remote UNIX Execution Using a Host Name ... 75
Figure 3.10 Remote UNIX Execution Using a UDM Logical Session Name 75
Figure 3.11 Remote IBM i Execution Using an IP Address ... 76
Figure 3.12 Remote IBM i Execution Using a Host Name .. 76
Figure 3.13 Remote IBM i Execution Using a UDM Logical Session Name 76
Figure 3.14 exec Command Under Windows - Listing in Default Directory 78
Figure 3.15 Listing in Default Directory - Example Batch File ... 78
Figure 3.16 Listing in Default Directory - Listing Sent to stdout.txt ... 78
Figure 3.17 Listing in Default Directory - Transaction log from UDM via stdout 79
Figure 3.18 exec Command Under Windows - Returned Filet ... 80
Figure 3.19 Returned File - Example Batch File ... 81
Figure 3.20 Returned File - Listing Sent to stdout.txt ... 81
Figure 3.21 UNIX Listing - UDM Script on Local System ... 82
Figure 3.22 UNIX Listing - Shell Script on Remote System .. 83
Figure 3.23 UNIX Listing - Listing Sent to stdout.txt ... 83
Figure 3.24 UNIX Listing - UDM Manager Transaction Log .. 83
Figure 3.25 Integrating UDM with FTP - UDM Script on Local System .. 86
Figure 3.26 Integrating UDM with FTP - Shell Script on Remote System 86
Figure 3.27 Using a Command Reference - UDM Script on Local System 87
Figure 3.28 Using a Command Reference - Command Reference on Remote System 88
infitran-user-4301 Confidential & Proprietary 20

List of Figures
Figure 3.29 UDM Script - Exec Command Return Codes ... 90

4 Remote Execution for SAP Systems . 92

Figure 4.1 Raising an SAP Event for z/OS - JCL (1 of 2) .. 94
Figure 4.2 Raising an SAP Event for z/OS - JCL (2 of 2) .. 95
Figure 4.3 Raising an SAP Event for UNIX - UDM Script File: BIVehicle001 (1 of 2) 96
Figure 4.4 Raising an SAP Event for UNIX - UDM Script File: BIVehicle001 (2 of 2) 97

5 Web Services Execution . 98

Figure 5.1 Inbound JMS - Constructing Connection to Target ...100
Figure 5.2 Inbound JMS - Attachment to an Apache ActiveMQ Dynamic Topic101
Figure 5.3 Inbound JMS - Attachment to an IBM Websphere Queue102
Figure 5.4 Inbound JMS - Attachment to an IBM MQ Series Queue ...103
Figure 5.5 Triggering an Event ...104
Figure 5.6 Inbound SOAP Request UAC.xml ...106
Figure 5.7 Inbound SOAP Request – Message Payload Written to

 process_%Seq%.xml File ...107
Figure 5.8 Inbound SOAP Request – Universal Event Monitor Event Definition107
Figure 5.9 Inbound SOAP Request – Universal Event Monitor Handler Definition108
Figure 5.10 Outbound SOAP Request – abc.rexx ..109
Figure 5.11 Outbound SOAP Request – Event and Handler to purge abc.log110

6 Event Monitoring and File Triggering. 111

Figure 6.1 High-Level Interaction of UEM Components ..113
Figure 6.2 UEMLoad Utility Overview ...115
Figure 6.3 UEM Manager Overview ..117
Figure 6.4 UEM Server Overview ..119
Figure 6.5 Starting a UEM Event-Driven Server ..125
Figure 6.6 Refreshing a UEM Event-Driven Server ..126
Figure 6.7 Using a Stored Event Record in z/OS ...127
Figure 6.8 Handling an Event with a Script in z/OS ...129
Figure 6.9 Handling an Expired Event in z/OS ...130
Figure 6.10 Continuation Character "-" in z/OS Handler Script ..131
Figure 6.11 Continuation Character "+" in z/OS Handler Script ..132
Figure 6.12 Continuation Characters "-" and "+" in z/OS Handler Script ..133
Figure 6.13 Using a Stored Event Handler Record ..134
Figure 6.14 Handling an Event with a Script ..135
Figure 6.15 Contents of Sample Script File ..136
Figure 6.16 Handling an Expired Event ..137
Figure 6.17 Adding a Single Event Definition Record ..138
Figure 6.18 Adding a Single Event Handler Record ...139
Figure 6.19 Listing All Event Definition Records ..140
Figure 6.20 Exporting All Event and Handler Records ..141
Figure 6.21 List a Single Event Handler Record ...142
Figure 6.22 Sample List Output ...142
Figure 6.23 Using Wildcards to List Records ...143
Figure 6.24 Add Database Record(s) Using a Definition File ..144
Figure 6.25 Redirect Definition File from stdin ...145
infitran-user-4301 Confidential & Proprietary 21

List of Figures
Figure 6.26 Redirect Definition File from STDIN (for z/OS) ..146
Figure 6.27 Definition File Sample - Windows ...147
Figure 6.28 Using a Stored Event Handler Record ..149
Figure 6.29 Handling an Event with a Script ..150
Figure 6.30 Contents of Sample Script File ..151
Figure 6.31 Handling an Expired Event ..152
Figure 6.32 Adding a Single Event Definition Record ..153
Figure 6.33 Adding a Single Event Handler Record ...154
Figure 6.34 Listing All Event Definition Records ..155
Figure 6.35 Exporting all Event and Handler Records ...156
Figure 6.36 List a Single Event Handler Record ...157
Figure 6.37 Sample List Output ...157
Figure 6.38 Using Wildcards to List Records ...158
Figure 6.39 Add Database Record(s) Using a Definition File ..159
Figure 6.40 Redirect Definition File from stdin ...160
Figure 6.41 Redirect Definition File from STDIN (for z/OS) ..161
Figure 6.42 Definition File Sample - UNIX ..162

7 Security . 164

Figure 7.1 z/OS -encryptedfile example ...187
Figure 7.2 Windows -encryptedfile example ...189
Figure 7.3 UNIX -encryptedfile example ..191
Figure 7.4 IBM i -encryptedfile example ...193
Figure 7.5 Universal Configuration Manager - Universal Broker - Access ACL206
Figure 7.6 Universal Configuration Manager - Universal Data Mover Server -

 Access ACL ..207
Figure 7.7 Universal Configuration Manager - Universal Control Server - Access ACL208
Figure 7.8 Universal Configuration Manager - Universal Event Monitor Server -

 Access ACL ..209
Figure 7.9 X.500 Directory (sample) ...218
Figure 7.10 X.509 Version 3 Certificate (sample) ..219

8 Configuration Management . 226

Figure 8.1 Remote Configuration - Unmanaged and Managed Modes of Operation238
Figure 8.2 Universal Configuration Manager Error dialog – Windows Vista /

 Windows 7 ..240
Figure 8.3 Program Compatibility Assistant – Windows Vista / Windows 7241
Figure 8.4 Universal Configuration Manager ..243
Figure 8.5 Universal Configuration Manager - UDM Manager ..246
Figure 8.6 Universal Configuration Manager - UDM Server ..247
Figure 8.7 Universal Configuration Manager - UEM Manager ...248
Figure 8.8 Universal Configuration Manager - UEM Server ...249
Figure 8.9 Universal Configuration Manager - Universal Enterprise Controller250
Figure 8.10 Universal Configuration Manager - Universal Broker ..251
Figure 8.11 Universal Configuration Manager - Universal Automation Center

 Registration Server ..252
Figure 8.12 Universal Configuration Manager - Universal Control Manager253
Figure 8.13 Universal Configuration Manager - Universal Control Server254
Figure 8.14 Universal Configuration Manager - Universal Event Log Dump255
infitran-user-4301 Confidential & Proprietary 22

List of Figures
Figure 8.15 Universal Configuration Manager - Universal Query ..256
Figure 8.16 Refreshing Universal Broker via Universal Control from z/OS261
Figure 8.17 Refreshing Component via Universal Control from z/OS ...263
Figure 8.18 Refreshing Universal Broker via Universal Control from Windows264
Figure 8.19 Refreshing Component via Universal Control from Windows265
Figure 8.20 Refreshing Universal Broker via Universal Control from UNIX266
Figure 8.21 Refreshing Component via Universal Control from UNIX ...267
Figure 8.22 Refreshing Universal Broker via Universal Control from IBM i268
Figure 8.23 Refreshing Component via Universal Control from IBM i ...269
Figure 8.24 Merge infile.txt into outfile.txt Using Program Defaults ..272
Figure 8.25 Merge infile.txt into outfile.txt Keeping New Options ..273
Figure 8.26 Merge infile.txt into outfile.txt Using Installation-Dependent Values274

9 Component Management . 275

Figure 9.1 Universal Broker for UNIX - Daemon Startup Script Syntax ..283
Figure 9.2 Universal Broker for IBM i - Subsystem Start Command ...286
Figure 9.3 Universal Broker for IBM i - Subsystem End Command ..286
Figure 9.4 Universal Broker for IBM i - Subsystem Work With Command286
Figure 9.5 Universal Control for z/OS - Start Component Example ..292
Figure 9.6 Universal Control for z/OS - Stop Example ...293
Figure 9.7 Universal Control for Windows - Start Component Example294
Figure 9.8 Universal Control for Windows - Stop Component Example295
Figure 9.9 Start Component Example ...296
Figure 9.10 Universal Control Manager for UNIX - Stop Component Example 1297
Figure 9.11 Start Component Example ...298
Figure 9.12 Universal Control for IBM i - Stop Component Example ..299
Figure 9.13 UECLoad - List All Defined Universal Brokers ..301
Figure 9.14 UECLoad - Export a Specific, Defined Universal Broker ..301
Figure 9.15 UECLoad - Export Events ..301
Figure 9.16 UECLoad - Delete a Specific, Defined Universal Broker ...302
Figure 9.17 UECLoad - Add Specific, Defined Universal Broker via a Definition File303
Figure 9.18 UECLoad - Definition File used for Adding Specific Defined Broker303
Figure 9.19 UECLoad - Add Existing Universal Brokers to a Broker Group304
Figure 9.20 UECLoad - Delete Existing Universal Brokers to a Broker Group304
Figure 9.21 UECLoad for z/OS - Export Events into ARC Format ...305
Figure 9.22 UECLoad for z/OS- Retrieve Archived File and Export into XML305
Figure 9.23 UECLoad for Windows - Export Events into ARC Format ...306
Figure 9.24 UECLoad for Windows - Retrieve Archived File and Export into CSV306

10 Messaging and Auditing . 307

Figure 10.1 Universal WTO - Issue WTO to z/OS Console ..314
Figure 10.2 Universal WTO - Issue WTOR to z/OS Console ...315

11 Message Translation . 316

Figure 11.1 Universal Message Translator - Example 1, Message File ..320
Figure 11.2 Universal Message Translator - Example 1, Translation Table 1320
Figure 11.3 Universal Message Translator - Example 1, Translation Table 2320
Figure 11.4 Universal Message Translator - Example 2, Message File ..321
infitran-user-4301 Confidential & Proprietary 23

List of Figures
Figure 11.5 Universal Message Translator - Example 2, Translation Table 1321
Figure 11.6 Universal Message Translator - Execute from z/OS ..322
Figure 11.7 Universal Message Translator - Execute from Windows ..323
Figure 11.8 Universal Message Translator - Execute from UNIX ...324
Figure 11.9 Universal Message Translator - Execute from IBM i ..325

12 Monitoring and Alerting . 326

Figure 12.1 Universal Query Output ..331
Figure 12.2 Universal Query for z/OS - Listing Active Components ..332
Figure 12.3 Universal Query for UNIX and Windows - Listing Active Components333
Figure 12.4 Universal Query for IBM i (specific port) - Listing Active Components334
Figure 12.5 Universal Query for IBM i (default port) - Listing Active Components334

13 Windows Event Log Dump . 335

Figure 13.1 Universal Event Log Dump - Execution from Windows Server337

14 Databases . 338

Figure 14.1 Universal Spool List for Windows - List Universal Broker Database354
Figure 14.2 Universal Spool List for UNIX - List Universal Broker Database354
Figure 14.3 Universal Spool List for Windows - List Universal Event Monitor Spool

 Database Records ...355
Figure 14.4 Universal Spool List for UNIX - List Universal Event Monitor Spool

 Database Records ...355
Figure 14.5 Universal Spool List for Windows - List Broker Detail for a Component356
Figure 14.6 Universal Spool List for UNIX - List Broker Detail for a Component356
Figure 14.7 Universal Spool List for Windows - List Standard Out for a Component357
Figure 14.8 Universal Spool List for UNIX - List Standard Out for a Component357
Figure 14.9 Universal Spool Remove for Windows - Remove Component Records359
Figure 14.10 Universal Spool Remove for UNIX - Remove Component Records359
Figure 14.11 Universal Spool Remove for Windows - Remove Component Records360
Figure 14.12 Universal Spool Remove for UNIX - Remove Component Records360
infitran-user-4301 Confidential & Proprietary 24

List of Tables
Preface . 27

Table P.1 Command Line Syntax .. 28

3 Remote Execution . 69

Table 3.1 Remote Execution Primer Examples – exec Command Parameters 71

7 Security . 164

Table 7.1 Certificate Map Matching Criteria ..197
Table 7.2 Certificate Identifier Field ..198
Table 7.3 Client IP Address - Matching Criteria ...199
Table 7.4 Request Fields ..200
Table 7.5 Certificate Fields ..220

8 Configuration Management . 226

Table 8.1 UNIX Configuration File Directory Search ...234
Table 8.2 Stonebranch Solutions Configuration File Sample (infile.txt)271
Table 8.3 Stonebranch Solutions Configuration File Sample (outfile.txt)271
Table 8.4 Contents of outfile.txt after Default Merge ...272
Table 8.5 Contents of outfile.txt when Keeping Unmatched Destination Values273
Table 8.6 Contents of outfile.txt when Using Installation-Dependent Values274

9 Component Management . 275

Table 9.1 Universal Broker - Command Line Arguments to Daemon Startup Script283

11 Message Translation . 316

Table 11.1 Universal Message Translator – Translation Table ..318
Table 11.2 Universal Message Translator for IBM i - Return Codes ..318

15 Fault Tolerance Implementation . 361

Table 15.1 Component Communication States ...364
infitran-user-4301 Confidential & Proprietary 25

List of Tables
16 Network Data Transmission . 365

Table 16.1 Supported SSL cipher suites ..367
infitran-user-4301 Confidential & Proprietary 26

Preface
Document Structure
This document is written using specific conventions for text formatting and according to a
specific document structure in order to make it as useful as possible for the largest
audience. The following sections describe the document formatting conventions and
organization.

Cross-Reference Links

This document contains cross-reference links to and from other Stonebranch Solutions
documentation.

In order for the links to work correctly:
• Place the documents in the same folder.
• In Adobe Reader / Adobe Acrobat, de-select Open cross-document link in

same window in the General category of your Preferences dialog (selected from
the Edit menu).
infitran-user-4301 Confidential & Proprietary 27

Preface
Conventions

The following text formatting conventions are used within this document to represent
different information.

Typeface and Fonts
This document provides tables that identify how information is used. These tables identify
values and/or rules that are either pre-defined or user-defined:
• Italics denotes user-supplied information.
• Boldface indicates pre-defined information.

Elsewhere in this document, This Font identifies specific names of different types of
information, such as file names or directories (for example, \abc\123\help.txt).

Command Line Syntax

Command line syntax, as shown in the examples throughout this document, use the
following conventions.

Table P.1 Command Line Syntax

Operating System-Specific Text

Most of this document describes the product in the context of all supported operating
systems. At times, it is necessary to refer to operating system-specific information. This
information is introduced with a special header, which is followed by the operating
system-specific text in a different font size from the normal text.

This text pertains specifically to the z/OS line of operating systems.

This text resumes the information pertaining to all operating systems.

Convention Description

bold monospace font Specifies values to be typed verbatim, such as file / data set names.

italic monospace font Specifies values to be supplied by the user.

[] Encloses configuration options or values that are optional.

{ } Encloses configuration options or values of which one must be chosen.

| Separates a list of possible choices.

. . . Specifies that the previous item may be repeated one or more times.

BOLD UPPER CASE Specifies a group of options or values that are defined elsewhere.

z/OS
infitran-user-4301 Confidential & Proprietary 28

Preface
Vendor References
References may be made in this document to a variety of vendor operating systems. We
attempt to use the most current product names when referencing vendor software.

The following names may be used:
• z/OS is synonymous with IBM z/OS and IBM OS/390 line of operating systems.
• Windows is synonymous with Microsoft's Windows XP SP3, Windows Server 2003

SP1 and higher, Windows Vista, Windows 7, Windows Server 2008, and Windows
Server 2008 R2 lines of operating systems. Any differences between the different
systems will be noted.

• UNIX is synonymous with operating systems based on AT&T and BSD origins and the
Linux operating system.

• IBM i is synonymous with IBM i/5, IBM OS/400, and OS/400 operating systems.
• IBM System i is synonymous with IBM i Power Systems, IBM iSeries, IBM AS/400,

and AS/400 systems.

These names do not imply software support in any manner.
infitran-user-4301 Confidential & Proprietary 29

Preface
Document Organization
This document provides information on how to use the Infitran business solution.

It is organized by Infitran feature, rather than by specific Infitran component. For example,
Event Monitoring and File Triggering is a feature of Infitran; Universal Event Monitor is a
component of Infitran.

Each chapter describes a separate feature and provides examples of how the feature can
be implemented.

Each example is linked to detailed technical information about the Infitran component(s)
that form the solution illustrated by that example.
• Infitran Overview (Chapter 1)

Overview of the Infitran business solution.
• Transferring Files to / from Remote Systems (Chapter 2)

Description and examples of the Transferring Files to / from Remote Systems feature.
• Remote Execution (Chapter 3)

Description and examples of the Remote Execution feature.
• Remote Execution for SAP Systems (Chapter 4)

Description and examples of the Remote Execution for SAP feature.
• Web Services Execution (Chapter 5)

Description and examples of the Workload Execution feature.
• Event Monitoring and File Triggering (Chapter 6)

Description and examples of the Event Monitoring and Triggers feature.
• Security (Chapter 7)

Description and examples of the Security feature.
• Configuration Management (Chapter 8)

Description and examples of the Configuration Management feature.
• Component Management (Chapter 9)

Description and examples of the Component Management feature.
• Messaging and Auditing (Chapter 10)

Description and examples of the Messaging and Auditing feature.
• Message Translation (Chapter 11)

Description and examples of the Message Translation feature.
• Monitoring and Alerting (Chapter 12)

Description and examples of the Monitoring and Alerting feature.
• Windows Event Log Dump (Chapter 13)

Description and examples of the Windows Event Log Dump feature.
• Databases (Chapter 14)

Description and examples of the Databases feature.
• Fault Tolerance Implementation (Chapter 15)

Description and examples of the Fault Tolerance feature.
• Network Data Transmission (Chapter 16)

Description and examples of the Network Data Transmission feature.
• z/OS Cancel Command Support (Chapter 17)

Description and examples of the z/OS Cancel Command Support feature.
infitran-user-4301 Confidential & Proprietary 30

Preface
• Glossary (Appendix A)
Glossary of terms used with Infitran.

• Customer Support (Appendix B)
Customer support contact information for Infitran.
infitran-user-4301 Confidential & Proprietary 31

CHAPTER 1
Infitran Overview
1.1 What is Infitran?
Infitran (Intelligent File Transfer) is the Stonebranch Inc. business solution for Managed
File Transfer.

In addition to the basic features inherent in the managed file transfer of files between
servers and applications – security, visibility, manageability, reliability, and compliance –
Infitran provides additional features for intelligent file transfer.

Infitran inter-operates with your current job scheduling and automation tools, providing
complete visibility for all scheduled and automated event-driven file transfers; not only
end-to-end from the file movement perspective, but also top-to-bottom integration with
application processes.

Comprehensive and intuitive filtering in Infitran allows you to find information about file
transfer activity such as failed transfers and successful transfers, how much data was
transferred, and transfer attributes.

Infitran provides a layered approach to security enforcement that protects networks and
controls access to data and servers. Data encryption can be enforced in a way that
ensures compliance requirements are always met.
infitran-user-4301 Confidential & Proprietary 32

What can Infitran do for Me? Infitran Overview
1.2 What can Infitran do for Me?
The intelligent file transfer of data provided by Infitran lets you streamline business
processes by optimizing the integration of file transfers with your business processes.
This helps you avoid delays and maximize revenue.

Using Infitran enables you to securely transfer files to external partners without disruption
of their current business processes. The integration capabilities and ease of use provided
by Infitran enable you to manage thousands of servers with minimum interaction.

Intelligently transferred data supports your ability to analyze and plan. Infitran ensures
that your Managed File Transfer environment runs effectively and efficiently, providing
historical data to make informed decisions.

Infitran enables you to report on data related to all aspects of file transfers specific to user
needs. Valuable data is preserved for compliance reporting. All file transfer events that
are related are recorded in a central database that can be extracted for reporting and
auditing purposes.

Infitran delivers flexible visibility tools and capabilities to meet your own business and
operational needs for both internal and external communications. With its proactive
monitoring, Infitran provides you with the maximum possible time to address any
technical issues that may arise. You do not have to wait for a failed transfer to discover
server or network problems.
infitran-user-4301 Confidential & Proprietary 33

Infitran Features Infitran Overview
1.3 Infitran Features
The features that make Infitran an intelligent file transfer solution encompass a variety of
core and supporting functionality.

The following text describes these features and provides links to detailed information
about each one in this document. This includes examples that illustrate feature
implementation and links to detailed technical information about the Infitran Components
used in that implementation.

The core feature of Infitran is Transferring Files to / from Remote Systems in a manner
that is both secure and efficient. Transfer sessions can be initiated between the machine
initiating the transfer and a remote machine, or between two remote machines.

Elaborate Event Monitoring and File Triggering functionality enables the monitoring local
and remote system events, and permits execution of system commands or scripts based
on the outcome of the events.

Web Services Execution enables Infitran to create file-based events from inbound
Internet and message-based application messages, and then write the events to file, thus
integrating those applications with Infitran system management.

For Infitran systems on Windows, the Windows Event Log Dump feature offers the ability
to select records from a Windows event log and write them to a specified output file.

Infitran’s array of Databases record information throughout an enterprise. Information on
all Infitran installations, including the current status of every component is maintained, as
well as user and configuration data, is maintained. The databases also store information
that defines Infitran system occurrences (events), the action to implement for those
events, and the progress of each event.

The Monitoring and Alerting feature of Infitran provides for monitoring the status and
activity of all Infitran Agents in an enterprise and the posting of alerts regarding the
statuses. This information is available through a user interface, but it also provides for the
command line querying of a job status and activity of a specific Agent.

Configuration Management tools allow for flexible methods of configuration. Remote
Configuration enables all systems in an enterprise to be configured from a single
machine. On Windows systems, configuration can be made via Infitran’s Universal
Configuration Manager graphical user interface.

Additionally, Infitran offers various methods for the Configuration Refresh of all
component data. Infitran Component Management is built around the particular needs of
individual components.

A rich Messaging and Auditing system provides continuous system feedback via six
different levels of messages. The system can be modified to provide different levels of
messaging, from diagnostic and alert messages, which are always provided, to audit
level, which produces messaging on all aspects of system functionality.

With Message Translation, error messages returned by commands can be translated into
return codes.
infitran-user-4301 Confidential & Proprietary 34

Infitran Features Infitran Overview
Infitran Security is enabled at many levels. Access to files, directories, configuration data
is strictly controlled, as is user authentication. All Infitran components implement Network
Data Transmission using the TCP/IP protocol. For encryption of transmitted data, Infitran
uses SSL to provide the highest level of security available.

Fault Tolerance Implementation allows Infitran to recover from an array of error conditions
at the network level, such as may occur in any large enterprise. Since network fault
tolerance enables servers to continue processing even after a job is canceled, Infitran’s
z/OS Cancel Command Support allows – on z/OS operating systems – termination of
those jobs.

Infitran’s Remote Execution permits the execution of system commands on remote
machines. Additionally, Remote Execution for SAP Systems permits SAP events to be
executed on remote SAP systems.
infitran-user-4301 Confidential & Proprietary 35

Infitran Components Infitran Overview
1.4 Infitran Components
Infitran Features are implemented via a set of inter-related components that provide for a
complete intelligent file transfer business solution.

One or more components provide the technical structure for the implementation of every
feature.

Universal Data Mover

Universal Data Mover is the core component for Infitran's managed file transfer
functionality. In a secure and automated manner, it allows you to transfer data between
any platforms in your environment and initiated from any platform.

In every Universal Data Mover transfer operation, a manager receives commands from
the user through an interactive session and/or an external script file. It then establishes a
transfer session, invoking primary and secondary servers, which actually conduct the
transfer operation.

A transfer session either can be a two-party session, in which the manager also serves as
the primary transfer server, or a three-party session, in which the manager acts solely as
a control point for transfer operations, sending commands to the primary and secondary
servers.

Universal Event Monitor

Universal Event Monitor provides a platform-independent means of monitoring local and
remote system events, and executing system commands and scripts based on the
outcome of those events.

It integrates with your workload management infrastructure to initiate both movement of
the data to the appropriate platform and immediate processing of the data as soon as it is
available by executing system commands and scripts based on the outcome of the
events that it is monitoring.
infitran-user-4301 Confidential & Proprietary 36

Infitran Components Infitran Overview
Universal Event Monitor for SOA

Universal Event Monitor for SOA – the SOA "Listener" – integrates Internet and
message-based applications with systems management functions, letting you create
file-based events from inbound Internet and message-based messages, and write the
events to file.

It integrates Internet and message-based applications with systems management
functions such as alerting and notification, incident and problem management, Job
scheduling, and data movement.

Universal Enterprise Controller

Universal Enterprise Controller provides alerts for activity and availability of the Infitran
components and Agents installed throughout your enterprise. It prevents jobs from
starting and files from being transferred or processed during hardware failures or network
issues.

Universal Enterprise Controller issues alerts when a component becomes unreachable or
unavailable, as well as when the component is again available, and lets you route these
alerts to your existing automation console.

Universal Enterprise Controller also provides the management layer that enables the
Universal Event Subsystem and Universal Enterprise Client Applications (I-Activity
MOnitor, I-Management Console, and I-Administrator), to centralize visibility and
management of your workload infrastructure.

Universal Event Subsystem

The Universal Event Subsystem records, routes, and manages event messages
generated by Infitran components. Event messages are generated whenever a
component performs an action that impacts the computing environment on which it
executes. The records are stored centrally and can be exported for audit and history
reporting, as well as for archival.
infitran-user-4301 Confidential & Proprietary 37

Infitran Components Infitran Overview
Universal Enterprise Controller Client Applications

Universal Enterprise Controller Client Applications are a suite of three stand-alone client
applications for Windows operating systems used to manage and provide visibility to the
Infitran infrastructure:

I-Activity Monitor
I-Activity Monitor provides end-to-end visibility of workload management activity
throughout your Infitran environment via a graphical user interface that displays
information about the current status and posted alerts for all Agents and SAP systems
being monitored by Universal Enterprise Controller.

I-Management Console
The I-Management Console client application provides a graphical user interface for
remote configuration of all Stonebranch Agents in an enterprise from a single machine. It
also lets you define standard security access and authentication policies and ensure that
they are active across all servers, as well as define which users are allowed to change
the policies.

I-Administrator
The I-Administrator client application lets you maintain information on all Agents that
Universal Enterprise Controller monitors and the SAP systems to which Universal
Enterprise Controller has access. It lets you add, modify, and delete users, Agents,
groups, and SAP systems, as well as maintain Universal Enterprise Controller users and
their permissions.
infitran-user-4301 Confidential & Proprietary 38

Infitran Components Infitran Overview
Universal Broker

Universal Broker, required on all systems running Infitran, manages Infitran components.
It receives requests to start (or restart) a component on behalf of a user (person or
component). Universal Broker tracks and reports on all components that it has started
until their completion.

Universal Automation Center Registration
The Universal Automation Center Registration server automatically registers the
Universal Broker with an Automation Center server when the Universal Broker is started.
From the Automation Center Web Interface, the Universal Broker will be listed as an
Indesca / Infitran Agent. The Automation Center Web Interface allows you to view,
monitor, and schedule workload on all registered Indesca / Infitran Agents.

Stonebranch Solutions Utilities

Stonebranch Solutions Utilities, included as part of the Infitran business solution, perform
a variety of functions for one or more operating systems.

Universal Certificate
Infitran supports X.509 version 1 and version 3 certificates to securely identify users and
computer systems. Although implementing a fully featured PKI infrastructure is beyond
the scope of Infitran, if your organization has not yet established one, the Universal
Certificate utility can be used to create digital certificates and private keys.

Universal Control
Universal Control provides the ability to start and stop Infitran components, and to refresh
component configuration data.

Universal Database Dump
Universal Database Dump Berkeley db_dump utility is tailored specifically for
Stonebranch databases. It allows you to dump one or more databases for backup and
restore purposes.
infitran-user-4301 Confidential & Proprietary 39

Infitran Components Infitran Overview
Universal Database Load
Universal Database Load Berkeley db_load utility is tailored specifically for Stonebranch
databases. It provides the ability to restore a database that has been previously dumped.

Universal Display Log File
Universal Display Log File, available for the IBM i operating system, provides the ability to
read job log files, write them to standard out, and, optionally, delete the files after they are
read.

Universal Encrypt
Universal Encrypt encrypts the contents of command files into an unintelligible format (for
privacy reasons).

Universal Event Log Dump
Universal Event Log Dump (UELD) is a utility that selects records from one of the
Windows event logs and writes them to a specified output file.

Universal Message Translator
Universal Message Translator translates error messages into return (exit) codes based
on a user-defined translation table.

Universal Products Install Merge
The Universal Products Install Merge (UPIMERGE) utility merges options and values
from one component configuration file or component definition file with another.

Universal Query
Universal Query queries any Universal Broker for Broker-related and active
component-related information. This utility can be issued from any Infitran installation to
query any broker in the Stonebranch infrastructure.

Universal Return Code
The Universal Return Code utility is a Windows utility that performs the function of ending
a process with a return code that is equal to its command line argument.
infitran-user-4301 Confidential & Proprietary 40

Infitran Components Infitran Overview
Universal Spool List
Universal Spool List provides the ability to list database records. The functions that
Universal Spool List provide are required for possible database clean-up or problem
resolution at the direction of Stonebranch, Inc. Customer Support.

Universal Spool Remove
Universal Spool Remove provides the ability to remove component records from the
Stonebranch databases. Universal Spool Remove should only be used at the direction of
Stonebranch, Inc. Customer Support.

Universal Submit Job
The Universal Submit Job (USBMJOB) utility is a command for the iSeries environment
that encapsulates the IBM Submit Job (SBMJOB) command.

Universal Write-to-Operator
The Universal WTO (UWTO) utility is a command line utility for the z/OS UNIX System
Services (USS) environment. It issues two types of messages to z/OS consoles:

1. Write-To-Operator (WTO) messages
2. Write-To-Operator-with-Reply (WTOR) messages.
infitran-user-4301 Confidential & Proprietary 41

Limited Use Components Infitran Overview
1.5 Limited Use Components
The following Indesca business solution components are included in Infitran with limited
use through the exec and execsap commands only.

Note: For detailed information on these components, see the Indesca User Guide.

Universal Command

Universal Command, the core component for Indesca's enterprise scheduling
functionality, allows you to extend the command line interface of a local operating system
to the command line interface of any remote system that can be reached on a computer
network.

A Universal Command Manager, on the local system, extends a command line interface
to a remote system. A Universal Command Server, on the remote system, executes
commands on behalf of the Manager. The Manager runs as long as the remote command
runs. When the remote command ends, the Manager ends with the exit status of the
remote command.

Limitations of Use
If Universal Command is on the same system as Universal Data Mover, you can execute
system commands on remote machines using the Universal Data Mover exec command.

Universal Command Agent for SOA

Universal Command Agent for SOA – the SOA "Publisher" – lets you extend the workload
execution and management features of Indesca to Internet and message-based
workload. It receives its payload input from Universal Command through STDIN. When
the parameters and data are passed in, the workload execution request is processed and
any return data is passed back to Universal Command.

Universal Command Agent for SOA can be initiated from a variety of sources, regardless
of platform, enabling you to consolidate your Internet and message-based workload
within your current enterprise scheduling environment.

Limitations of Use
If Universal Command Agent for SOA and Universal Command are on the same system
as Universal Data Mover, you can execute system commands on remote machines using
the Universal Data Mover exec command. The system commands can, in turn, execute
Universal Command Agent for SOA workloads.
infitran-user-4301 Confidential & Proprietary 42

Limited Use Components Infitran Overview
Universal Connector

Universal Connector is a command line interface that lets you manage SAP background
processing tasks from any scheduling system on any platform.

Universal Connector provides the functionality to integrate SAP systems into both local
administrative tools and enterprise system management infrastructures. It lets you extend
your existing scheduling tools to SAP batch workloads, enabling you to manage all of
your scheduling activities from one tool.

Certified by SAP, Universal Connector uses standard SAP interfaces only, such as
XBP3.0.

Limitations of Use
If Universal Connector is on the same system as Universal Data Mover, you can execute
SAP events using the Universal Data Mover execsap command.
infitran-user-4301 Confidential & Proprietary 43

CHAPTER 2
Transferring Files to / from

Remote Systems
2.1 Overview
Infitran’s file transfer solution, developed specifically for corporate IT infrastructures and
automated data center environments, makes transferring data between various
enterprise and desktop platforms reliable and easy.

This chapter describes the framework in which transfers are made, and provides
examples of file transfers from all supported operating systems.
infitran-user-4301 Confidential & Proprietary 44

Transfer Operation Components Transferring Files to / from Remote Systems
2.2 Transfer Operation Components
There are three components to any Infitran transfer operation:

1. Manager
2. Primary server
3. Secondary server

The Manager can act as the primary server, depending on the type of transfer session:
two-party or three-party (see Section 2.3 Transfer Sessions).

The secondary server is always a separate and distinct component invoked via the
Universal Broker.

2.2.1 Manager

The Universal Data Mover Manager processes commands using Universal Data Mover's
scripting language. The Manager receives commands from the user through an
interactive session, an external script file, or some combination of the two. Before the
Manager can initiate any transfer operations, it must first establish a transfer session
where it invokes the primary and secondary servers, which actually conduct the transfer
operations.

2.2.2 Primary Server

When a transfer session is being established, the Universal Data Mover Manager invokes
the primary server, which acts as the first endpoint in a transfer operation. In turn, the
primary server invokes the secondary server, providing a single path of communication.
The primary server also acts as a relay for the Manager, forwarding on any messages for
the secondary server from the Manager. This single message pipeline reduces the
number of connections needed for three-party transfers (see Section 2.3.3 Three-Party
Transfer Sessions).

2.2.3 Secondary Server

The secondary server acts as the second endpoint in a transfer operation. Data is
transferred between primary and secondary servers, with either endpoint able to act as
the source in a transfer operation.
infitran-user-4301 Confidential & Proprietary 45

Transfer Sessions Transferring Files to / from Remote Systems
2.3 Transfer Sessions
Transfer operations take place within the context of a transfer session. A transfer
operation is initiated once the Universal Data Mover Manager has established a transfer
session with the primary and secondary transfer servers. All subsequent transfer
operations take place between the primary and secondary transfer servers.

Universal Data Mover transfer sessions can be either two-party or three-party.

2.3.1 Logical Names

When a transfer session is established, the user gives each server a unique logical name.
Commands addressed to a particular server reference this logical name.

2.3.2 Two-Party Transfer Sessions

For a two-party transfer session, the Universal Data Mover Manager also acts as the
primary transfer server, running in the directory – and under the user ID – under which the
Manager was launched. This means that the machine on which Manager resides is the
first endpoint of the transfer.

With a two-party transfer session, the secondary server is invoked by the manager /
primary server via the Universal Broker. The second endpoint of the transfer session will
be on the machine in which the secondary server was spawned. Transfer operations
occur between the manager / primary server and the secondary server.

(See Figure 2.1 Infitran Transfer Sessions.)

2.3.3 Three-Party Transfer Sessions

For a three-party transfer session, the Universal Data Mover Manager acts solely as a
control point for transfer operations, sending commands to the primary and secondary
servers to be executed. Both the primary and secondary servers are spawned via the
Universal Broker, and transfer operations take place between the two machines under
which these servers are running.

(See Figure 2.1 Infitran Transfer Sessions.)
infitran-user-4301 Confidential & Proprietary 46

Transfer Sessions Transferring Files to / from Remote Systems
Figure 2.1 Infitran Transfer Sessions
infitran-user-4301 Confidential & Proprietary 47

Transferring Files Examples Transferring Files to / from Remote Systems
2.4 Transferring Files Examples
This section provides examples, specific to the operating systems supported by
Stonebranch Solutions, for the Transferring Files to / from Remote Systems feature of
Infitran.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

These examples illustrate two-party transfer sessions between z/OS and UNIX.

As appropriate for the example being illustrated, there are versions for both the DSN and
DD file systems.

Copy a File to an Existing z/OS Sequential Data Set

Copy a z/OS Sequential Data Set to a File

Copy a Set of Files to an Existing z/OS Partitioned Data Set

Copy a File to a New z/OS Sequential Data Set

Copy a Set of Files to a New z/OS Partitioned Data Set

Note: These z/OS examples apply equally as well to the Windows and UNIX operating
systems, with appropriate changes for the file system syntactical differences.

UNIX and Windows

These examples illustrate two-party transfer sessions.

Simple File Copy to the Manager

Simple File Copy to the Server

Copy a Set of Files

Each example illustrates a procedure that occurs under the default file system for that
operating system.

(See the list of z/OS and IBM i examples for file transfer examples that apply equally as
well to the Windows operating systems.)
infitran-user-4301 Confidential & Proprietary 48

Transferring Files Examples Transferring Files to / from Remote Systems
IBM i

These examples illustrate two-party transfer sessions between IBM i and UNIX.

Each example illustrate a file transfer for the LIB file system.

The first example, Copy a File to an Existing IBM i File, also includes a version specific to
the HFS file system. For other examples similar to those used in the HFS file system, see
the list of UNIX and Windows examples.

Copy a File to an Existing IBM i File

Copy an IBM i Data Physical File to a File

Copy a Set of Files to an Existing Data Physical File

Copy a File to a New IBM i Data Physical File

Copy a File to a New IBM i Source Physical File

Copy a Set of Files to a New Data Physical File on IBM i

Copy Different Types of IBM i Files using forfiles and $(_file.type)

Invoke a Script from a Batch Job

Note: These examples apply equally as well to the Windows and UNIX operating
systems, with appropriate changes for the file system syntactical differences.
infitran-user-4301 Confidential & Proprietary 49

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.1 Copy a File to an Existing z/OS Sequential Data Set

These examples copy, in text mode, one sequential file to another. This is the simplest
form of data transfer.

DD File System

For this first z/OS example, the following is a line-by-line explanation:

1. Line 1 turns on command echo, which results in each command being written prior to
processing.

2. Line 2 sets the error condition value on which script processing halts. Any error
greater than or equal to warn halts script processing.

3. Line 3 opens a session between the local UDM Manager and a remote UDM server
running on host sol9. The host sol9 is given the logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if
successfully verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the local file system from the default of DSN to DD. The file system
type dictates the syntax and semantics of file specifications, such as in the copy
command.

5. Line 5 changes the current directory of the UDM server unix running on host sol9.
6. Line 6 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages (for example, ASCII and EBCDIC) and
process the end-of-line characters.

7. Line 7 is the copy command that actually moves the data between systems. It copies
file data10.txt on server unix to the local UDM Manager ddname APOUT. Recall that
line 4 sets the local file system type to DD; hence, APOUT is referencing a ddname.

8. Line 8 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

DSN File System

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=dd

5 cd unix=/opt/app/data

6 mode type=text

7 copy unix=data10.txt local=APOUT

8 quit

/*
infitran-user-4301 Confidential & Proprietary 50

Transferring Files Examples Transferring Files to / from Remote Systems
The DSN file system example is basically the same as the DD file system example, with
these changes:
• Removal of the filesys command (line 4 in the DD file system example), since the

default file system for the z/OS manager is DSN.
• Addition of the line 6, which sets the local attribute createop.

The createop attribute controls how a file is created. By default, its value is new,
indicating that only new files are created and existing files are not written over
(replaced). In this example, the value is being set to replace, which specifies that if the
file exists, it should be replaced; otherwise, it is created.

Components

Universal Data Mover Manager for z/OS

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 attrib local createop=replace

7 copy unix=data10.txt local='app.data.daily'

8 quit

/*
infitran-user-4301 Confidential & Proprietary 51

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.2 Copy a z/OS Sequential Data Set to a File

These examples copy, in text mode, a sequential data set on z/OS to a remote UNIX
system.

Note: A text transfer, by default, does not trim spaces from the end of a record. If the
data set being copied is a fixed record format, each record is padded with spaces
so that the record length equals the logical record length of the data set. If you do
not want the trailing spaces copied, they must be trimmed. Variable record formats
do not normally have trailing spaces, so trimming normally is not required.

DD File System

DSN File System

Components

Universal Data Mover Manager for z/OS

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.DAILY,DISP=SHR

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=dd

5 cd unix=/opt/app/data

6 mode type=text trim=yes

7 copy local=apout unix=data10.txt

8 quit

/*

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text trim=yes

6 copy local='app.data.daily' unix=data10.txt

7 quit

/*
infitran-user-4301 Confidential & Proprietary 52

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set

These examples copy (in text mode, and using the * wildcard) multiple files with one copy
command to an already allocated partitioned data set (PDS) on a z/OS system.

The file names used to create the member names in the destination PDS are the source
file names.

However, note that file names on UNIX and Windows file systems often have a file
extension as part of their name. A file extension is a suffix separated from the file's base
name with a period (for example, BASE.TXT). The period in the file extension is not a
valid character in PDS member names, so UDM must be instructed to remove the file
extensions before copying them into the PDS.

The truncext attribute is used to instruct UDM to remove file name extensions from the
source file prior to using the name as the destination member name.

This example assumes that the remote UNIX directory /opt/app/data contains the following
list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The result of the copy operation will create the following members in PDS APP.DATA.PDS:
• DATA001
• DATA002
• DATA003

DD File System

//S1 EXEC UDMPRC

//APOUT DD DSN=APP.DATA.PDS,DISP=SHR

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 filesys local=dd

4 cd unix=/opt/app/data

5 mode type=text

6 attrib local truncext=yes

7 copy unix=*.txt local=apout

8 quit

/*
infitran-user-4301 Confidential & Proprietary 53

Transferring Files Examples Transferring Files to / from Remote Systems
DSN File System

Components

Universal Data Mover Manager for z/OS

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt local='app.data.daily'

7 quit

/*
infitran-user-4301 Confidential & Proprietary 54

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.4 Copy a File to a New z/OS Sequential Data Set

This example copies, in text mode, a file from a remote UNIX system to a sequential data
set on z/OS. The data set does not exist on z/OS; UDM is instructed to create it.

The data set is dynamically allocated based on the local UDM dynamic allocation
attributes. UDM provides default attributes that can be changed to meet local
requirements. The UDM defaults, as they are delivered, create a sequential, variable
block record data set with a logical record length of 1024.

The sample below changes the record length to 256 in order to demonstrate how to set
dynamic allocation attributes.

A DD file system sample is not provided, since creating a new data set with JCL is the
same in UDM as it is in any batch application. There are no UDM specific requirements.

DSN File System

Note: All file names in the UNIX system must be within the eight-character range to be
transferred successfully.

Almost all data set allocation attributes can be specified as UDM attributes, providing you
with the ability to dynamically allocate any supported data set.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be check to verify they meet your intentions. Although UDM checks
attribute values, some values are provided by the system from sources that UDM cannot
verify and can result in invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for z/OS

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local lrecl=256

6 copy data10.txt local='app.data.daily'

7 quit

/*
infitran-user-4301 Confidential & Proprietary 55

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.5 Copy a Set of Files to a New z/OS Partitioned Data Set

This example copies, in text mode, a set of files from a remote UNIX system to a
partitioned data set on z/OS. The data set does not exist on z/OS; UDM is instructed to
create it.

The data set is dynamically allocated based on the local UDM dynamic allocation
attributes. UDM provides default attributes that can be changed to meet local
requirements. The UDM defaults as they are delivered create a sequential, variable block
record data set with a logical record length of 1024.

This example changes the data set organization from sequential (PS) to partitioned (PO)
and adjusts the data set's space allocation to space units of cylinders, primary space to 1,
secondary space to 2, and directory blocks to 10.

DSN File System

Note: Line 5 is continued onto line 6 with the line continuation character (+).

Components
Universal Data Mover Manager for z/OS

//S1 EXEC UDMPRC

//UNVSCR DD *

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local dsorg=po spaceunit=cyl primspace=1 secspace=2 +

6 dirblocks=10 truncext=yes

7 copy unix=*.txt local='app.data.pds'

8 quit

/*
infitran-user-4301 Confidential & Proprietary 56

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.6 Simple File Copy to the Manager

This example copies, in text mode, one file to another. This is the simplest form of data
transfer.

For this UNIX and Windows example, the following is a line-by-line explanation:

1. Line 1 turns on command echo, which results in each command being written prior to
processing.

2. Line 2 sets error condition value on which script process halts. Any error equal to or
greater than 4 halts script processing. A value of 4 effectively means halt on any error
or warning.

3. Line 3 opens a session between the local UDM Manager and a remote UDM Server
running on host sol9. The host sol9 is given the a logical name of unix. The open
command also provides user credentials for the UDM Server to verify and, if success
verified, specifies the user ID with which the UDM Server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages and process the end-of-line characters.
6. Line 6 is the copy command that actually moves the data between systems. It copies

file data10.txt on server unix to the local UDM Manager as data10.txt.
7. Line 7 executes the quit command, which closes all sessions and exits UDM with the

highest exit code set.

Components
Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy unix=data10.txt

7 quit
infitran-user-4301 Confidential & Proprietary 57

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.7 Simple File Copy to the Server

This example copies, in text mode, a sequential data set on the UDM Manager machine
to a remote UNIX system.

For this UNIX and Windows example, the following is a line-by-line explanation:

1. Line 1 turns on command echo, which results in each command being sent to stdout
prior to processing.

2. Line 2 sets error condition value on which script process halts. Any error equal to or
greater than 4 halts script processing. A value of 4 effectively means halt on any error
or warning.

3. Line 3 opens a session between the local UDM Manager and a remote UDM server
running on host sol9. The host sol9 is given the a logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if success
verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages and process the end-of-line characters.
6. Line 6 is the copy command that actually moves the data between systems. It copies

file data10.txt in the root directory on drive C of the Windows machine to the UNIX
Server as data10.txt.

7. Line 7 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

Components

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy local=c:\data10.txt

7 quit
infitran-user-4301 Confidential & Proprietary 58

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.8 Copy a Set of Files

This example copies (in text mode, and using the * wildcard) multiple files with one copy.

This example assumes that the remote UNIX directory /opt/app/data contains the following
list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The following files will be created on the destination machine:
• data001.txt
• data002.txt
• data003.txt

The truncext attribute is used to instruct UDM to remove file name extensions from the
source file prior to using the name as the destination member name.

Components

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt

7 quit
infitran-user-4301 Confidential & Proprietary 59

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.9 Copy a File to an Existing IBM i File

These examples copy, in text mode, one sequential file to another. This is the simplest
form of data transfer.

LIB File System

For this first IBM i example, the following is a line-by-line explanation:

1. Line 1 turns on command echo, which results in each command being sent to stdout
prior to processing.

2. Line 2 sets the error condition value on which script processing halts. Any error
greater than or equal to warn halts script processing.

3. Line 3 opens a session between the local UDM Manager and a remote UDM server
running on host sol9. The host sol9 is given the logical name of unix. The open
command also provides user credentials for the UDM server to verify and, if
successfully verified, specifies the user ID with which the UDM server executes.

4. Line 4 changes the current directory of the UDM server unix running on host sol9.
5. Line 5 changes the transfer mode type from binary (the default) to text. Text mode

transfers will translate between code pages (for example, ASCII and EBCDIC) and
process the end-of-line characters.

6. Line 6 is the copy command that actually moves the data between systems. It copies
file data10.txt on server unix to the local UDM Manager library: MYLIB Data Physical
File APPDATA member DAILY.

7. Line 7 executes the quit command, which closes all sessions and exits UDM with the
highest exit code set.

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
infitran-user-4301 Confidential & Proprietary 60

Transferring Files Examples Transferring Files to / from Remote Systems
HFS File System

This HFS file system example is basically the same as the LIB file system example, with
these changes:
• Addition of line 4, which changes the local file system from the default of LIB to HFS.

The file system type dictates the syntax and semantics of file specifications, such as
in the copy command.

• Addition of line 7, which sets the local attribute createop.
The createop attribute controls how a file is created. By default, its value is new, which
indicates that only new files are created and existing files are not written over
(replaced). In this case, its value is being set to replace, specifying that if the file
exists, it should be replaced; otherwise, it is created.

Components

Universal Data Mover Manager for IBM i

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 filesys local=hfs

5 cd unix=/opt/app/data

6 mode type=text

7 attrib local createop=replace

8 copy unix=data10.txt local=/opt/appdata

9 quit
infitran-user-4301 Confidential & Proprietary 61

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.10 Copy an IBM i Data Physical File to a File

This example copies, in text mode, a Data Physical File on IBM i to a remote UNIX
system.

Note: A text transfer, by default, does not trim spaces from the end of a record. If the
data set being copied is a fixed record format, each record is padded with spaces
so that the record length equals the logical record length of the data set. If you do
not want the trailing spaces copied, they must be trimmed.

LIB File System

Components

Universal Data Mover Manager for IBM i

1 set _echo=yes

2 set _halton=warn

3 open unix=sol9 user=top098 pwd=p100m

4 cd unix=/opt/app/data

5 mode type=text trim=yes

6 copy local=MYLIB/APPDATA(DAILY) unix=data10.txt

7 quit
infitran-user-4301 Confidential & Proprietary 62

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.11 Copy a Set of Files to an Existing Data Physical File

This example copies (in text mode, and using the * wildcard) multiple files with one copy
command to an already allocated Data Physical File on an IBM i system.

The file names used to create the member names in the destination Data Physical File
are the source file names. However, note that file names on UNIX and Windows file
systems often have a file extension as part of their name. A file extension is a suffix
separated from the file's base name with a period (for example, BASE.TXT). Member
names are limited to 10 characters on the IBM i system, so UDM must be instructed to
remove the file extensions before copying them into the file.

The truncext attribute is used to instruct UDM to remove file name extensions from the
source file prior to using the name as the destination member name.

This example assumes that the remote UNIX directory /opt/app/data contains the following
list of files:
• data001.txt
• data002.txt
• data003.txt
• data004.pr
• data005.pr

The result of the copy operation will create the following members in Data Physical File
APPDATA:
• DATA001
• DATA002
• DATA003

LIB File System

Components
Universal Data Mover Manager for IBM i

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local truncext=yes

6 copy unix=*.txt local=MYLIB/APPDATA

7 quit
infitran-user-4301 Confidential & Proprietary 63

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.12 Copy a File to a New IBM i Data Physical File

This example copies, in text mode, a file from a remote UNIX system to a data physical
file on IBM i. The Data Physical File does not exist on IBM i; UDM is instructed to create it.

The file type created defaults to a Data Physical File. The Data Physical File is allocated
based on the local UDM allocation attributes. UDM provides default attributes that can be
changed to meet local requirements. The UDM defaults, as delivered, create a Data
Physical File with a logical record length of 92 and maximum members of 1.

This example changes the record length to 80, and the maximum members to unlimited
(nomax), in order to demonstrate how to set allocation attributes.

LIB File System

Almost all data set allocation attributes can be specified as UDM attributes giving you the
ability to dynamically allocate any supported Data Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be checked to verify they meet your intentions. Although UDM
checks attribute values, some values are provided by the system from sources that UDM
cannot verify and can result in invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for IBM i

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local rcdlen=80 maxmbrs=nomax

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
infitran-user-4301 Confidential & Proprietary 64

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.13 Copy a File to a New IBM i Source Physical File

This example copies, in text mode, a file from a remote UNIX system to a Source
Physical File on IBM i. The Source Physical File does not exist on IBM i; UDM is
instructed to create it.

The Source Physical File is allocated based on the local UDM allocation attributes. UDM
provides default attributes that can be changed to meet local requirements. The UDM
defaults, as delivered, create a Data Physical File with a logical record length of 92 and
maximum members of 1.

This example changes the file type to src in order to demonstrate how to set allocation
attributes.

LIB File System

Almost all data set allocation attributes can be specified as UDM attributes giving you the
ability to dynamically allocate any supported Data Physical File.

Care should be taken that conflicting allocation attributes are not specified. The results of
the allocation should be checked to verify they meet your intentions. Although UDM
checks attribute values, some values are provided by the system from sources that UDM
cannot verify and may result in invalid or unintentional attribute combinations.

Components

Universal Data Mover Manager for IBM i

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local filetype=src

6 copy unix=data10.txt local=MYLIB/APPDATA(DAILY)

7 quit
infitran-user-4301 Confidential & Proprietary 65

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.14 Copy a Set of Files to a New Data Physical File on IBM i

This example copies (in text mode, and using the * wildcard) a set of files from a remote
UNIX system to a data physical file on IBM i. The data file does not exist on IBM i; UDM is
instructed to create it.

The data set is allocated based on the local UDM allocation attributes. UDM provides
default attributes that can be changed to meet local requirements. The UDM defaults, as
delivered, create a data physical file with a logical record length of 92 and maximum
members of 1.

This example changes the record length to 80 and the maximum members to unlimited
(nomax).

LIB File System

Components

Universal Data Mover Manager for IBM i

1 set _echo=yes _halton=warn

2 open unix=sol9 user=top098 pwd=p100m

3 cd unix=/opt/app/data

4 mode type=text

5 attrib local maxmbrs=nomax rcdlen=80 truncext=yes

6 copy unix=*.txt local=MYLIB/APPDATA

7 quit
infitran-user-4301 Confidential & Proprietary 66

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.15 Copy Different Types of IBM i Files using forfiles and
$(_file.type)

Physical files are considered directories in UDM because they contain 1+ member. Save
files are considered files because they do not contain any members. The forfiles
statement and the variable $(_file.type) allow you to do a wildcard copy on both save and
physical files in the LIB file system.

This example copies a mix of files (Save and Physical) from an IBM i system in a single
operation, using the forfiles statement and the $(_file.type) variable attribute.

LIB File System

Components

Universal Data Mover Manager for IBM i

forfiles src=MYLIB/*

if $(_file.type) EQ directory

copy src=$(_path)(*)

else

copy src=$(_path)

end

end
infitran-user-4301 Confidential & Proprietary 67

Transferring Files Examples Transferring Files to / from Remote Systems
2.4.16 Invoke a Script from a Batch Job

To invoke a script included as an inline file in a database job, the call must specify *FIRST
as the database member name.

The following example illustrates both:
• Invocation of an inline script, CALLME, using the STRUDM command from a database

job.
• Invocation of an inline script, CALL1, using the CALL command from a database job.

LIB file system

Components

Universal Data Mover Manager for IBM i

//BCHJOB JOB(testcall) ENDSEV(10) OUTQ(mytest/UDMOUTQ) LOGCLPGM(*YES)

LOG(2 20 *SECLVL) MSGQ(*USRPRF)

//DATA FILE(CALL1) ENDCHAR(ENDDATAFILE)

print msg="I made it to call1 - an inline file"

ENDDATAFILE

//DATA FILE(CALLME) ENDCHAR(ENDDATAFILE)

OPEN S=AS400V5 USER=qatest PWD=***** PORT=4311

CALL CALL1(*FIRST)

CLOSE

ENDDATAFILE

STRUDM SCRFILE(CALLME)

//ENDBCHJOB
infitran-user-4301 Confidential & Proprietary 68

CHAPTER 3
Remote Execution
3.1 Overview
This chapter provides information on the Remote Execution features and functionality of
the Infitran business solution.

Infitran provides access to Universal Command Remote Execution via the Universal Data
Mover exec command. The exec command invokes the Universal Command Manager
and provides parameters for passing a subset of the Universal Command Manager
options.

The exec command executes system commands on remote machines if you have
Universal Command (UCMD) Manager on the same system with the UDM Manager.

Remote Execution refers to the ability of initiating work from one system (the local
system), which executes on another system (the remote system). The type of work
executed on the remote system consists of most any type of work that the remote system
supports, such as commands and scripts. The Universal Command component is used to
execute work on the remote system.

Infitran Remote Execution using Universal Command consists primarily of two
Stonebranch Solutions components:

1. Universal Command Manager runs on the local system. The Manager initiates the
work on the remote system.

2. Universal Command Server runs on the remote systems. It executes work on behalf
of a Universal Command Manager.

The Manager provides the information to the Server necessary for the Server to execute
the work. This includes the command or script that defines the work, as well as the user
identifier with which the work should execute. The Server authenticates the user identifier
on the remote server. If the user identifier authenticates successfully, the Server executes
the work with the provided user identifier.
infitran-user-4301 Confidential & Proprietary 69

Overview Remote Execution
Once the work is started, the Manager supplies input files to, and receives output files
from, the remote command Server in real-time. All files with character data are translated
to the appropriate code pages for the respective system. The transmitted data, optionally,
can be compressed, encrypted, or authenticated.

The Manager runs as long as the remote work is running. When the remote work ends,
the Manager ends. The exit code of the remote work is used as the exit code of the
Manager. With standard out and standard error as well as the exit status of the remote
work available from the manager, there is no need for access to or expertise on the
remote operating system.

Figure 3.1 Remote Execution Components: UCMD Manager and Server
infitran-user-4301 Confidential & Proprietary 70

Execution Primer Remote Execution
3.2 Execution Primer
This section discusses the basics of how to execute remote work using Infitran.

Note: Please read Section 3.1 Overview prior to reading this section, which builds upon
the material presented in the Overview.

The primer discussions are from the perspective of the initiating system where the
Universal Command (UCMD) Manager component is executed via the Universal Data
Mover (UDM) exec command.

The primer examples assume that Infitran is installed with default configuration values to
help keep the examples consistent and clear. UCMD components must be installed both
on the local system from which the UCMD Manager is executed as well as the remote
system where UCMD Server is executed.

The primer examples demonstrate how to execute a command on a remote system using
the UDMD Manager component via the UDM Manager component using the UDM exec
command. All examples use the same set of parameters.

The following table describes each of the parameters used in the primer examples.

Table 3.1 Remote Execution Primer Examples – exec Command Parameters

Parameter Description

cmd Command to be executed on the remote system.

user Remote user ID with which to execute the command. The user ID must be a valid user ID
on the remote system. The examples use a user ID value of joe. This will need to be
change to a valid user ID on the remote system on which Universal Command Server
runs.

pwd Password for the user ID on the remote system. The examples use an arbitrary value of
abcdefg. This will need to be changed to the password for the USER_ID you use to
execute the remote command.
infitran-user-4301 Confidential & Proprietary 71

Execution Primer Remote Execution
3.2.1 Remote Execution Requirements

This section illustrates the minimum set of parameters required to execute a remote
process via the Universal Data Mover (UDM) exec command using UDM scripting
language syntax.

The platform-independent nature of the UDM scripting language means that the format of
exec is the same regardless of the UDM Manager's host platform. See the Universal Data
Mover Reference Guide for platform-specific information on executing UDM Manager,
using UDM script files, and invoking exec.

exec instructs UDM to spawn a Universal Command (UCMD) Manager process. The
Universal Command Reference Guide contains platform-specific information for invoking
UCMD Manager. A UCMD Server installed on the remote system receives the command
specified by exec’s cmd parameter and executes it.

If security is enabled in the remote UCMD Server's configuration, exec must provide user
account information. To establish a secure execution environment, the UCMD Server
requires a user account ID, which exec specifies via the user parameter. The UCMD
Server may also require a password (pwd) to authenticate the user account, depending
on the remote operating system and Indesca configuration.

For information on securing access to Indesca components, see Chapter 6 Security in the
Indesca User Guide.

To execute the following examples in your environment, simply make these changes to
the values specified in the command's parameters:
• Change the host name dallas or IP address 192.168.10.111 to a host name or IP

address that exists in your environment.
• Change the cmd parameter to a valid system command or installed application on the

remote system.
• Change the user ID joe to the name of a valid user account on the remote system.
• Change the password value abcdefg to the user account's password.

In each of these examples, the UCMD Manager establishes a network connection to the
UCMD Server installed on the remote system (dallas). The UCMD Manager passes exec
parameters to the UCMD Server over this connection. UCMD Server then executes the
command as local user named joe.

The UCMD Manager and Server also establish network connections to forward the
command's output (that is, everything it writes to standard output and standard error) to
the UDM Manager. UDM Manager writes this output to its local standard output (stdout)
and standard error (stderr) devices.

When the remote command completes, the UCMD Server retrieves the process' exit code
and status and forwards them to the local UCMD Manager, which exits with that same
value. The UDM Manager stores this exit code in its built-in _execrc variable.
infitran-user-4301 Confidential & Proprietary 72

Execution Primer Remote Execution
This section illustrates how to execute a process on a remote z/OS system using the UDM exec command.
Each example lists the contents of the /u/joe directory in the z/OS UNIX file system.
If no DNS entry is available for the remote host, use a statement like the one shown in Figure 3.2; otherwise,
use something similar to Figure 3.3. To execute a command on a remote system using an active UDM
transfer session, follow the example shown in Figure 3.4.
The exec command initiates UCMD Manager using the UCMDPRC JCL procedure installed in the
SUNVSAMP library.

Figure 3.2 Remote z/OS Execution Using an IP Address

Figure 3.3 Remote z/OS Execution Using a Host Name

Figure 3.4 Remote z/OS Execution Using a UDM Logical Session Name

z/OS

exec 192.168.10.111 cmd="ls -al /u/joe" user=joe pwd=abcdefg

exec dallas cmd=" ls -al /u/joe " user=joe pwd=abcdefg

open rmtsys=dallas user=joe pwd= abcdefg

exec rmtsys cmd=" ls -al /u/joe "
infitran-user-4301 Confidential & Proprietary 73

Execution Primer Remote Execution
This section illustrates how to execute a process on a remote Windows system using the UDM exec
command. Each example lists the contents of the root directory on the c: drive.
If no DNS entry is available for the remote host, use a statement similar to the one shown in Figure 3.5;
otherwise, use something similar to Figure 3.6.
To execute a command on a remote system using an active UDM transfer session, follow the example shown
in Figure 3.7.

Figure 3.5 Remote Windows Execution Using an IP Address

Figure 3.6 Remote Windows Execution Using a Host Name

Figure 3.7 Remote Windows Execution Using a UDM Logical Session Name

Windows

exec 192.168.10.111 cmd="dir c:\" user=joe pwd=abcdefg

exec dallas cmd="dir c:\" user=joe pwd=abcdefg

open rmtsys=dallas user=joe pwd= abcdefg

exec rmtsys cmd="dir c:\"
infitran-user-4301 Confidential & Proprietary 74

Execution Primer Remote Execution
This section illustrates how to execute a process on a remote UNIX system using the UDM exec command.
Each example lists the contents of the home directory for the user account named joe.
If no DNS entry is available for the remote host, use a statement like the one shown in Figure 3.8; otherwise,
use something similar to Figure 3.9.
To execute a command on a remote system using an active UDM transfer session, follow the example shown
in Figure 3.10.

Figure 3.8 Remote UNIX Execution Using an IP Address

Figure 3.9 Remote UNIX Execution Using a Host Name

Figure 3.10 Remote UNIX Execution Using a UDM Logical Session Name

UNIX

exec 192.168.10.111 cmd="ls -al /home/joe" user=joe pwd=abcdefg

exec dallas cmd="ls -al /home/joe" user=joe pwd=abcdefg

open rmtsys=dallas user=joe pwd= abcdefg

exec rmtsys cmd="ls -al /home/joe"
infitran-user-4301 Confidential & Proprietary 75

Execution Primer Remote Execution
This section illustrates how to execute a process on a remote IBM i system using the UDM exec command.
Each example lists the contents of the library joelib.
If no DNS entry is available for the remote host, use a statement like the one shown in Figure 3.11; otherwise,
use something similar to Figure 3.12. To execute a command on a remote system using an active UDM
transfer session, follow the example shown in Figure 3.13.
The exec command initiates UCMD Manager via runtime linkage on IBM i. Stonebranch only supports
runtime linkage to the UCMD Manager using the exec command.
The operating system sends the output for the remote IBM i job to QPRINT. Use the Universal Submit Job
utility (USBMJOB) to bring the output back to the local host via the UCMD Manager.

Figure 3.11 Remote IBM i Execution Using an IP Address

Figure 3.12 Remote IBM i Execution Using a Host Name

Figure 3.13 Remote IBM i Execution Using a UDM Logical Session Name

IBM i

exec 192.168.10.111 cmd="dsplib joelib" user=joe pwd=abcdefg

exec dallas cmd=" dsplib joelib" user=joe pwd=abcdefg

open rmtsys=dallas user=joe pwd= abcdefg

exec rmtsys cmd=" dsplib joelib"
infitran-user-4301 Confidential & Proprietary 76

Remote Execution Examples Remote Execution
3.3 Remote Execution Examples
This section provides examples, specific to the operating systems supported by
Stonebranch Solutions, for the Remote Execution feature of Infitran.

Links to detailed technical information on appropriate Infitran and Indesca components
are provided for each example.

Note: In order to keep the examples as clear as possible, they do not check for error
conditions. If any example is adopted for production use, it is recommended that
you add appropriate error processing.

Windows

Windows Directory Listing Using a Batch File - Default Directory

Windows Directory Listing Using a Batch File - Returned File

UNIX

UNIX Listing Using a Shell Script

UNIX - Integrating UDM with FTP Using a Shell Script

UNIX - Integrating UDM with FTP Using a Command Reference

IBM i

IBM i from Windows, UNIX, or IBM i - exec Command Return Codes
infitran-user-4301 Confidential & Proprietary 77

Remote Execution Examples Remote Execution
3.3.1 Windows Directory Listing Using a Batch File - Default
Directory

This example demonstrates using UCMD Manager via the UDM Manager exec command
to provide a directory listing using a batch file.

The output from the batch file is redirected to the file stdout.txt. If this is not done, the
output from the listing is output via UDM along with the Transaction Log. UDM creates the
stdout.txt file in UDM's default directory, Files\Universal\UCmdHome\joe.

Note: The last directory in the path corresponds to the user ID under which the
command is executed. No open state is used, and the remote host on the exec
command is specified using the IP address.

Figure 3.14 exec Command Under Windows - Listing in Default Directory

The winxmp.bat batch file simply does a dir command against the directory in which the
batch file resides.

Figure 3.15 Listing in Default Directory - Example Batch File

Output sent to stdout.txt.

Figure 3.16 Listing in Default Directory - Listing Sent to stdout.txt

set echo=yes

exec 192.168.20.47 cmd="C:\wrk\xmp\win\winxmp.bat > stdout.txt" user=joe
 pwd=abcdefg

quit

dir "C:\wrk\xmp\win"

C:\Program Files\Universal\UCmdHome\mamos>dir "C:\wrk\xmp\win"

 Volume in drive C has no label.

 Volume Serial Number is 3030-176B

 Directory of C:\wrk\xmp\win

07/27/2010 03:27 PM <DIR> .

07/27/2010 03:27 PM <DIR> ..

07/27/2010 10:08 AM 20 winxmp.bat

07/27/2010 03:46 PM 106 winxmpbat.udm

 2 File(s) 126 bytes

 2 Dir(s) 13,453,979,648 bytes free
infitran-user-4301 Confidential & Proprietary 78

Remote Execution Examples Remote Execution
The transaction log is shown in this first example for those not used to seeing output from
UDM.

Figure 3.17 Listing in Default Directory - Transaction log from UDM via stdout

UDM exec Command Parameters

The exec command parameters used in this example are:

Components

Universal Data Mover Manager for Windows

Universal Command Server for Windows

2010.07.27 16.06.47.541 UNV2800I Universal Data Mover 4.3.0 Level 1 Release
Build 105 started.

2010.07.27 16.06.47.556 Processing script: winxmpbat.udm

2010.07.27 16.06.47.556 exec 192.168.20.47 cmd="C:\wrk\xmp\win\winxmp.bat >
stdout.txt" user=joe pwd=*

2010.07.27 16.06.48.431 quit

2010.07.27 16.06.48.447 Finished processing script: winxmpbat.udm

2010.07.27 16.06.49.447 UNV2801I Universal Data Mover 4.3.0 Level 1 Release
Build 105 ended successfully.

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.
infitran-user-4301 Confidential & Proprietary 79

Remote Execution Examples Remote Execution
3.3.2 Windows Directory Listing Using a Batch File - Returned
File

This example builds on the example illustrated in Section 3.3.1 Windows Directory Listing
Using a Batch File - Default Directory.

Keep in mind that both the batch file and the file created by the redirected output reside
on the remote system. Due to the complexity of this example, each line will be explained.
Each line is numbered for your convenience.

1. Echo is turned off to minimize the amount of information in the transaction log due to
its size. You are encouraged to set up the example and work through the transaction
log.

2. Set a variable, outdir, for later use. Instead of setting the variable inside of the UDM
script, the variable and its associated value could have been provided externally via a
script option.

3. Open the Infitran connection for a two-party transfer. The manager will act as the
primary server and is known as local.

4. Execute the remote command passing the full path to the file for the redirected output.
Note the use of the variable inside of the double quotations; this is a UDM feature.

5. Change the directory for the remote system to the directory in which stdout.txt resides.
6. Change the directory for the local system to the location in which you want stdout.txt to

reside.
7. Set the attribute for the local system to allow replacement of the incoming file.
8. Perform the file copy.
9. Execute a command on the local system to display the contents of the received file.

UCMD server runs on the local system just as it would on the remote system to
execute the command.

10. Quit and exit the UCMD Manager.

Figure 3.18 exec Command Under Windows - Returned Filet

1 set echo=no

2 set outdir=C:\tmp\joe

3 open r=dallas user=joe pwd=abcdefg

4 exec r cmd="C:\wrk\xmp\win\winxmp.bat $(outdir)\stdout.txt" user=joe
 pwd=abcdefg

5 cd r=$(outdir)

6 cd local=C:\tmp\tmp

7 attrib local createop=replace

8 copy r=stdout.txt

9 exec local cmd="type C:\tmp\tmp\stdout.txt" user=joe pwd=abcdefg

10 quit
infitran-user-4301 Confidential & Proprietary 80

Remote Execution Examples Remote Execution
The winxmp.bat batch file now echoes the received parameter. This puts output into the
transaction log so that you can see what was passed to the remote system. The second
line performs the dir command and redirects output to stdout.txt.

Figure 3.19 Returned File - Example Batch File

Output sent to stdout.txt.

Figure 3.20 Returned File - Listing Sent to stdout.txt

UDM exec Command Parameters

The exec command parameters used in this example are:

Components

Universal Data Mover Manager for Windows

Universal Command Server for Windows

echo %1

dir "C:\wrk\xmp\win" > %1

C:\Program Files\Universal\UCmdHome\joe>dir "C:\wrk\xmp\win"

 Volume in drive C has no label.

 Volume Serial Number is 3030-176B

 Directory of C:\wrk\xmp\win

07/27/2010 03:27 PM <DIR> .

07/27/2010 03:27 PM <DIR> ..

07/27/2010 10:08 AM 20 winxmp.bat

07/27/2010 03:46 PM 106 winxmpbat.udm

 2 File(s) 126 bytes

 2 Dir(s) 13,453,979,648 bytes free

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.
infitran-user-4301 Confidential & Proprietary 81

Remote Execution Examples Remote Execution
3.3.3 UNIX Listing Using a Shell Script

In this example, the exec command runs on a UNIX system via UCMD Manager and
executes the sh command to a remote UNIX system using UCMD Server. With a shell
interpreter, such as Cygwin, installed under Windows, the same example would also
apply to a Windows system. The example was tested using Linux as both the local and
remote platforms.

Both the shell script and the file created by the shell script reside on the remote system. If
you are walking through all the examples in order, notice that in this example the shell
script redirects stdout to the stdout.txt file, whereas in the Windows example the command
initiated by the remote UCMD server redirected stdout to the stdout.txt file.

Due to this difference, in this example stdout.txt is created in the current directory as set by
the shell script and in the Windows example it is created in the UCMD server working
directory.

UDM Script Explanation

1. Turns echo on to put the commands into the transaction log.
2. Open a connection to the remote UDM server using remote port 7887. This is the

default port and can be changed by setting the port number in the Universal Broker
configuration file on the remote system. When the port number is changed, Universal
Broker on the remote system on which the configuration file change was made must
be stopped and then started.

3. Execute the shell script on the remote system. The port must be specified on the
command if it is set to a value other than the default value.

4. Quit command stops UDM script execution and the UDM script completes.

Figure 3.21 UNIX Listing - UDM Script on Local System

1. set echo=yes

2. open r=houston user=joe pwd=abcdefg port=7887

3. exec r cmd="sh /home/joe/wrk/xmp/ls/ls.sh" user=joe pwd=abcdefg port=7887

4. quit
infitran-user-4301 Confidential & Proprietary 82

Remote Execution Examples Remote Execution
The shell script changes the current directory, generates the listing via the ls shell
command, redirects the output of the ls command to the stdout.txt file and then uses the
cat shell command to output the contents of stdout.txt to the stdout stream.

The stdout stream is returned by the UDM Server to the UDM Manager and is output to
the transaction log.

Figure 3.22 UNIX Listing - Shell Script on Remote System

Output sent to stdout.txt.

Figure 3.23 UNIX Listing - Listing Sent to stdout.txt

Output sent to the UDM transaction log via stdout from the UDM Manager.

Figure 3.24 UNIX Listing - UDM Manager Transaction Log

cd /home/joe/wrk/xmp/ls

ls > stdout.txt

cat stdout.txt

ls.sh

stdout.txt

2010.07.28 10.13.06.845 UNV2800I Universal Data Mover 4.3.0 Level 0 Release
 Build 104 started.

2010.07.28 10.13.06.845 Processing script: ls.udm

2010.07.28 10.13.06.847 open r=houston user=joe pwd=* port=7887

2010.07.28 10.13.07.114 Data session established using cipher: NULL-MD5

2010.07.28 10.13.07.159 Two party session established with r (component
 1278600806)

2010.07.28 10.13.07.161 Transfer mode settings:

2010.07.28 10.13.07.198 type=binary

2010.07.28 10.13.07.198 trim=no

2010.07.28 10.13.07.198 Session options:

2010.07.28 10.13.07.198 Keep Alive Interval: 120

2010.07.28 10.13.07.198 Network Fault Tolerant: yes

2010.07.28 10.13.07.198 exec r cmd="sh /home/joe/wrk/xmp/ls/ls.sh" user=joe
 pwd=* port=7887

ls.sh

stdout.txt

2010.07.28 10.13.08.072 quit

2010.07.28 10.13.08.074 Session closed

2010.07.28 10.13.08.074 Finished processing script: ls.udm

2010.07.28 10.13.10.074 UNV2801I Universal Data Mover 4.3.0 Level 0 Release
 Build 104 ended successfully.
infitran-user-4301 Confidential & Proprietary 83

Remote Execution Examples Remote Execution
UDM exec Command Parameters
The exec command parameters used in this example are:

Components

Universal Data Mover Manager for UNIX

Universal Command Server for UNIX

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited
from the UDM Manager's configuration file unless explicitly overridden in the call to the
exec command
infitran-user-4301 Confidential & Proprietary 84

Remote Execution Examples Remote Execution
3.3.4 UNIX - Integrating UDM with FTP Using a Shell Script

Remote process may require coordination with UDM. The exec command provides a
method for this coordination.

In this example, a file is transferred into a secure area behind a firewall and then is
forwarded to a second system using FTP. In actual practice, the same file could be
forwarded to multiple systems using FTP, and then the exec command used to send
notices to those same systems.

For simplicity, the file is "pulled" to the local system using UDM and then "pushed" to the
remote system inside of the firewall using FTP. Infitran's three-party transfer capability
allows transferring a file from one remote system to another and initiating processes on
either of those remote systems, the local system, or any other system running a UCMD
Server.

The example was tested using a Windows system as the remote system from which the
file is initially pulled. The example would work without change if the remote system were a
UNIX system. The local test system on which the UDM Manager runs is Linux and the
test system to which the file is sent using FTP is also Linux.

UDM Script Explanation

1. Turns echo on to put the commands into the transaction log.
2. Open a connection to the remote UDM server using remote port 7887. The open

command assigns the logical name 'rmt' to the remote system at IP address
192.168.20.47 and assigns the logical name local to the system on which the UDM
Manager is running. Setting up local is done automatically by UDM for two-party
transfers when a second system is not specified.

3. Change the transfer mode from binary to text.
4. Change the Creation Option attribute for the local server from new to replace.

Without this change, existing files cannot be replaced with new copies.
5. Change the current directory on the remote Windows system to C:\tmp\tmp. This is the

directory from which the file is pulled.
6. Change the current directory on the local UNIX system to /home/joe/wrk/xmp/dmzFtp.

This is the directory into which the file is pulled.
7. Use the UDM copy command to transfer the file from the remote Windows system to

the local UNIX system.
8. Execute the shell script on the local system to FTP the file to the 2nd system inside

the firewall. In this example, the exec command uses the UCMD server running on
the local system to execute the shell script just as if it resided on a remote system.
The port must be specified on the command if it is set to a value other than the default
value.

9. Execute the ls command on the remote system to show that the file was copied. In a
production environment, a process could be started to do something productive with
the transferred file.

10. Quit command stops UDM script execution and the UDM script completes.
infitran-user-4301 Confidential & Proprietary 85

Remote Execution Examples Remote Execution
Figure 3.25 Integrating UDM with FTP - UDM Script on Local System

The shell script sets up and executes FTP commands.

Figure 3.26 Integrating UDM with FTP - Shell Script on Remote System

UDM exec Command Parameters
The exec command parameters used in this example are:

Components

Universal Data Mover Manager for UNIX

Universal Command Server for UNIX

1. set echo=yes

2. open rmt=192.168.20.47 user=joe pwd=abcdefg port=7887

3. mode type=text

4. attrib local createop=replace

5. cd rmt=C:\tmp\tmp

6. cd local=/home/joe/wrk/xmp/dmzFtp

7. copy rmt=file.txt.org local=file.txt

8. exec local cmd="sh /home/joe/wrk/xmp/dmzFtp/ftp.sh" user=joe pwd=abcdefg
 port=7887

9. exec dev-linux24 cmd="ls /home/joe/tmp" user=joe pwd=abcdefg port=7887

10. quit

ftp -ipnv houston <<FTP_DONE

quote USER joe

quote PASS abcdefg

cd /home/joe/tmp

lcd /home/joe/wrk/xmp/dmzFtp

put file.txt file.new.txt

quit

FTP_DONE

exit 0

Parameter Description

cmd Command to execute on the remote system using command type cmd (command).

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited
from the UDM Manager's configuration file unless explicitly overridden in the call to the
exec command
infitran-user-4301 Confidential & Proprietary 86

Remote Execution Examples Remote Execution
3.3.5 UNIX - Integrating UDM with FTP Using a Command
Reference

This example demonstrates the use of Command Reference files. Command References
provides a very secure environment in which to store and from which to execute
commands and scripts for use with UCMD Manager.

This example is based on the example in Section 3.3.4 UNIX - Integrating UDM with FTP
Using a Shell Script. Understanding that example is a prerequisite to using this one. Also,
the test environment in the previous example is the same as in this example.

If you are not familiar with Command References, please read the Command References
section in Chapter 10 Universal Command Server for UNIX of the Universal Command
4.3.0 Reference Guide.

UDM Script Explanation

Other than Line 8, this UDM script is identical to the previous example. The exec
command in line 8 uses the UCMD server running on the local system to execute the
shell script contained in the Command Reference file ftp.cref. One option, the remote
system name, is passed to the script via the Command Reference.

Command Reference files must reside in the directory specified by the UCMD Server
option CMD_REFERENCE_DIRECTORY. On UNIX systems this directory defaults to
/var/opt/universal/cmdref.

Figure 3.27 Using a Command Reference - UDM Script on Local System

1. set echo=yes

2. open rmt=192.168.20.47 user=joe pwd=abcdefg port=7887

3. mode type=text

4. attrib local createop=replace

5. cd rmt=C:\tmp\tmp

6. cd local=/home/joe/wrk/xmp/dmzFtp

7. copy rmt=file.txt.org local=file.txt

8. exec local cmdref="ftp.cref houston" user=joe pwd=abcdefg port=7887

9. exec houston cmd="ls /home/joe/tmp" user=joe pwd=abcdefg port=7887

10. quit
infitran-user-4301 Confidential & Proprietary 87

Remote Execution Examples Remote Execution
The ftp.cref Command Reference file contains the shell script used to FTP the file to the
remote system behind the firewall. The allow_options option is changed to yes to allow
the server address to be passed to the script. By default, no options are passed.

The format option is changed from cmd to script; otherwise, the script will not be
generated.

Figure 3.28 Using a Command Reference - Command Reference on Remote System

UDM exec Command Parameters

The exec command parameters used in this example are:

Command reference to read a file.

-format script

-type shell

-allow_options yes

<eof>

ftp -ipnv $1 <<FTP_DONE

quote USER joe

quote PASS abcdefg

cd /home/amos/tmp

lcd /home/joe/wrk/xmp/dmzFtp

put file.txt file.new.txt

quit

FTP_DONE

exit 0

Parameter Description

cmdref Command Reference file name and, optionally, options to be passed to the command or
script.

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited
from the UDM Manager's configuration file unless explicitly overridden in the call to the
exec command
infitran-user-4301 Confidential & Proprietary 88

Remote Execution Examples Remote Execution
3.3.6 IBM i from Windows, UNIX, or IBM i - exec Command
Return Codes

This example demonstrates using the built-in variable _execrc.

For IBM i, the UCMD Server checks the error severity for each CL command issued. If the
severity of the error exceeds the value set via the UCMD Server END_SEVERITY option,
the value is returned via _execrc. A UCMD Server error may also result in _execrc being
set. If no error occurs, _execrc is zero.

Generally, UCMD Server return codes for IBM i are 200 or greater. Therefore, return
codes associated with END_SEVERITY and with the UCMD Server do not conflict.

The svropt parameter passes options to the UCMD Server. These options override both
the defaults and the options contained in the UCMD Server configuration file. The -joblog
never value prevents the job log from being returned to the transaction log via stdout. (Do
not include svropt if you want the job log.) The spaces before and after the double
quotation marks are significant. END_SEVERITY can also be overridden.

The exec commands are both broken into two lines. The - and + characters are line
continuation characters. Using - trims all leading blanks from the beginning of the next
line; using + retains the blanks. In the example script, only one blank remains to separate
the text on the two lines after they are concatenated.

This UDM example script was tested on three different platforms: Linux, Windows XP,
and IBM i.

UDM Script Explanation

The script issues an IBM i command that fails and, based on the failure, issues an IBM i
command to notify the system operator.

1. Turns echo on.
2. Issues a SAVLIB command to system atlanta which fails with end severity 40.
3. Echoes the value returned to the UDM Manager from the system via the UCMD

Server.
4. Checks for the error.
5. Issues the SNDMSG command to notify the system operator.
6. Closes the if statement.
7. Cleans up and exits the UDM script.
infitran-user-4301 Confidential & Proprietary 89

Remote Execution Examples Remote Execution
Figure 3.29 UDM Script - Exec Command Return Codes

Operating System-Specific Information

Although the same script works equally well on Windows, UNIX, and IBM i, the syntax for
submitting the script differs.

Windows and UNIX
The syntax is udm -s script-path.

To run the example, change the current directory to the location of the script and issue
udm -s xmp0.udm, where xmp0.udm is the name of the file containing the script.

IBM i
The syntax is STRUDM qualified-file-name file-member-name.

To run the example, enter STRUDM joe/qscrsrc xmp0_udm. The file and member names are
positional parameters. STRUDM SCRFILE(JOE/QSCRSRC) SCRMBR(XMP0_UDM) is also
valid.

1. set echo=yes

2. exec atlanta cmd="SAVLIB LIB(NONAME) DEV(*SAVF) SAVF(QGPL/ABC)" user=joe -

 pwd=abcdefg port=27887 svropt=" -joblog never "

3. echo "rc = " $(_execrc)

4. if $(_execrc) GE 30

5. exec atlanta cmd="SNDMSG MSG('The command, SAVLIB LIB(NONAME) DEV(*SAVF) -

 SAVF(QGPL/ABC), failed') TOUSR(*SYSOPR)" user=joe pwd=abcdefg port=27887
svropt=" -joblog never "

6. end

7. quit
infitran-user-4301 Confidential & Proprietary 90

Remote Execution Examples Remote Execution
UDM exec Command Parameters
The exec command parameters used in this example are:

Components

Universal Data Mover Manager for IBM i

Universal Data Mover Manager for Windows

Universal Data Mover Manager for UNIX

Universal Command Manager for IBM i

Parameter Description

cmd Command Reference file name and, optionally, options to be passed to the command or
script.

user Remote user ID with which to authenticate and execute the command on the remote
system.

pwd Password with which to authenticate the user ID on the remote system.

port Port that the Universal Broker is listening on for the remote machine. The port is inherited
from the UDM Manager's configuration file unless explicitly overridden in the call to the
exec command

svropt Server option to pass to the UCMD server.
infitran-user-4301 Confidential & Proprietary 91

CHAPTER 4
Remote Execution

for SAP Systems
4.1 Overview
This chapter provides information on the Remote Execution for SAP feature and
functionality of the Infitran business solution.

With Infitran, Remote Execution for SAP systems is performed indirectly. Infitran provides
the ability to raise events within the remote SAP system. These events can be used by
the SAP scheduling system to trigger job runs. This allows the automated coordination of
work on the SAP system from within an Infitran process.
infitran-user-4301 Confidential & Proprietary 92

Remote Execution of SAP Examples Remote Execution for SAP Systems
4.2 Remote Execution of SAP Examples
This section provides examples of the Remote Execution of SAP feature of Infitran using
the Universal Data Mover execsap command.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

Raising an SAP Event for z/OS Example

UNIX

Raising an SAP Event for UNIX Example
infitran-user-4301 Confidential & Proprietary 93

Remote Execution of SAP Examples Remote Execution for SAP Systems
4.2.1 Raising an SAP Event for z/OS Example

The following example demonstrates raising events in a remote SAP system using the
Universal Data Mover execsap command.

In this example (Figure 4.1 and Figure 4.2, below), we assume the following scenario:

The job scheduler on SAP system CF5 has been set up with three jobs that are triggered
by SAP event UDM_TRANSFER_COMPLETE. Additionally, each job is looking for a
different event parameter (cars.dat, trucks.dat, and boats.dat) corresponding with the Input
file it is intended to process.

Infitran is being run on a z/OS system to transfer three data files (cars.dat, trucks.dat, and
boats.dat) from remote system sol9 to remote system SAP001. The data files are to be
used by the SAP system for Batch Input Processing. Therefore, after each file transfer,
the execsap command is issued to raise an appropriate event in the SAP system. These
events are picked up by the SAP job scheduler which, in turn, kicks off the jobs that were
scheduled for those events.

Figure 4.1 Raising an SAP Event for z/OS - JCL (1 of 2)

//UDMEXSAP JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//***

//* Description

//* -----------

//* This sample opens a three-party transfer session between hosts

//* sol9 and SAP001. Three files are transferred from sol9 to

//* SAP001. After each file is transferred, execsap is called to

//* raise an SAP event in the specified SAP system.

//*

//* Presumably, there are jobs in the SAP scheduling system that

//* are waiting to be triggered by the events fired from this job.

//*

// JCLLIB ORDER=#SHLQ.UNV.SUNVSAMP

//*

//STEP1 EXEC UDMPRC

//UNVSCR DD *

#

Transfer vehicle data to SAP server for batch input processing.

#

open src=sol9 dest=SAP001 xfile=xuser1

attrib dest createop=replace

cd src=/opt/app/data

cd dest=/input
infitran-user-4301 Confidential & Proprietary 94

Remote Execution of SAP Examples Remote Execution for SAP Systems
Figure 4.2 Raising an SAP Event for z/OS - JCL (2 of 2)

Components

Universal Data Mover Manager for z/OS

Universal Data Mover Server for UNIX

Universal Connector for z/OS

#**

#* Copy the car data to SAP system for batch input processing.

#**

copy src=cars.dat dest=cars.dat

Raise SAP event to trigger processing job.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="cars.dat"

#**

#* Copy the truck data to SAP system for batch input processing.

#**

copy src=trucks.dat dest=trucks.dat

Raise SAP event to trigger processing job.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="trucks.dat"

#**

#* Copy the boat data to SAP system for batch input processing.

#**

copy src=boats.dat dest=boats.dat

Raise SAP event to trigger processing job.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="boats.dat"

close

/*
infitran-user-4301 Confidential & Proprietary 95

Remote Execution of SAP Examples Remote Execution for SAP Systems
4.2.2 Raising an SAP Event for UNIX Example

The following example demonstrates raising events in a remote SAP system using the
Universal Data Mover execsap command.

In this example (Figure 4.3 and Figure 4.4, below), we assume the following scenario:

The job scheduler on SAP system CF5 has been set up with three jobs that are triggered
by SAP event UDM_TRANSFER_COMPLETE. Additionally, each job is looking for a
different event parameter (cars.dat, trucks.dat, and boats.dat) corresponding with the Input
file it is intended to process.

Infitran is being run on a UNIX system to transfer three data files (cars.dat, trucks.dat, and
boats.dat) from remote system sol9 to remote system SAP001. The data files are to be
used by the SAP system for Batch Input Processing. Therefore, after each file transfer,
the execsap command is issued to raise an appropriate event in the SAP system. These
events are picked up by the SAP job scheduler which, in turn, kicks off the jobs that were
scheduled for those events.

Figure 4.3 Raising an SAP Event for UNIX - UDM Script File: BIVehicle001 (1 of 2)

#**
**

Description

This sample opens a three-party transfer session between hosts

sol9 and SAP001. Three files are transferred from sol9 to

SAP001. After each file is transferred, execsap is called to

raise an SAP event in the specified SAP system.

Presumably, there are jobs in the SAP scheduling system that

are waiting to be triggered by the events fired from this job.

open src=sol9 dest=SAP001 xfile=xuser1

attrib dest createop=replace

cd src=/opt/app/data

cd dest=/input
infitran-user-4301 Confidential & Proprietary 96

Remote Execution of SAP Examples Remote Execution for SAP Systems
Figure 4.4 Raising an SAP Event for UNIX - UDM Script File: BIVehicle001 (2 of 2)

Components
Universal Data Mover Manager for UNIX

Universal Data Mover Server for z/OS

Universal Connector for z/OS

#**

#* Copy the car data to SAP system for batch input processing.

#**

copy src=cars.dat dest=cars.dat

Raise SAP event to inform the system that the input file is ready.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="cars.dat"

#**

#* Copy the truck data to SAP system for batch input processing.

#**

copy src=trucks.dat dest=trucks.dat

Raise SAP event to inform the system that the input file is ready.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="trucks.dat"

#**

#* Copy the boat data to SAP system for batch input processing.

#**

copy src=boats.dat dest=boats.dat

Raise SAP event to inform the system that the input file is ready.

execsap CF5 client=800 xfile=xsapuser1 type=event -

 eventid=UDM_TRANSFER_COMPLETE parm="boats.dat"

close
infitran-user-4301 Confidential & Proprietary 97

CHAPTER 5
Web Services Execution
5.1 Overview
The inbound implementation of Infitran’s web services execution – Universal Event
Monitor for SOA – provides the ability to create file-based events from inbound Internet
and message-based messages, and write the events to file.

This allows for the integration of Internet and message-based messages, and write the
events to file. As such it integrates Internet and message-based applications with
systems management functions such as:
• Alerting and notification
• Incident and problem management
• Job scheduling
• Data movement

Universal Event Monitor (UEM) monitors one or more local or remote system events. It
also can execute a system command or script based on the outcome of the events that it
is monitoring.
infitran-user-4301 Confidential & Proprietary 98

Web Services Examples Web Services Execution
5.2 Web Services Examples
This chapter provides examples for the Web Services Execution feature of Infitran.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

UNIX

Inbound JMS Implementation

Inbound SOAP Implementation
infitran-user-4301 Confidential & Proprietary 99

Web Services Examples Web Services Execution
5.2.1 Inbound JMS Implementation

Inbound implementations take the form of modifying the UAC.xml file with a definition. The
container will read this file to construct the connection to the target defined by the value of
the Property java.naming.provider.

Figure 5.1, below, illustrates an example of this construction.

Figure 5.1 Inbound JMS - Constructing Connection to Target

In the following examples:
• Messages consumed from the topic or queue are written to the file system defined by

the <sb:Directory> tag.
• <sb:Filename> tag denotes the filename that is be written to the filesystem.
• %Seq% defines an increment so that subsequent messages consumed from the topic

do not collide with already existing filenames.

<sb:Property>

 <sb:Name>java.naming.provider.url</sb:Name>

 <sb:Value>tcp://soatest2:61616</sb:Value>

</sb:Property>
infitran-user-4301 Confidential & Proprietary 100

Web Services Examples Web Services Execution
ActiveMQ Topic
Figure 5.2, below, illustrates an attachment to an Apache ActiveMQ dynamic topic.

Figure 5.2 Inbound JMS - Attachment to an Apache ActiveMQ Dynamic Topic

<sb:JMSConnection>

 <sb:Name>JMS ActiveMQ Topic Listener - soatest2/</sb:Name>

 <sb:InitialContextProperties>

 <sb:Property>

 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>org.apache.activemq.jndi.ActiveMQInitialContextFactory</sb:Value>

 </sb:Property>

 <sb:Property>

 <sb:Name>java.naming.provider.url</sb:Name>

 <sb:Value>tcp://soatest2:61616</sb:Value>

 </sb:Property>

 </sb:InitialContextProperties>

 <sb:ConnectionFactory>ConnectionFactory</sb:ConnectionFactory>

 <sb:Listeners>

 <sb:JMSListener>

<sb:Destination>dynamicTopics/UemsoaStartTopicA</sb:Destination>

 <sb:Actions>

 <sb:JMSFileWriter>

 <sb:Directory>filesystem</sb:Directory>

<sb:FilenamePattern>ActiveMQ_Topic_%Seq%.txt</sb:FilenamePattern>

 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>

 <sb:WriteProperties>false</sb:WriteProperties>

 </sb:JMSFileWriter>

 </sb:Actions>

 </sb:JMSListener>

 </sb:Listeners>

 </sb:JMSConnection>
infitran-user-4301 Confidential & Proprietary 101

Web Services Examples Web Services Execution
Websphere Queue
Figure 5.3, below, illustrates an attachment to an IBM Websphere queue.

Figure 5.3 Inbound JMS - Attachment to an IBM Websphere Queue

<sb:JMSConnection>

 <sb:Name>JMS WebSphere Queue Listener - soatest2</sb:Name>

 <sb:InitialContextProperties>

 <sb:Property>

 <sb:Name>java.naming.factory.initial</sb:Name>

<sb:Value>com.ibm.websphere.naming.WsnInitialContextFactory</sb:Value>

 </sb:Property>

 <sb:Property>

 <sb:Name>java.naming.provider.url</sb:Name>

 <sb:Value>iiop://soatest2:2809</sb:Value>

 </sb:Property>

 <sb:Property>

 <sb:Name>com.ibm.CORBA.ORBInit</sb:Name>

 <sb:Value>com.ibm.ws.sib.client.ORB</sb:Value>

 </sb:Property>

 </sb:InitialContextProperties>

 <sb:ConnectionFactory>jms/SBSConnectionFactory</sb:ConnectionFactory>

 <sb:Listeners>

 <sb:JMSListener>

 <sb:Destination>jms/Soatest2TestQueue3</sb:Destination>

 <sb:Actions>

 <sb:JMSFileWriter>

 <sb:Directory>filesystem<sb:Directory>

 <sb:FilenamePattern>Websphere_Queue_%Seq%.txt</sb:FilenamePattern>

 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>

 <sb:WriteProperties>false</sb:WriteProperties>

 </sb:JMSFileWriter>

 </sb:Actions>

 </sb:JMSListener>

 </sb:Listeners>

</sb:JMSConnection>
infitran-user-4301 Confidential & Proprietary 102

Web Services Examples Web Services Execution
MQ Series Queue:
Figure 5.4, below, illustrates an attachment to an IBM MQ Series Queue.

Figure 5.4 Inbound JMS - Attachment to an IBM MQ Series Queue

<sb:MQConnection>

 <sb:Name>MQ Series Listener - soatest2</sb:Name>

 <sb:Host>soatest2</sb:Host>

 <sb:QueueManagerName>MyQueueManager</sb:QueueManagerName>

 <sb:Channel>UpsQaChannel</sb:Channel>

 <sb:Port>1414</sb:Port>

 <sb:Listeners>

 <sb:MQListener>

 <sb:QueueName>UpsQaQueue</sb:QueueName>

 <sb:Actions>

 <sb:MQFileWriter>

 <sb:Directory>filesystem</sb:Directory>

 <sb:FilenamePattern>MQSeries_Queue_%Seq%.txt</sb:FilenamePattern>

 <sb:StartSequenceNumber>0</sb:StartSequenceNumber>

 <sb:WriteProperties>false</sb:WriteProperties>

 </sb:MQFileWriter>

 </sb:Actions>

 </sb:MQListener>

 </sb:Listeners>

 </sb:MQConnection>
infitran-user-4301 Confidential & Proprietary 103

Web Services Examples Web Services Execution
Triggering an Event
Once a file has been written to the filesystem, UEM could be used to trigger an event (see
Figure 5.5, below).

This event looks for files with an extension of txt. When it sees a file with that extension,
UEM renames the file to the original name with a xml extension. It then executes the
handler, which runs UDM with a script.

The UDM script looks for all files the begin with a 2 and end with .xml on the local server.
These file are then transferred to the destination server, overwriting any existing files on
the destination server, and the session is closed.

Figure 5.5 Triggering an Event

Contents of File udm.script

begin_event

 event_id "JMS_MESSAGE_TRIGGER"

 event_type FILE

 comp_name uems

 state enable

 tracking_int 10

 triggered_id "JMS_MESSAGE_HANDLER"

 filespec "filesystem/*.txt"

 min_file_size 0

 rename_file yes

 rename_filespec "filesystem/$(origname).xml"

end_event

begin_handler

 handler_id "JMS_MESSAGE_HANDLER"

 handler_type CMD

 maxrc 0

 userid username

 pwd user_password

 cmd "udm -s udm.script"

end_handler

open dest_server=192.168.1.1 user=qatest pwd=qatest

attrib dest_server createop=replace

forfiles local=2*.xml

copy local=$(_file)

end

close
infitran-user-4301 Confidential & Proprietary 104

Web Services Examples Web Services Execution
Components
Universal Event Monitor

Universal Event Monitor for SOA
infitran-user-4301 Confidential & Proprietary 105

Web Services Examples Web Services Execution
5.2.2 Inbound SOAP Implementation

Inbound SOAP requests are handled via Universal Event Monitor for SOA.

When Universal Event Monitor for SOA detects an inbound SOAP message, it writes the
message payload to a file. Universal Event Monitor detects the file and initiates an action.

The SOAP message payload is parsed to extract information that is used to build a z/OS
console message. Universal Command delivers the message from the Linux server to the
z/OS mainframe.

Universal Event Monitor for SOA is configured via the /etc/universal/UAC.xml file.

Figure 5.6 Inbound SOAP Request UAC.xml

If required, additional SOAP connections can be defined to the UAC.xml.

Universal Event Monitor for SOA writes the payload of the inbound SOAP message to the
following directory / file mask:

/export/home/control/indesca/soap_listener/process_%Seq%.xml

The variable %Seq% is resolved to a sequence number generated by Universal Event
Monitor. The sequence number is incremented by one for each file created and is reset to
1 each time Universal Event Monitor for SOA is started.

<?xml version="1.0" encoding="UTF-8"?>

<sb:UAC xmlns:sb="http://com.stonebranch/UAC/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAC/ UAC.xsd"/

 <!-- Id -->

 <sb:SOAPConnection>

 <sb:URI>/axis2/services/UACInbound</sb:URI>

 <sb:Listeners>

 <sb:SOAPListener>

 <sb:Operation>process</sb:Operation>

 <sb:Actions>

 <sb:SOAPFileWriter>
<sb:Directory>/export/home/control/indesca/soap_listener/</sb:Directory>

 <sb:FilenamePattern>process_%Seq%.xml</sb:FilenamePattern>

 <sb:StartSequenceNumber>1</sb:StartSequenceNumber>

 <sb:WriteEnvelope>true</sb:WriteEnvelope>

 </sb:SOAPFileWriter>

 </sb:Actions>

 </sb:SOAPListener>

 </sb:Listeners>

 </sb:SOAPConnection>

</sb:UAC>>
infitran-user-4301 Confidential & Proprietary 106

Web Services Examples Web Services Execution
The following shows an example of the inbound message payload written to the
process_%Seq%.xml file.

Figure 5.7 Inbound SOAP Request – Message Payload Written to process_%Seq%.xml File

The three bold-faced fields in the process_%Seq%.xml file are used to create the z/OS
console message:
• identitySourceApplicationId
• activityRequestId
• activityAction

Figure 5.8, below, illustrates the event definition that Universal Event Monitor uses to
detect the file created by Universal Event Monitor for SOA.

Figure 5.8 Inbound SOAP Request – Universal Event Monitor Event Definition

<?xml version='1.0' encoding='utf-8'?><soapenv:Envelope xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soapenv:Body><NS1:process
xmlns:NS1="http://inbound.uac.stonebranch.com"><NS1:identitySourceApplication
Id>RBS</NS1:identitySourceApplicationId><NS1:identitySourceUserId />

<NS1:identitySourcePassword /><NS1:identitySourceToken />

<NS1:activityRequestId>AUT4210021109265970293000</NS1:activityRequestId><NS1:
activityStatus>PROCESS CLOSE ACCOUNTING YYYY MM</NS1:activityStatus>

<NS1:activityState>ACCOUNTING MONTH CLOSING INPROGRESS</NS1:activityState>

<NS1:activityStateReason>INFO</NS1:activityStateReason><NS1:activityAction>OD
PT0001</NS1:activityAction><NS1:activityStartDate>2010-02-24</NS1:activity

StartDate><NS1:activityStartTime>08:35:42.397382</NS1:activityStartTime></NS1
:process></soapenv:Body></soapenv:Envelope>

BEGIN_EVENT

 EVENT_ID "ABC SOA EVENT"

 EVENT_TYPE FILE

 COMP_NAME UEMS

 STATE ENABLE

 TRACKING_INT 10

 TRIGGERED_ID "ABC SOA HANDLER"

 FILESPEC "/export/home/ control/indesca/soap_listener/*.*"

 MIN_FILE_SIZE 0

 RENAME_FILE YES

 RENAME_FILESPEC "/export/home/
control/indesca/soap_listener/$(origname).$(origext)"

END_EVENT
infitran-user-4301 Confidential & Proprietary 107

Web Services Examples Web Services Execution
The event definition is loaded to Universal Event Monitor using the following command
issued on the Linux server running Universal Command Agent for SOA.

/opt/universal/bin/uemload -add -deffile event_definition.txt

Alternatively, changes to the event definition can be effected using the following
command:

/opt/universal/bin/uemload -update -deffile event_definition.txt

The event definition 'moves' each Process_%Seq$.xml file to a staging directory and
invokes a SOA HANDLER.

The following Universal Event Monitor handler definition processes each
Process_%Seq%.xml file.

Figure 5.9 Inbound SOAP Request – Universal Event Monitor Handler Definition

BEGIN_HANDLER

 HANDLER_ID "ABC SOA HANDLER"

 ACTION_TYPE CMD

 MAXRC 0

 USERID "control"

 PWD "UACL"

 BEGIN_SCRIPT

 STMT "#!/usr/bin/ksh"

 STMT "exec > /export/home/control/indesca/abc.log 2>&1"

 STMT "set -xv"

 STMT "/opt/universal/bin/ucmd -script /export/home/control/indesca/abc.rexx
\"

 STMT "< $UEMRENAMEDFILE \"

 STMT "-HOST mvstcp5 -USERID CTLMNT -PWD UACL \"

 STMT ">> /export/home/control/indesca/abc.log \"

 STMT "2>&1"

 STMT "if [$? -gt 0]"

 STMT " then"

 STMT " mv $UEMRENAMEDFILE $UEMORIGFILE"

 STMT " else"

 STMT " rm $UEMRENAMEDFILE"

 STMT "fi"

 STMT "exit $rc"

 END_SCRIPT

END_HANDLER
infitran-user-4301 Confidential & Proprietary 108

Web Services Examples Web Services Execution
The Event Handler executes under the authority of the USERID control. To allow this
userid to authenticate without a password, the following UACL definitions were made to
/etc/universal/uacl.conf:
• uem_handler control,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see
Section 8.5 Configuration Refresh).

The Event Handler invokes Universal Command to:

1. Connect to the z/OS mainframe.
2. Execute a REXX script to parse the required information from the process_%Seq%.xml

file.
3. Execute the Universal Write-to-Operator utility to write the required console message.

The Event Handler appends logging information to the following file:
/export/home/control/indesca/abc.log.

If the Event Handler does not complete successfully, the process_%Seq%.xml file is moved
back its original location so that processing can be retried. Otherwise, this file is deleted.

The REXX script executed by the Event Handler is stored on the Linux server running
Universal Command Agent for SOA.

Figure 5.10 Outbound SOAP Request – abc.rexx

/* REXX */

TRACE R

 ABC.XML = LINEIN()

 parse value ABC.XML with "<NS1:activityAction>" ABC.ACTN
"</NS1:activityAction>"

 parse value ABC.XML with "<NS1:identitySourceApplicationId>" ABC.APID
"</NS1:identitySourceApplicationId>"

 parse value ABC.XML with "<NS1:activityRequestId>" ABC.RQID
"</NS1:activityRequestId>"

 ABC.UWTO = "EIEOSRAT "ABC.ACTN ABC.APID ABC.RQID

 '/usr/lpp/universal/bin/uwto -msg "'ABC.UWTO'"'

 ABC.RC = RC

 EXIT ABC.RC
infitran-user-4301 Confidential & Proprietary 109

Web Services Examples Web Services Execution
The REXX script is executed under the z/OS USS environment under the authority of the
USERID CTLMNT. To allow this userid to authenticate without a password, the following
UACL definitions were made to TEST.SYS5.UNV.UNVCONF(ACLCFG00):
• ucmd_access ALL,*,CTLMNT,allow,noauth

Changes to the configuration files require the Universal Broker to be refreshed (see
Section 8.5 Configuration Refresh).

The REXX script executes the Universal Write-to-Operator utility in order to write the
required message to the z/OS console.

The abc.log file is appended to each time a process_%Seq%.xml is processed. This file is
useful as an audit trail and for problem diagnosis.

In order to ensure that this file does not grow to an unreasonable size, an additional
Universal Event Monitor Event and Handler have been implemented to purge this file
when it reaches 10mb in size.

Figure 5.11 Outbound SOAP Request – Event and Handler to purge abc.log

Components

Universal Event Monitor

Universal Event Monitor for SOA

Universal Broker

Universal Write-to-Operator

Universal Encrypt

BEGIN_EVENT

 EVENT_ID "ABC LOG FILE CLEANUP"

 EVENT_TYPE FILE

 COMP_NAME UEMS

 STATE ENABLE

 TRACKING_INT 10

 TRIGGERED_ID "ABC LOG FILE CLEANUP"

 FILESPEC "/export/home/control/indesca/abc.log"

 MIN_FILE_SIZE 10M

END_EVENT

BEGIN_HANDLER

 HANDLER_ID "ABC LOG FILE CLEANUP"

 ACTION_TYPE CMD

 MAXRC 0

 USERID "control"

 PWD "UACL"

 CMD "rm /export/home/control/indesca/abc.log"

END_HANDLER
infitran-user-4301 Confidential & Proprietary 110

CHAPTER 6
Event Monitoring

and File Triggering
6.1 Overview
The Event Monitoring and File Triggering feature of Infitran provides a consistent,
platform-independent means of monitoring one or more local or remote system events. It
also can execute a system command or script based on the outcome of the events that it
monitors.

It allows one or more system events to be monitored at any given time.

The methods available for defining an event and its associated actions are described in
the following sections.
infitran-user-4301 Confidential & Proprietary 111

Universal Event Monitor Event Monitoring and File Triggering
6.2 Universal Event Monitor
Use the Universal Event Monitor (UEM) Manager to monitor a single local or remote
system event.

The UEM Manager (uem) may provide all of the parameters necessary to define a system
event, or it may specify the ID of a database record that contains the event definition. In
either case, the UEM Manager passes the event definition to a local or remote UEM
Server (uemsrv), which uses that information to look for an occurrence of the event and
test for its completion.

The UEM Manager may also provide all of the parameters necessary to define an event
handler to the UEM Server, or it may specify the ID of a database record that contains the
event handler. An event handler is a command or script that UEM Server executes, based
on the outcome of the event occurrence.

A UEM Server may monitor several local system events simultaneously using records
stored in its event definition database. An event-driven UEM Server executes in this
manner. An event-driven UEM Server does not require a UEM Manager to initiate a
monitoring request, and you may configure it to start automatically whenever the local
Universal Broker starts. During start-up, an event-driven UEM Server retrieves a list of its
assigned event definitions from the local Universal Broker. UEM Server monitors each
event until it is no longer active, or until the event-driven Server ends.

The UEMLoad utility (uemload) enables you to add event definition and event handler
records to their respective databases

UEMLoad handles all event definition and event handler database management tasks,
including adds, updates, deletes, and lists / exports. UEMLoad forwards a database
request to a UEM Server, which validates the information. The UEM Server then sends a
request to a local Universal Broker to apply the requested operation to the appropriate
UEM database file.
infitran-user-4301 Confidential & Proprietary 112

Universal Event Monitor Event Monitoring and File Triggering
Figure 6.1, below, illustrates the interaction of the various components that make up
Universal Event Monitor.

Figure 6.1 High-Level Interaction of UEM Components
infitran-user-4301 Confidential & Proprietary 113

Universal Event Monitor Event Monitoring and File Triggering
6.2.1 Storing Event Definitions and Event Handlers

Event definitions and event handlers can be stored in separate BerkeleyDB database
files. When an event definition or event handler record is added to its respective
database, a unique identifier must be specified. Whenever UEM is required to monitor an
event or execute an event handler, only this ID needs to be referenced in order for UEM
to obtain the corresponding event definition or event handler parameters.

UEMLoad initiates all UEM-related database requests. UEMLoad is a command line
application that can be used to:

• Add, update, and delete event definition and/or event handlers from their
respective databases

• List the entire contents of the event definition and/or event handler databases
• List the parameters of a single event definition and/or event handler
• Export the contents of the event definition and/or event handler databases to a file

that can be used to re-initialize the database or populate a new database on
another system.

When UEMLoad is started, it sends a request to a Universal Broker running on the local
system to start a UEM Server process. Because a client application (that is, UEMLoad)
initiates the request, the UEM Server that is started is a demand-driven Server.

UEMLoad forwards the database request to the UEM Server, which validates it and
supplies default values for any required parameters (based upon the type of request) that
were not specified from the UEMLoad command line. When a set of complete, valid
parameters is available, the UEM Server sends a request to the Universal Broker, which
is responsible for actually performing the requested database operation.

Universal Broker reports the success or failure of all database maintenance requests
(add, update, delete) to the UEM Server. The UEM Server then passes any errors back to
UEMLoad.

For a database query request (list, export), Universal Broker will return the contents of
each requested event definition or event handler record to the UEM Server, which then is
responsible for forwarding the records to the UEMLoad.
infitran-user-4301 Confidential & Proprietary 114

Universal Event Monitor Event Monitoring and File Triggering
Figure 6.2, below, illustrates the interaction of the Universal Broker and the Universal
Event Monitor Server components involved during the execution of UEMLoad.

Figure 6.2 UEMLoad Utility Overview
infitran-user-4301 Confidential & Proprietary 115

Universal Event Monitor Event Monitoring and File Triggering
6.2.2 Monitoring a Single Event

A single event can be monitored using the UEM Manager. The UEM Manager provides a
command line interface from which all parameters required to define an event and its
associated event handlers can be specified. In addition, the ID of a stored event definition
or event handler can be used as an alternative to specifying all parameters explicitly.

When a UEM Manager is started, it sends a request to the specified local or remote
Universal Broker to start a UEM Server. Because the request to start the UEM Server
comes from a client application (that is, UEM Manager), it is a demand-driven Server that
is started.

The UEM Manager sends the monitoring request to the UEM Server. The UEM Server
validates the request and supplies default values for any required parameters that were
not specified from the command line.

The UEM Manager command line provides for the assignment of an event handler to
execute whenever the UEM Server sets the state of an event occurrence or state of the
event itself. The UEM Server then is responsible for executing the assigned event
handlers which are appropriate for the state change.

The UEM Server will monitor the event until either of the following conditions is satisfied:
• Required number of expected event occurrences has been detected
• Inactive date and time specified for the event definition elapses.

When either of these occurs, the event becomes inactive and the UEM Server stops
monitoring it. The UEM Server then ends after informing the UEM Manager of the result
of the monitoring request. The UEM Manager will set its exit code based on this
information. This is the default behavior.

However, if an option was set in the UEM Manager instructing it to not wait on the UEM
Server, the UEM Manager will end as soon as the UEM Server acknowledges its receipt
of a valid monitoring request.
infitran-user-4301 Confidential & Proprietary 116

Universal Event Monitor Event Monitoring and File Triggering
Figure 6.3, below, illustrates the interaction of the Universal Broker and the Universal
Event Monitor components involved when a UEM Manager is executed.

Figure 6.3 UEM Manager Overview
infitran-user-4301 Confidential & Proprietary 117

Universal Event Monitor Event Monitoring and File Triggering
6.2.3 Monitoring Multiple Events

An event-driven Universal Event Monitor Server can be used to monitor multiple events at
the same time. An event-driven UEM Server uses the records stored in the event
definition database file to identify the events it is responsible for monitoring.

An event-driven UEM Server can be executed automatically during start-up of a Universal
Broker. While it requires no interaction from a UEM client application, however, an
event-driven UEM Server can be started at any time using Universal Control.

Unless it is stopped manually (using Universal Control), the event-driven UEM Server will
continue to run as long as the Broker remains active. When the Broker stops, it will send
a stop request to the UEM Server, instructing it to shut itself down.

When an event-driven UEM Server starts, it sends a request to the Broker asking for all of
the event definitions residing in the event definition database that are assigned to that
event-driven UEM Server. (This assignment was made when the event definition record
was added to the database with UEMLoad.) The Server checks the active and inactive
dates and times of the event definitions that it receives. It then begins monitoring the
active events.

Each event definition provides for the assignment of an event handler to execute when an
event occurrence is triggered or rejected. The assignment of an event handler to execute
when an event expires also is made within the event definition. The UEM Server is
responsible for executing appropriate event handlers based upon the states it sets for
detected event occurrences and/or the event themselves.
infitran-user-4301 Confidential & Proprietary 118

Universal Event Monitor Event Monitoring and File Triggering
Figure 6.4, below, illustrates the interaction of the Universal Broker and an event-driven
UEM Server.

Figure 6.4 UEM Server Overview
infitran-user-4301 Confidential & Proprietary 119

UEMLoad Event Monitoring and File Triggering
6.3 UEMLoad
A Universal Event Monitor (UEM) Server has three database files that it can use during
event processing:

1. ueme.db stores event definitions.
2. uemh.db stores event handlers.
3. uems.db is a spool file that records all activity related to event monitoring.

The UEMLoad utility (uemload) manages the event definition and event handler database
files. (For information on the spool database file, see Chapter 7 Universal Event Monitor
Server in the Universal Event Monitor Reference Guide.)

UEMLoad can be used to:
• Add, update, and delete event definitions and/or event handlers from their respective

database files.
• List the entire contents of the event definition and/or event handler database files.
• List the parameters of a single event definition and/or event handler.
• Export the contents of the event definition and/or event handler database files to a file

that can be used to re-initialize the database or populate a new database on another
system.

By design, UEMLoad itself only can access local event definition and event handler
database files. However, it is possible to store definition load files in a single location (for
example, a PDS on a z/OS system) and centrally manage their distribution to remote
systems using Universal Command.

When a definition load file is redirected from stdin to Universal Command, Universal
Command will in turn forward the redirected stdin to a remote instance of UEMLoad.
UEMLoad then behaves as though it were reading a local definition load file.

For detailed information on the event definition and event handler database files, see
Chapter 13 UEMLoad Utility in the Universal Event Monitor Reference Guide.
infitran-user-4301 Confidential & Proprietary 120

UEMLoad Event Monitoring and File Triggering
6.3.1 Controlling Database Access

Universal Broker is primarily responsible for providing access to the Stonebranch
Solutions databases.

However, there are utilities provided, including Universal Spool List (uslist) and Universal
Spool Remove (uslrm) that can be used for direct access to these databases. While these
utilities should be used only following a recommendation from and with the assistance of
Stonebranch, Inc. Customer Support, they are documented in the Stonebranch Solutions
Utilities Reference Guide.

To protect the database contents, operating system permissions on the database files
themselves should be set so that only accounts with super-user or administrative
privileges have access to them.

For more information on the location, names, and contents of the UEM database files,
see Section 13.2.1 Database Files Location.

Access via UEMLoad Utility
While the contents of UEM databases can be viewed using Universal Spool List, it is
recommended that all access be done using the UEMLoad utility.

The ability to remove event definition and event handler records is provided only with
UEMLoad. Universal Spool Remove cannot be used to delete records from those
databases.

Only UEMLoad can manage event definition and event handler databases that are local
to the system on which the UEMLoad resides. To process a request, the UEMLoad sends
a message to the Universal Broker running on that system, instructing it to start a
demand-driven UEM Server. A control session is established between UEMLoad and the
UEM Server, which provides for direct communication between the two processes. It is
over this session that UEMLoad sends the database request to the UEM Server, so that
supplied values can be validated and defaults can be provided for any values that were
omitted. The UEM Server then forwards the request to the Universal Broker for actual
application of the changes to the appropriate database.

UEMLoad executes in the security context of the user account that started it. Since it is
the Universal Broker that applies changes to the event definition and event handler
databases, any user with the authority to execute UEMLoad will effectively have access
to secure resources. It is therefore strongly recommended that the privileges on
UEMLoad be set such that only those user accounts with super-user or administrative
privileges be allowed to execute it.
infitran-user-4301 Confidential & Proprietary 121

UEMLoad Event Monitoring and File Triggering
Universal Access Control List
Support for controlling access to the event definition and event handler databases also is
provided by UEMLoad.

A type of Universal Access Control List (UACL) is provided in order to grant or deny local
user accounts the authority to execute UEMLoad. The type of database access (that is:
add, update, delete, list, and export) allowed for each authorized user also can be
defined.

A typical set of UACL entries intended to fully secure the event definition and event
handler databases would include an entry for each user authorized to execute UEMLoad.
Then, the types of database access permitted for each of the users would be set in those
entries. Finally, a single UACL entry that denies access to all other accounts would be
defined.

Whenever UEMLoad is executed, the entries in the UACL will be checked. If a match
cannot be found which indicates that the user account that started UEMLoad has the
authority to access the database and perform the requested operation, the application will
terminate with an error.
infitran-user-4301 Confidential & Proprietary 122

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4 Event Monitoring and File Triggering Examples
This section provides examples, specific to the operating systems supported by
Stonebranch Solutions, for the Event Monitoring and File Triggering feature of Infitran.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

Universal Event Monitoring Examples
The examples utilizing Universal Event Monitor assume the following information:
• UEM Server is installed on a remote system named uemhost.
• Security option has been enabled in the UEM Server's configuration.

The values for the -userid and -pwd parameters represent the user ID and password of a
valid user account defined on uemhost.

z/OS

Starting an Event-Driven Server

Refreshing an Event-Driven UEM Server

Executing Command/Script Using a Stored Event Handler Record in z/OS

Handling an Event With a Script in z/OS

Handling an Expired Event in z/OS

Continuation Character - in z/OS Handler Script

Continuation Character + in z/OS Handler Script

Continuation Characters - and + in z/OS Handler Script

Windows

Using a Stored Event Handler Record in Windows

Executing a Script for a Triggered Event Occurrence in Windows

Handling an Expired Event in Windows

Adding a Single Event Record for Windows

Adding a Single Event Handler Record for Windows
infitran-user-4301 Confidential & Proprietary 123

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Listing All Event Definitions for Windows

Exporting the Event Definition and Event Handler Databases for Windows

List a Single Event Handler Record for Windows

Listing Multiple Event Definitions and Event Handlers Using Wildcards for Windows

Add Record(s) Using a Definition File for Windows

Add Record(s) Remotely, Using a Definition File Redirected from STDIN for Windows

Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for
Windows

Definition File Format for Windows

UNIX

Using a Stored Event Handler Record in UNIX

Executing a Script for a Triggered Event Occurrence in UNIX

Handling an Expired Event in UNIX

Adding a Single Event Record for UNIX

Adding a Single Event Handler Record for UNIX

Listing All Event Definitions for UNIX

Exporting the Event Definition and Event Handler Databases for UNIX

List a Single Event Handler Record for UNIX

Listing Multiple Event Definitions and Event Handlers Using Wildcards for UNIX

Add Record(s) Using a Definition File for UNIX

Add Record(s) Remotely, Using a Definition File Redirected from STDIN for Windows

Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for
Windows

Definition File Format for UNIX
infitran-user-4301 Confidential & Proprietary 124

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.1 Starting an Event-Driven Server

There are two ways start a UEM event-driven Server (uems) component:

1. Recycle the ubroker daemon (Universal Broker service under Windows).
2. Use Universal Control to start the uems, either locally on the server or from the

mainframe.

In this example, uems is started from the mainframe.

(This job will fail if uems is running at the time of submit; uems usually is started by the
Universal Broker when it is started.)

Figure 6.5 Starting a UEM Event-Driven Server

Note: There is only one different command (-start) between this example and Refreshing
an Event-Driven UEM Server.

Components

Universal Control

Universal Event Monitor Manager for z/OS

//STUEMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

// JCLLIB ORDER=SBI.UNV.SUNVSAMP

//*

//STEP1 EXEC UCTLPRC

//LOGONDD DD DISP=SHR,DSN=MFC1A.JCL.CNTRL(WINUSER)

//SYSIN DD *

-host 172.16.30.30 -encryptedfile LOGONDD -port 7887 -start uems

/*
infitran-user-4301 Confidential & Proprietary 125

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.2 Refreshing an Event-Driven UEM Server

In this example, RESUEMS will refresh the UEM event-driven Server (uems) to secure
changes made to the configuration file.

Figure 6.6 Refreshing a UEM Event-Driven Server

Note: There is only one different command (-refresh) between this example and Starting
an Event-Driven Server.

Components

Universal Control

Universal Event Monitor Manager for z/OS

//RESUEMS JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

// JCLLIB ORDER=SBI.UNV.SUNVSAMP

//*

//STEP1 EXEC UCTLPRC

//LOGONDD DD DISP=SHR,DSN=MFC1A.JCL.CNTRL(WINUSER)

//SYSIN DD *

-host 172.16.30.30 -encryptedfile LOGONDD -port 7887 -refresh uems

/*
infitran-user-4301 Confidential & Proprietary 126

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.3 Executing Command/Script Using a Stored Event Handler
Record in z/OS

In this example, a demand-driven UEM Server will watch for the creation of a file called
uemtest.dat. Since no path is specified, it will look for this file in the user's UEM Server
working directory, as specified in the component definition for a demand-driven UEM
Server.

If the file completes before the inactive time of 17:38 elapses, the event occurrence will
be set to the triggered state, and UEM will execute the command or script contained in the
event handler h001, which is the ID of a record in the event handler database.

If the file does not complete before the inactive time elapses, the event occurrence will be
set to a rejected state. Since no event handler information is provided for a rejected
occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time of
17:38 elapses, the event will be set to an expired state.

Note: Because the inactive date value was omitted, UEM Manager will default the
inactive date to the current date. Further, because no handler information is given
for the expired state, no further action will be taken by the UEM Server once the
event expires.

Figure 6.7 Using a Stored Event Record in z/OS

Components

Universal Event Monitor Manager for z/OS

Universal Event Monitor Server

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//STEP1 EXEC UEMPRC

//SYSIN DD *

 -event_type file

 -filespec uemtest.dat

 -wait yes

 -inact_date_time ,17:38

 -triggered_id h001

 -host uemhost

 -userid uemuser

 -pwd uemusers_password

 -max_count 1

/*
infitran-user-4301 Confidential & Proprietary 127

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.4 Handling an Event With a Script in z/OS

In this example, a demand-driven UEM Server installed on a Windows machine will watch
for the creation of a file called uemtest.dat. Since no path is specified, it will look for this file
in the user's UEM Server working directory.

A relative inactive date/time is used to instruct the UEM Server to monitor the event for 10
minutes. If the file is detected and completes within that time, the event occurrence will be
set to the triggered state. The script statements contained within the MYSCRIPT DD
statement then will be written to a temporary script file and executed by UEM Server.

The value specified by the -handler_opts option is appended to the command line
constructed by UEM in order to execute the temporary script file. This will cause the
values parm1, parm2, and parm3 to be passed to the script. Further, any output
generated by the script will be written to a file in the UEM Server working directory,
uemtest.log.

If the file is detected, but does not complete before the inactive time elapses, the event
occurrence will be set to a rejected state. Since no event handler information is provided
for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, the event will be set to an expired state. Again, because no handler information is
given for this state, no further action will be taken by the UEM Server.
infitran-user-4301 Confidential & Proprietary 128

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Figure 6.8 Handling an Event with a Script in z/OS

Components
Universal Event Monitor Manager for z/OS

Universal Event Monitor Server for Windows

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//STEP1 EXEC UEMPRC

//MYSCRIPT DD *

@echo off

:: Program variables

set parmCtr=1

:: Loop through parameter list

:: **** Start of loop ****

:BeginLoop

if ""%1""=="""" goto EndLoop

:DisplayParm

echo Parm %parmCtr%: %1

:: Shift the next parm

shift

set /a parmCtr+=1

:: Go back to the top

goto BeginLoop

:: **** End of loop ****

:EndLoop

//SYSIN DD *

 -event_type file

 -filespec uemtest.dat

 -inact_date_time +10

 -handler_opts “parm1 parm2 parm3 >uemtest.log 2>&1”

 -host uemhost

 -userid uemuser

 -pwd uemusers_password

 -triggered -script myscript

/*
infitran-user-4301 Confidential & Proprietary 129

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.5 Handling an Expired Event in z/OS

In this example, a demand-driven UEM Server installed on a UNIX system watches for
the creation of a file called uemtest.dat. The -filespec option contains no path information,
so UEM Server looks for this file in uemuser's home directory.

A relative inactive date / time instructs the demand-driven Server to monitor the event for
one (1) minute. If the UEM Server detects the file, and the file completes within that time,
UEM sets the event occurrence to the triggered state. Since the command options contain
no event handler information for a triggered occurrence, the UEM Server simply renames
the file (by default). UEM Server then makes the event inactive, and ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM
sets the occurrence to the rejected state. Since the command options contain no event
handler information for a rejected occurrence, the UEM Server leaves the file as-is and
takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, it sets the event to the expired state. When this happens, the UEM Server
executes the command specified by the -cmd parameter of the -expired option. In this
example, UEM executes the ls -alR /home command.

Note that the -expired option also contains the -options parameter. In this example, the
-options parameter redirects the output of the ls -alR /home command to a file in uemuser's
home directory, uemtest.log.

Figure 6.9 Handling an Expired Event in z/OS

Components

Universal Event Monitor Manager for z/OS

Universal Event Monitor Server for UNIX

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//STEP1 EXEC UEMPRC

//SYSIN DD *

 -event_type file

 -filespec uemtest.dat

 -inact_date_time +1

 -expired -cmd "ls -alR /home" -options ">uemtest.log 2>&1"

 -host uemhost

 -userid uemuser

 -pwd uemusers_password

/*
infitran-user-4301 Confidential & Proprietary 130

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.6 Continuation Character - in z/OS Handler Script

Continuation characters ("-" and "+") are useful when you want to execute a script line
that is longer than your available z/OS character space.

The "-" continuation character will preserve trailing spaces in your line.

The "+" continuation character will not preserve trailing spaces in your line.

Figure 6.10 Continuation Character "-" in z/OS Handler Script

Components
Universal Event Monitor Manager for z/OS

The following z/OS handler script:

begin_script

 stmt "ls -a - <---- Notice the continuation character "-"

 >dirfile"

 end_script

Will produce the following output when loaded to the uemh.db:

Handler ID...................: MFCTRIGGER_1

Handler Type.................: SCRIPT

Max Acceptable Return Code...: 0

Encrypted User File..........:

User ID......................: mfc1a

Script statements:

 ls -a >dirfile

 Script Type..................: bat

Command Line Options.........:

Last Modified On.............: 06/11/09 10:32:31 AM

Last Modified By.............: mfc1a
infitran-user-4301 Confidential & Proprietary 131

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.7 Continuation Character + in z/OS Handler Script

Continuation characters ("-" and "+") are useful when you want to execute a script line
that is longer than your available z/OS character space.

The "-" continuation character will preserve trailing spaces in your line.

The "+" continuation character will not preserve trailing spaces in your line.

Figure 6.11 Continuation Character "+" in z/OS Handler Script

Components
Universal Event Monitor Manager for z/OS

The following z/OS handler script:

begin_script

 stmt "ls -a >dir + <---- Notice the continuation character "+"

 file"

 end_script

Will produce the following output when loaded to the uemh.db:

Handler ID...................: MFCTRIGGER_1

Handler Type.................: SCRIPT

Max Acceptable Return Code...: 0

Encrypted User File..........:

User ID......................: mfc1a

Script statements:

 ls -a >dirfile

Script Type..................: bat

Command Line Options.........:

Last Modified On.............: 06/11/09 11:46:32 AM

Last Modified By.............: mfc1a
infitran-user-4301 Confidential & Proprietary 132

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.8 Continuation Characters - and + in z/OS Handler Script

Continuation characters ("-" and "+") are useful when you want to execute a script line
that is longer than your available z/OS character space. The "-" character will preserve
trailing spaces in your line. The "+" character will not preserve trailing spaces in your line.

This example shows the use of "+" to concatenate a command line or a word within a
z/OS script without a space as the use of "-" to continue a line of script where a space is
required within the same z/OS handler script.

Figure 6.12 Continuation Characters "-" and "+" in z/OS Handler Script

Components

Universal Event Monitor Manager for z/OS

The following z/OS handler script:
 begin_script

 stmt "ls -a >dir +

 file"

 stmt "uemFName=`basename \u201c$UEMORIGFILE\u201d | sed 's/\(.*\)+

 \.\(.*$\)/\1/'`"

 stmt "fname=$uemFName.$dt.$tm.$pid.txt"

 stmt " ls -al >dir+

 data"

 stmt "ls -a -

 >new+

data"

 end_script

Will produce the following output when loaded to the uemh.db:
Handler ID...................: MFCTRIGGER_1

Handler Type.................: SCRIPT

Max Acceptable Return Code...: 0

Encrypted User File..........:

User ID......................: mfc1a

Script statements:

 ls -a >dirfile

 uemFName=`basename \u201c$UEMORIGFILE\u201d | sed 's/\(.*\)\.\(.*$\)/\1/'`

 fname=$uemFName.$dt.$tm.$pid.txt

 ls -al >dirdata

 ls -a >newdata

Script Type..................: bat

Command Line Options.........:

Last Modified On.............: 06/11/09 01:25:20 PM

Last Modified By.............: mfc1a
infitran-user-4301 Confidential & Proprietary 133

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.9 Using a Stored Event Handler Record in Windows

In this example, a demand-driven UEM Server will watch for the creation of a file called
uemtest.dat in the C:\UEM Files directory.

If the file completes before the inactive time of 20:00 elapses, the event occurrence will
be set to the triggered state, and UEM will execute the command or script contained in the
event handler h001, which is the ID of a record in the event handler database.

If the file does not complete before the inactive time elapses, the event occurrence will be
set to a rejected state. Since no event handler information is provided for a rejected
occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of C:\UEM Files\uemtest.dat before the
inactive time of 20:00 elapses, the event will be set to an expired state.

Note: Because the inactive date value was omitted, UEM Manager will default the
inactive date to the current date. Further, because no handler information is given
for the expired state, no further action will be taken by the UEM Server once the
event expires.

Figure 6.13 Using a Stored Event Handler Record

Components

Universal Event Monitor Manager for Windows

uem -host uemhost -event_type file

-filespec “C:\UEM Files\uemtest.dat”

-inact_date_time ,20:00 -userid uemuser -pwd uemusers_password

-triggered -handler_id h001
infitran-user-4301 Confidential & Proprietary 134

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.10 Executing a Script for a Triggered Event Occurrence in
Windows

In this example, a demand-driven UEM Server installed on a UNIX machine will watch for
the creation of a file called uemtest.dat. Since no path is specified, it will look for this file in
the user's home directory.

A relative inactive date/time is used to instruct the UEM Server to monitor the event for 10
minutes. If the file is detected and completes within that time, the event occurrence will be
set to the triggered state. The script statements contained within the local file
C:\UEMScripts\h_001.txt then will be written to a temporary script file on uemhost and
executed by UEM Server.

The value specified by the -handler_opts option is appended to the command line
constructed by UEM to execute the temporary script file. This will cause the values
parm1, parm2, and parm3 to be passed to the script. Any output generated by the script
will be written to a file in the UEM Server working directory called uemtest.log.

If the file is detected, but does not complete before the inactive time elapses, the event
occurrence will be set to a rejected state. Since no event handler information is provided
for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, the event will be set to an expired state. Again, because no handler information is
given for this state, no further action will be taken by the UEM Server.

Figure 6.14 Handling an Event with a Script

uem -host uemhost -event_type file -filespec uemtest.dat

-inact_date_time +10 -userid uemuser -pwd uemusers_password

-triggered -script C:\UEMScripts\h_001.txt

-handler_opts “parm1 parm2 parm3 >uemtest.log 2>&1”
infitran-user-4301 Confidential & Proprietary 135

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Figure 6.15, below, illustrates the contents of the C:\UEMScripts\h_001.txt file.

Figure 6.15 Contents of Sample Script File

Components

Universal Event Monitor Manager for Windows

Universal Event Monitor Server for UNIX

#!/bin/sh

Sample script h_001.txt

argNum=1

Display each command line argument.

while ["$1" != ""]

do

echo Parm $argNum: $1

shift

argNum=`expr $argNum + 1`

done
infitran-user-4301 Confidential & Proprietary 136

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.11 Handling an Expired Event in Windows

In this example, a demand-driven UEM Server installed on a UNIX system watches for
the creation of a file called uemtest.dat in the /uem files directory.

Note the space that precedes the path name specified in the -filespec option. This is
necessary to accommodate parsing requirements for command options in Windows (see
the FILE_SPECIFICATION option in the Universal Event Monitor Reference Guide).

A relative inactive date / time instructs the demand-driven Server to monitor the event for
one (1) minute. If the UEM Server detects the file, and the file completes within that time,
UEM sets the event occurrence to the triggered state. Since the command options
contain no event handler information for a triggered occurrence, the UEM Server simply
renames the file (by default). UEM Server then makes the event inactive, and ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM
sets the occurrence to the rejected state. Since the command options contain no event
handler information for a rejected occurrence, the UEM Server leaves the file as-is and
takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, it sets the event to the expired state. When this happens, the UEM Server
executes the command specified by the -cmd option following the -expired option. In this
example, UEM executes the 'ls -alR /uem files' command.

Note that the -options option also follows the -expired option. In this example, -options
redirects the output of the 'ls -alR /uem files' command to a file in the uemuser home
directory, uemtest.log.

Figure 6.16 Handling an Expired Event

Components

Universal Event Monitor Manager for Windows

Universal Event Monitor Server for UNIX

uem -host uemhost -event_type file

-userid uemuser -pwd uemusers_password

-filespec “ /uem files/uemtest.dat”

-inact_date_time +1

-expired -cmd "ls -alR '/uem files'" -options ">uemtest.log 2>&1"
infitran-user-4301 Confidential & Proprietary 137

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.12 Adding a Single Event Record for Windows

In this example, a single event record identified as payrollfile is added to the local event
definition database.

This event definition will instruct a UEM Server, which resides on the local (UNIX) system,
to detect all occurrences of the file /tmp/payroll.dly. Whenever UEM detects this file and
sets the associated event occurrence to a triggered state, it executes the command or
script contained in the stored event handler record that has an ID of listdir. If this event
handler record does not exist at the time the event occurrence is triggered, an error will
be issued by UEM.

When the record has been added to the event definition database, it is immediately
available for use by a demand-driven UEM Server. In other words, there is no restriction
with respect to how quickly a UEM Manager can reference the stored event definition
after UEMLoad adds it to the database.

Because no values for the EVENT_STATE, ACTIVE_DATE_TIME, and
INACTIVE_DATE_TIME options were specified, the default value of enable, the current
date and time, and 2038.01.16,23:59, respectively, are used. This means the event will
be monitored as soon as the event definition is assigned to an event-driven UEM Server.
In this case, the event definition is assigned to the UEM Server component with an ID of
uems (the default).

If this UEM Server component is active when the record is added, this assignment will
occur the next time that the UEM Server refreshes its configuration. If the UEM Server
component is not active, the assignment is made the next time it is started.

Figure 6.17 Adding a Single Event Definition Record

Components

UEMLoad Utility for Windows

Universal Event Monitor Server for UNIX

uemload -add -event_id payrollfile -event_type file

-filespec "/tmp/payroll.dly" -triggered_id listdir
infitran-user-4301 Confidential & Proprietary 138

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.13 Adding a Single Event Handler Record for Windows

In this example, a single handler record identified, listdir, is added to the local event
handler database.

Whenever a UEM Server invokes this event handler, a handler process is started that
executes the command ls -al, which lists the contents of the current directory on a UNIX
system. The encrypted.file file, referenced by the -encryptedfile option, is a Universal
Encrypted file. This file contains a user ID and, optionally, a password that is used by an
event-driven UEM Server to establish a security context in which to execute the handler
process (provided the USER_SECURITY option is enabled in the UEM Server's
configuration).

Once this record is added, it is available immediately to both demand-driven and
event-driven UEM Servers.

Note: If a demand-driven UEM Server uses this handler, any user information specified
in encrypted.file is overridden by the user information provided by the UEM
Manager's command options.

Figure 6.18 Adding a Single Event Handler Record

Components

UEMLoad Utility for Windows

Universal Event Monitor Server for UNIX

Universal Encrypt

uemload -add -handler_id listdir -encryptedfile encrypted.file

-cmd "ls -al"
infitran-user-4301 Confidential & Proprietary 139

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.14 Listing All Event Definitions for Windows

In this Windows example, the -list option is used to dump all records in the event definition
database and display them to stdout.

If the request were executed on a UNIX system, the asterisk (*) would need to be
escaped or enclosed within quotes (that is: * or “*” , respectively).

Figure 6.19 Listing All Event Definition Records

Note: The default behavior when listing or exporting records, when neither an event ID
nor a handler ID is specified, is to return all records. However, in this example
above, even though no handler ID was specified, no event handler records are
returned.

Conversely, if just a handler ID had been specified, no event definition records
would be returned. Supplying an event ID and/or handler ID serves as a filter
which causes uemload to return just those records specifically requested.

Components

UEMLoad Utility for Windows

uemload -list -event_id *
infitran-user-4301 Confidential & Proprietary 140

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.15 Exporting the Event Definition and Event Handler
Databases for Windows

In this example, the -export option is used to dump all records in the event definition and
event handler databases to a text file in the current directory named uemout.txt. This file is
a UEMLoad definition file that also can be used to add or update records in the event
definition and/or event handler databases.

The contents of the file resembles the examples shown in Figure 6.27.

Figure 6.20 Exporting All Event and Handler Records

Note: No event ID or handler ID is specified from the command line. If neither parameter
is specified when listing or exporting records, the default behavior is to retrieve all
database records.

Components

UEMLoad Utility for Windows

uemload -export -deffile uemout.txt
infitran-user-4301 Confidential & Proprietary 141

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.16 List a Single Event Handler Record for Windows

In this example, the -list option is used to display the contents of an event handler record
with an ID of dirlist.

Figure 6.21 List a Single Event Handler Record

Figure 6.22, below, illustrates sample output for this command. (The values shown are
those that could be expected if the record were added using the command shown in
Figure 6.17.)

In this specific instance, the user ID contained in encrypted.file (from Figure 6.17) is
sparkie, and the record was added by the user account with an ID of sbuser.

Figure 6.22 Sample List Output

Components

UEMLoad Utility for Windows

uemload -list -handler_id dirlist

UNV3659I Connecting to local broker on port 7887.

UNV3406I Universal Event Monitor Server component 1117035117 started.

UNV3666I Load request started at 11:32:45 AM 05/25/2005.

Event Handler(s):

=================

Handler ID.................: dirlist

Max Acceptable Return Code.: 0

User ID....................: sparkie

Command....................: ls -al

Last Modified On...........: 05/25/2005 11:32:06 AM

Last Modified By...........: sbuser

UNV3667I Universal Event Monitor Load is ending successfully with exit code 0.
infitran-user-4301 Confidential & Proprietary 142

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.17 Listing Multiple Event Definitions and Event Handlers
Using Wildcards for Windows

In this example, the wildcards supported by uemload are demonstrated.

Wildcards can be used to select event definitions and event handlers whose respective
IDs match the specified pattern.
• Asterisk (*) can be used to match 0 or more characters.
• Question mark (?) can be used to match any single character.

All event definitions whose IDs start with the characters event are returned by the
command below. In addition, all event handlers whose IDs begin with handler0 and end
with any two characters are selected.

Figure 6.23 Using Wildcards to List Records

Components

UEMLoad Utility for Windows

uemload -list -event_id event* -handler_id handler0??
infitran-user-4301 Confidential & Proprietary 143

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.18 Add Record(s) Using a Definition File for Windows

In this example, a text file named uemadd.txt is used to add one or more records to the
UEM databases. The contents of the file resemble those shown in Figure 6.27.

A definition file allows multiple records to be added to the event definition and/or event
handler databases at the same time. When no definition file is used, only a single record
can be added to the database(s).

Figure 6.24 Add Database Record(s) Using a Definition File

Components

UEMLoad Utility for Windows

uemload -add -deffile uemadd.txt
infitran-user-4301 Confidential & Proprietary 144

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.19 Add Record(s) Remotely, Using a Definition File
Redirected from STDIN for Windows

In this example, a definition load file named uemadd.txt is used to add one or more records
to the databases of a remote UEM Server. The contents of the file resemble those shown
in Figure 6.27.

Universal Command is used to execute UEMLoad on the remote UEM Server’s system.
The definition load file is redirected from standard input (stdin), which eliminates the step
of copying the load file to the remote system before executing UEMLoad.

Figure 6.25 Redirect Definition File from stdin

Components

UEMLoad Utility for Windows

Universal Command Manager for Windows

Universal Event Monitor Server

ucmd –cmd “uemload –add” –host rmthost –encryptedfile rmtacctinfo.enc
<uemadd.txt
infitran-user-4301 Confidential & Proprietary 145

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.20 Add Record(s) Remotely, Using a Definition File
Redirected from STDIN (for z/OS) for Windows

In this example, a definition load file named MY.UEM.DATA(UEMDEF) is used to add one
or more records to the databases of a remote UEM Server.

(The contents of the file resemble those shown in Figure 6.27.)

Universal Command is used to execute UEMLoad on the remote UEM Server’s system. It
redirects standard input (STDIN) from a data set allocated to the UNVIN ddname. This
eliminates the step of copying the data set to the remote system before executing
UEMLoad.

Figure 6.26 Redirect Definition File from STDIN (for z/OS)

Components

UEMLoad Utility for Windows

Universal Command Manager for z/OS

Universal Event Monitor Server

//STEP1 EXEC UCMDPRC

//UNVIN DD DISP=SHR,DSN=MY.UEM.DATA(UEMDEF)

//SYSIN DD *

 -host dallas

 -userid joe

 -pwd ahzidaeh

 -cmd "uemload -add"
infitran-user-4301 Confidential & Proprietary 146

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.21 Definition File Format for Windows

The format of the definition load file for events and event handlers follows the keyword /
value-pair convention used for Stonebranch Solutions configuration files. However,
because more than one definition can be specified in a load file, some additional
conventions are used.

The begin_event and end_event keywords are used to mark the beginning and end,
respectively, of each event definition entry.

The begin_handler and end_handler keywords are used to mark the beginning and end,
respectively, of each event handler entry.

The begin_script and end_script keywords are used to mark the beginning and end,
respectively, of any user script contained in the definition load file.

Lines that belong to the script must begin with the stmt keyword. Long stmt values that
have to be split across lines can be done so using the + and – line continuation
characters (as described in Configuration File Syntax). These lines will be accepted
verbatim, and no script syntax validation will be done. Lines will continue to be added to
the script until an end_script, end_handler, begin_handler, or begin_event keyword is read, or
the end of the file is reached.

If a parameter's value contains spaces, it must be enclosed in double (") quotation
marks.

If quotes are to be saved as part of the parameter's value, use extra double (") quotation
marks to escape the quotes (for example, optname “optval1 “ “optval2 optval2a” ”
optval3”).

The script keyword can be used in lieu of a begin_script/end_script block, in which case the
contents of the specified file will be written to the event handler.

A sample definition file for Windows is shown in Figure 6.27.

Figure 6.27 Definition File Sample - Windows

Indented lines are for illustration only. Leading spaces are

ignored by UEMLoad. Defaults will be used for any omitted

values.

Start of parameters for an event definition with an ID of

“win_event_sample”.

begin_event

event_id win_event_sample

event_type FILE

comp_name uems
infitran-user-4301 Confidential & Proprietary 147

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Components
UEMLoad Utility for Windows

state enable

inact_date_time 2004.12.31,23:59

triggered_id script_sample

filespec "uem*.dat"

rename_file yes

rename_filespec "$(compname).$(compid).$(date).$(seqno)"

end_event

End of parameters for event definition “win_event_sample”.

Start of parameters for an event handler with an ID of

“win_script_sample”.

begin_handler

handler_id script_sample

handler_type SCRIPT

maxrc 0

userid uemuser

begin_script

stmt "@echo off"

stmt ""

stmt "dir /-p/o/s ""C:\Program Files"""

end_script

script_type bat

end_handler

End of parameters for event handler “win_script_sample”.

Start of parameters for an event definition with an ID of

“win_cmd_sample”.

begin_handler

handler_id cmd_sample

maxrc 0

userid uemuser

cmd "C:\Documents and Settings\uemuser\TEST.BAT"

end_handler

End of parameters for event definition “win_cmd_sample”.
infitran-user-4301 Confidential & Proprietary 148

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.22 Using a Stored Event Handler Record in UNIX

In this example, a UEM Server (installed on a Windows system) will watch for the creation
of a file called uemtest.dat in the C:\UEM Files directory.

If the file completes before the inactive time of 08:00 elapses, the event occurrence will
be set to the triggered state. UEM then will execute the command or script contained in the
event handler h001, which is the ID of a record in the event handler database.

If the file does not complete before the inactive time elapses, the event occurrence will be
set to a rejected state. Since no event handler information is provided for a rejected
occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of C:\UEM Files\uemtest.dat before the
inactive time of 08:00 elapses, the event will be set to an expired state.

Note: Because the inactive date value was omitted, UEM Manager will default the
inactive date to the current date. Again, because no handler information is given
for the expired state, no further action will be taken by the UEM Server once the
event expires.

Figure 6.28 Using a Stored Event Handler Record

Components

Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for Windows

uem -host uemhost -event_type file

-filespec “C:\UEM Files\uemtest.dat”

-inact_date_time ,08:00 -userid uemuser -pwd uemusers_password

-triggered -handler_id h001
infitran-user-4301 Confidential & Proprietary 149

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.23 Executing a Script for a Triggered Event Occurrence in
UNIX

In this example, a UEM Server installed on a Windows machine will watch for the creation
of a file called uemtest.dat. Since no path is specified, it will look for this file in the user's
UEM Server working directory.

A relative inactive date/time is used to instruct the UEM Server to monitor the event for 10
minutes. If the file is detected and completes within that time, the event occurrence will be
set to the triggered state. The script statements contained within the local file
/UEMScripts/h_001.txt then will be written to a temporary script file on uemhost and
executed by the UEM Server. The value specified by the -handler_opts option is appended
to the command line constructed by UEM to execute the temporary script file. This will
cause the values parm1, parm2, and parm3 to be passed to the script. Any output
generated by the script will be written to a file in the UEM Server working directory called
uemtest.log.

If the file is detected, but does not complete before the inactive time elapses, the event
occurrence will be set to a rejected state. Since no event handler information is provided
for a rejected occurrence, no further action will be taken by the UEM Server.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, the event will be set to an expired state. Again, because no handler information is
given for this state, no further action will be taken by the UEM Server.

Figure 6.29 Handling an Event with a Script

uem -host uemhost -event_type file -filespec uemtest.dat

-inact_date_time +10 -userid uemuser -pwd uemusers_password

-triggered -script /UEMScripts/h_001.txt

-handler_opts “parm1 parm2 parm3 >uemtest.log 2>&1”
infitran-user-4301 Confidential & Proprietary 150

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Figure 6.30, below, illustrates the contents of the /UEMScripts/h_001.txt file.

Figure 6.30 Contents of Sample Script File

Components

Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for Windows

:: Sample script h_001.txt

@echo off

:: Program variables

set parmCtr=1

:: Loop through parameter list

:: **** Start of loop ****

:BeginLoop

if ""%1""=="""" goto EndLoop

:DisplayParm

echo Parm %parmCtr%: %1

:: Shift the next parm

shift

set /a parmCtr+=1

:: Go back to the top

goto BeginLoop

:: **** End of loop ****

:EndLoop
infitran-user-4301 Confidential & Proprietary 151

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.24 Handling an Expired Event in UNIX

In this example, a demand-driven UEM Server (installed on a different UNIX system)
watches for the creation of a file called uemtest.dat. The -filespec option contains no path
information, so UEM Server looks for this file in uemuser's home directory.

A relative inactive date/time instructs the demand-driven Server to monitor the event for
one (1) minute. If the UEM Server detects the file, and the file completes within that time,
UEM sets the event occurrence to the triggered state. Since the command options
contain no event handler information for a triggered occurrence, the UEM Server simply
renames the file (by default). UEM Server then makes the event inactive, and ends.

If the UEM Server detects the file, but the file does not complete within 60 seconds, UEM
sets the occurrence to the rejected state. Since the command options contain no event
handler information for a rejected occurrence, the UEM Server leaves the file as-is and
takes no further action.

If the UEM Server does not detect the presence of uemtest.dat before the inactive time
elapses, it sets the event to the expired state. When this happens, the UEM Server
executes the command specified by the -cmd parameter of the -expired option. In this
example, UEM executes the 'ls -alR /uem files' command.

Note that the -expired option also contains the -options parameter. In this example, the
-options parameter redirects the output of the 'ls -alR /uem files' command to a file in
uemuser's home directory called uemtest.log.

Figure 6.31 Handling an Expired Event

Components
Universal Event Monitor Manager for UNIX

Universal Event Monitor Server for UNIX

uem -host uemhost -event_type file -filespec uemtest.dat

-userid uemuser -pwd uemusers_password

-inact_date_time +1

-expired -cmd 'ls -alR “/uem files”' -options '>uemtest.log 2>&1'
infitran-user-4301 Confidential & Proprietary 152

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.25 Adding a Single Event Record for UNIX

In this example, a single event record identified as payrollfile is added to the local event
definition database.

This event definition will instruct a UEM Server, which resides on the local (UNIX) system,
to detect all occurrences of the file /tmp/payroll.dly. Whenever UEM detects this file and
sets the associated event occurrence to a triggered state, UEM will execute the command
or script contained in the stored event handler record that has an ID of listdir. If this event
handler record does not exist at the time the event occurrence is triggered, an error will
be issued by UEM.

When the record has been added to the event definition database, it is immediately
available for use by a demand-driven UEM Server. In other words, there is no restriction
with respect to how quickly a UEM Manager can reference the stored event definition
after UEMLoad adds it to the database.

Because no values for the EVENT_STATE, ACTIVE_DATE_TIME, and
INACTIVE_DATE_TIME options were specified, the default values of enable, the current
date and time, and 2038.01.16,23:59, respectively, are used. This means the event will
be monitored as soon as the event definition is assigned to an event-driven UEM Server.
In this case, the event definition is assigned to the UEM Server component with an ID of
uems (the default).

If this UEM Server component is active when the record is added, this assignment will
occur the next time that the UEM Server refreshes its configuration. If the UEM Server
component is not active, the assignment is made the next time it is started.

Figure 6.32 Adding a Single Event Definition Record

Components

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

uemload -add -event_id payrollfile -event_type file

-filespec "/tmp/payroll.dly" -triggered_id listdir
infitran-user-4301 Confidential & Proprietary 153

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.26 Adding a Single Event Handler Record for UNIX

In this example, a single handler record identified, listdir, is added to the local event
handler database.

Whenever a UEM Server invokes this event handler, a handler process is started that
executes the command ls -al, which lists the contents of the current directory on a UNIX
system. The encrypted.file file, referenced by the -encryptedfile option, is a Universal
Encrypted file. This file contains a user ID and, optionally, a password that is used by an
event-driven UEM Server to establish a security context in which to execute the handler
process (provided the USER_SECURITY option is enabled in the UEM Server
configuration).

Once this record is added, it is available immediately to both demand-driven and
event-driven UEM Servers.

Note: If a demand-driven UEM Server uses this handler, any user information specified
in encrypted.file is overridden by the user information provided by the UEM
Manager's command options.

Figure 6.33 Adding a Single Event Handler Record

Components

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

Universal Encrypt

uemload -add -handler_id listdir -encryptedfile encrypted.file

-cmd "ls -al"
infitran-user-4301 Confidential & Proprietary 154

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.27 Listing All Event Definitions for UNIX

In this example, the -list option is used to dump all records in the event definition database
and display them to stdout.

The asterisk (*) must be escaped or enclosed within quotes (that is: * or “*” ,
respectively).

Figure 6.34 Listing All Event Definition Records

Note: The default behavior when listing or exporting records, when neither an event ID
nor a handler ID is specified, is to return all records. However, in this example
above, even though no handler ID was specified, no event handler records are
returned.

Conversely, if just a handler ID had been specified, no event definition records
would be returned. Supplying an event ID and/or handler ID serves as a filter
which causes uemload to return just those records specifically requested.

Components

UEMLoad Utility for UNIX

uemload -list -event_id *
infitran-user-4301 Confidential & Proprietary 155

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.28 Exporting the Event Definition and Event Handler
Databases for UNIX

In this example, the -export option is used to dump all records in the event definition and
event handler databases to a text file in the current directory named uemout.txt. This file is
a UEMLoad definition file that also can be used to add or update records in the event
definition and/or event handler databases.

The contents of the file resembles the examples shown in Figure 6.27.

Figure 6.35 Exporting all Event and Handler Records

Note: No event ID or handler ID is specified from the command line. If neither parameter
is specified when listing or exporting records, the default behavior is to retrieve all
database records.

Components

UEMLoad Utility for UNIX

uemload -export -deffile uemout.txt
infitran-user-4301 Confidential & Proprietary 156

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.29 List a Single Event Handler Record for UNIX

In this example, the -list option is used to display the contents of an event handler record
with an ID of dirlist.

Figure 6.36 List a Single Event Handler Record

Figure 6.37, below, illustrates sample output for this command. (The values shown are
those that could be expected if the record were added using the command shown in
Figure 6.18.)

In this specific instance, the user ID contained in encrypted.file (from Figure 6.18) is
sparkie, and the record was added by the user account with an ID of sbuser.

Figure 6.37 Sample List Output

Components
UEMLoad Utility for UNIX

uemload -list -handler_id dirlist

UNV3659I Connecting to local broker on port 7887.

UNV3406I Universal Event Monitor Server component 1117035117 started.

UNV3666I Load request started at 11:32:45 AM 05/25/2005.

Event Handler(s):

=================

Handler ID.................: dirlist

Max Acceptable Return Code.: 0

User ID....................: sparkie

Command....................: ls -al

Last Modified On...........: 05/25/2005 11:32:06 AM

Last Modified By...........: sbuser

UNV3667I Universal Event Monitor Load is ending successfully with exit code 0.
infitran-user-4301 Confidential & Proprietary 157

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.30 Listing Multiple Event Definitions and Event Handlers
Using Wildcards for UNIX

In this example, the wildcards supported by uemload are demonstrated.

Wildcards can be used to select event definitions and event handlers whose respective
IDs match the specified pattern.
• Asterisk (*) can be used to match 0 or more characters.
• Question mark (?) can be used to match any single character.

All event definitions whose IDs start with the characters event are returned by the
command below. In addition, all event handlers whose IDs begin with handler0 and end
with any two characters are selected.

Figure 6.38 Using Wildcards to List Records

Components

UEMLoad Utility for UNIX

uemload -list -event_id event* -handler_id handler0??
infitran-user-4301 Confidential & Proprietary 158

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.31 Add Record(s) Using a Definition File for UNIX

In this example, a text file named uemadd.txt is used to add one or more records to the
UEM databases. The contents of the file resemble those shown in Figure 6.27.

A definition file allows multiple records to be added to the event definition and/or event
handler databases at the same time. When no definition file is used, only a single record
can be added to the database(s).

Figure 6.39 Add Database Record(s) Using a Definition File

Components

UEMLoad Utility for UNIX

uemload -add -deffile uemadd.txt
infitran-user-4301 Confidential & Proprietary 159

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.32 Add Record(s) Remotely, Using a Definition File
Redirected from STDIN for UNIX

In this example, a definition load file named uemadd.txt is used to add one or more records
to the databases of a remote UEM Server. The contents of the file resemble those shown
in Figure 6.27.

Universal Command is used to execute UEMLoad on the remote UEM Server’s system.
The definition load file is redirected from standard input (stdin), which eliminates the step
of copying the load file to the remote system before executing UEMLoad.

Figure 6.40 Redirect Definition File from stdin

Components

Universal Command Manager for UNIX

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

ucmd –cmd “uemload –add” –host rmthost –encryptedfile rmtacctinfo.enc
<uemadd.txt
infitran-user-4301 Confidential & Proprietary 160

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.33 Add Record(s) Remotely, Using a Definition File
Redirected from STDIN (for z/OS) for UNIX

In this example, a definition load file named MY.UEM.DATA(UEMDEF) is used to add one
or more records to the databases of a remote UEM Server. The contents of the file
resemble those shown in Figure 6.27.

Universal Command is used to execute UEMLoad on the remote UEM Server’s system. It
redirects standard input (stdin) from a data set allocated to the UNVIN ddname. This
eliminates the step of copying the data set to the remote system before executing
UEMLoad.

Figure 6.41 Redirect Definition File from STDIN (for z/OS)

Components

Universal Command Manager for z/OS

UEMLoad Utility for UNIX

Universal Event Monitor Server for UNIX

//STEP1 EXEC UCMDPRC

//UNVIN DD DISP=SHR,DSN=MY.UEM.DATA(UEMDEF)

//SYSIN DD *

 -host dallas

 -userid joe

 -pwd ahzidaeh

 -cmd "/opt/universal/bin/uemload -add"

/*
infitran-user-4301 Confidential & Proprietary 161

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
6.4.34 Definition File Format for UNIX

The format of the definition load file for events and event handlers follows the keyword /
value-pair convention used for Stonebranch Solutions configuration files. However,
because more than one definition can be specified in a load file, some additional
conventions are used.

The begin_event and end_event keywords are used to mark the beginning and end,
respectively, of each event definition entry.

The begin_handler and end_handler keywords are used to mark the beginning and end,
respectively, of each event handler entry.

The begin_script and end_script keywords are used to mark the beginning and end,
respectively, of any user script contained in the definition load file.

Lines that belong to the script must begin with the stmt keyword. Long stmt values that
have to be split across lines can be done so using the + and – line continuation
characters (as described in Configuration File Syntax). These lines will be accepted
verbatim, and no script syntax validation will be done. Lines will continue to be added to
the script until an end_script, end_handler, begin_handler, or begin_event keyword is read, or
the end of the file is reached.

If a parameter's value contains spaces, it must be enclosed in single (’) or double (")
quotation marks.

If quotes are to be saved as part of the parameter's value, enclose the value in single (’)
quotation marks quotes, and use a set of double (") quotation marks to enclose the
quoted value (for example, optname 'optval1 “optval2 optval2a” optval3').

The script keyword can be used in lieu of a begin_script/end_script block, in which case the
contents of the specified file will be written to the event handler.

A sample definition file for Windows is shown in Figure 6.27.

Figure 6.42 Definition File Sample - UNIX

Indented lines are for illustration only. Leading spaces are

ignored by UEMLoad. Defaults will be used for any omitted

values.

Start of parameters for an event definition with an ID of

“unix_event_sample”.

begin_event

event_id unix_event_sample

event_type FILE

comp_name uems
infitran-user-4301 Confidential & Proprietary 162

Event Monitoring and File Triggering Examples Event Monitoring and File Triggering
Components

UEMLoad Utility for UNIX

state enable

inact_date_time 2004.12.31,23:59

triggered_id unix_script_sample

filespec 'uem*.dat'

rename_file yes

rename_filespec '$(compname).$(compid).$(date).$(seqno)'

end_event

End of parameters for event definition “unix_event_sample”.

Start of parameters for an event handler with an ID of

“unix_script_sample”.

begin_handler

handler_id unix_script_sample

handler_type SCRIPT

maxrc 0

userid uemuser

begin_script

stmt "#!/bin/sh”

stmt ""

stmt 'ls -al “/home/uem user”'

end_script

script_type bat

end_handler

End of parameters for event handler “unix_script_sample”.

Start of parameters for an event definition with an ID of

“unix_cmd_sample”.

begin_handler

handler_id unix_cmd_sample

maxrc 0

userid uemuser

cmd '/home/uem user/someapp'

end_handler

End of parameters for event definition “unix_cmd_sample”.
infitran-user-4301 Confidential & Proprietary 163

CHAPTER 7
Security
7.1 Overview
This chapter provides information on the Security feature of Infitran:
• Security of Infitran Components
• Encryption
• Encryption Examples
• Universal Access Control List
• Universal Access Control List Examples
• X.509 Certificates
infitran-user-4301 Confidential & Proprietary 164

Security of Infitran Components Security
7.2 Security of Infitran Components
Each component of Infitran is designed to be a secure system.

As the level of security rises, so does the administrative complexity of the system. Infitran
balances the two, minimizing administrative complexity without sacrificing security.

This section identifies the security features inherent in the design for each component.
• Universal Broker
• Universal Data Mover Manager Security
• Universal Data Mover Server
• Universal Event Monitor Manager
• Universal Event Monitor Server
• Universal Control Manager
• Universal Control Server
• Universal Event Log Dump
• Universal Spool List
• Universal Spool Remove
infitran-user-4301 Confidential & Proprietary 165

Security of Infitran Components Security
7.2.1 Universal Broker

Universal Broker is designed to be a secure system. As the level of security rises, so
does the administrative complexity of the system. Universal Broker has balanced the two
to avoid the administrative complexity with a minimum sacrifice to security.

Universal Broker security concerns are:

1. Access to Universal Broker files and directories
2. Access to Universal Broker configuration options
3. Account with which Universal Broker executes
4. Privacy and integrity of transmitted network data

File Permissions
At a minimum, only trusted user accounts should have write access to the Universal
Broker installation data sets. This most likely means only the administrators should have
write access. For maximum security, only trusted accounts should have read access to
these data sets.

Universal Broker requires update access to its database files, which exist as HFS- or zFS-allocated datasets
mounted on the z/OS Unix System Services (z/OS USS) file system. The Broker accesses HFS-allocated
datasets using the UNVDB and UNVSPOOL ddnames in its STC JCL. The Broker accesses zFS-allocated
datasets via its UNIX_DB_DATA_SET and UNIX_SPOOL_DATA_SET configuration options.

Universal Broker requires write access to its primary install directory (that is, .\Universal\UBroker), which
serves as its default trace file location.
The Broker requires full control over the database directory (that is, .\Universal\spool), along with all
subdirectories and files under that location.
When the Broker executes as a console application with its message destination set to logfile, the Broker
requires full control over the .\Universal\Broker\log directory and all .log files within it. The Universal Broker
Windows service always writes its message to the Windows event log, which means that it requires no write
access to a log directory or any other of its installation subdirectories and files.

All files that the Broker creates or updates are located in the /var/opt/universal directory. This means that the
Broker does not need write access to its installation directory or subdirectories.
Universal Broker requires full control (read, write, remove, and add) of the /var/opt/universal directory and its
subdirectories. The Broker creates spool files, trace files, and log files in this directory. Only the account used
to execute the Broker requires full access to this directory.
The Broker configuration options can be changed to use directories other then /var/opt/universal. If this is the
case, the same permissions must be set up for these specified directories.

z/OS

Windows

UNIX
infitran-user-4301 Confidential & Proprietary 166

Security of Infitran Components Security
At a minimum, limit non-trusted user accounts to object authority of use to the Universal Broker product
library, UNVPRD430; the product temporary library, UNVTMP430; the command reference library,
UNVCMDREF; the universal spool library, UNVSPL430; and all objects within these libraries.
For maximum security, only trusted accounts (administrators and the UNVUBR430 profile) should have
management, existence, alter, add, update, or delete authority to these objects. As a reminder, the system
value QCRTAUT controls public access authority to created objects unless overridden by specific commands.

Configuration Files
Only trusted user accounts should have write, create or delete access to the Broker
configuration files or any of the directories in the configuration file directory search list.

Although you can edit Stonebranch Solutions configuration files with any text editor (for example, Notepad),
we recommend using the Universal Configuration Manager Control Panel application set configuration
options.
The Universal Configuration Manager provides a graphical interface and context-sensitive help, and helps
protect the integrity of the configuration file by validating all changes to configuration option values (see
Section 8.4 Universal Configuration Manager). It also directs the Broker to refresh its cache of Infitran
component configuration settings, making it unnecessary to issue a separate configuration REFRESH
request via the Universal Control utility.

Universal Access Control List
Universal Broker uses the Universal Access Control List (UACL) as an extra layer of
security. The UACL contains entries (that is, rules) that permit or deny access to the
Universal Broker (see Section 7.5 Universal Access Control List for details).

Universal Broker reads the UACL entries when the program is started. If the UACL file is
changed, the new entries can be activated either by:
• Stopping and starting Universal Broker.
• Sending Universal Broker a Universal Control configuration refresh request, which

instructs Universal Broker to reread all of its configuration files, including the UACL file
(see Section 8.5 Configuration Refresh).

Although you may edit the UACL file with any text editor (for example, Notepad), we recommend that you
maintain UACL entries using the Universal Configuration Manager Control Panel application (see Section 8.4
Universal Configuration Manager). The Universal Configuration Manager sends a configuration refresh
request to the Universal Broker. Updated values take effect immediately, making it unnecessary to recycle the
Broker to apply UACL changes.
Via this method, a configuration refresh request is sent to Universal Broker, and any new entries take effect
immediately. There is no need to stop and restart the Broker in order for the changes to be applied.

IBM i

Windows

Windows
infitran-user-4301 Confidential & Proprietary 167

Security of Infitran Components Security
Universal Broker User Account
Each Infitran component that Universal Broker spawns inherits the Broker's account
credentials. Occasionally, Infitran components must perform privileged operations, such
as establishing a file transfer environment using a local user account's credentials.

On some platforms, this means that the Broker must execute with an account whose
inherited credentials allow the spawned components to perform these operations.

On other platforms, the Broker may be execute with a lesser-privileged user, provided the
components are configured in way that permits them to elevate their privileges when
necessary.

The section contains platform-specific requirements to consider when setting the Broker's
user account.

The Universal Broker started task may execute with any OMVS user ID provided that account has read
access to the BPX.DAEMON, BPX.SUPERUSER, and BPX.JOBNAME resources in the FACILITY class.
The Broker user account is typically configured at install time. Complete details for configuring the Broker
user account are in the Stonebranch Solutions Installation Guide.

The Universal Broker Windows service can be configured to execute with the Local System account
or with a specially-configured Administrative account (see Windows Service in Section 9.5.2 Starting
Universal Broker for Windows).

Although Universal Broker itself does not require super-user privileges, some Infitran server components (for
example, UDM Server and UEM Server) may require super user authority to switch execution context to
another user account, initialize group membership, or perform other privileged operations.
Since the component inherits its user ID from Universal Broker, one of the following is required:
• Universal Broker must execute as root.
• root must own the Infitran Server application file (for example, udmsrv or uemsrv), and the Infitran Server

application file must have its "set user ID on execution" bit (setuid on exec) set (for example, chmod u+s
udmsrv).

If Universal Broker is started as a daemon at system start-up time, it is started with a user ID of root. Universal
Broker and all its components then will have sufficient authority.
Note: Infitran server components typically only invoke the privileged operations mentioned above when

that component is configured to run with security enabled (that is, its security configuration option is
set to a value other than none). When security is disabled in an Infitran server component's
configuration, that component may not attempt to invoke any privileged operations, but relies
completely upon the security context it inherits from the Broker.

z/OS

Windows

UNIX
infitran-user-4301 Confidential & Proprietary 168

Security of Infitran Components Security
Universal Broker for IBM i runs with the UNVUBR430 user profile, which is created at product installation
time. Any component started by Universal Broker inherits this user profile.
By default, the UNVUBR430 user profile has *ALLOBJ, *JOBCTL, and *SPLCTL authority. Unless the user
profile is modified as described in the following section, *ALLOBJ authority is required for a component to
switch its user profiles based on the request it is servicing. *JOBCTL authority is required for internal control
and should not be removed. The UNVUBR430 user profile requires *SPLCTL authority to provide Universal
Submit Job job logs in specific, limited situations. (See the Stonebranch Solutions Utilities Reference Guide
for information on Universal Submit Job.)
Any other product or user should not use the UNVUBR430 user profile. By default, users cannot access the
system with the UNVUBR430 profile.

Removing *ALLOBJ Authority from UNVUBR430 User Profile
Given the extensive authority allowed by *ALLOBJ special authority, it is desirable to avoid its use when
possible. As of PTF 0UC0126 for V1R2M1, it is possible to remove *ALLOBJ special authority from the
UNVUBR430 user profile. However, by removing *ALLOBJ from the UNVUBR430 user profile, the
administrative complexity is increased.
The following describes the steps that are required to use Universal Command with *ALLOBJ special
authority removed from the UNVUBR430 user profile.

1. If the following objects do not have *USE Public Authority, the UNVUBR430 user profile must be given
*USE authority:
• QSYS/QSYGETPH
• QSYS/QWTSETP
• QSYS/QWCRJBST
• QSYS/QUSRMBRD

This can be accomplished with the following command:
 ===> EDTOBJAUT OBJ(QSYS/object_name) OBJTYPE(*PGM)

From the resulting screen, use F6 to add user UBROKER and give it *USE authority.

2. UNVUBR430 user profile must be given *USE authority to the user profile objects of all user profiles that
will be using the universal command server on the IBM i.

This can be accomplished with the following command:
 ===> EDTOBJAUT OBJ(QSYS/user_profile_name) OBJTYPE(*USRPRF)

From the resulting screen, use F6 to add user UBROKER and give it *USE authority.

3. Use the following command to remove the UNVUBR430 user profile *ALLOBJ authority:
 ===> CHGUSRPRF USRPRF(UNVUBR430) SPCAUT(*JOBCTL *SPLCTL)

Removing *SPLCTL Authority from UNVUBR430 User Profile
Use the following command to remove the UNVUBR430 user profile *SPLCTL authority:

 ===> CHGUSRPRF USRPRF(UNVUBR430) SPCAUT(*JOBCTL *ALLOBJ)

Removing *ALLOBJ and *SPLCTL Authorities from UNVUBR430 User Profile
Use the following command to remove all special authority from the UNVUBR430 user profile:

 ===> CHGUSRPRF USRPRF(UNVUBR430) SPCAUT(*JOBCTL)
(Please refer to the previous two sections for additional information.)

IBM i
infitran-user-4301 Confidential & Proprietary 169

Security of Infitran Components Security
7.2.2 Universal Data Mover Manager Security

Universal Data Mover is designed to be a secure system. As the level of security rises, so
does the administrative complexity of the system. Universal Data Mover has balanced the
two to avoid the administrative complexity with a minimum sacrifice to security.

Universal Data Mover security concerns are:

1. Access to Universal Data Mover files and directories
2. Access to Universal Data Mover configuration files
3. Universal Data Mover user account
4. Privacy and integrity of transmitted network data
5. User authentication

File Permissions
Only trusted user accounts should have permission to write to the Universal Data Mover
installation directory and subdirectories, and all files within those directories.

Data set permissions:
Only trusted user accounts should have write access to the Universal Data Mover installation files. Eligible
users of Universal Data Mover require read access to the national language support library SUNVNLS, the
configuration file UNVCONF, and the load library SUNVLOAD.

Object Permissions:
Only administrator accounts should have write permission to the following Stonebranch Solutions libraries
(and all objects within these libraries):
• Installation library, UNVPRD430 (by default)
• Product temporary library, UNVTMP430
• Universal spool library, UNVSPL430
For maximum security, only trusted accounts (administrators and the UNVUBR430 profile) should have
management, existence, alter, add, update, and delete authority to these objects.
Note: System value QCRTAUT controls public access authority to created objects unless overridden by

specific commands.

Configuration Files
Only trusted user accounts should have write access to the Universal Data Mover
Manager configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

z/OS

IBM i

Windows
infitran-user-4301 Confidential & Proprietary 170

Security of Infitran Components Security
7.2.3 Universal Data Mover Server

Universal Data Mover Server is designed to be a secure system. As the level of security
rises, so does the administrative complexity of the system. Universal Data Mover Server
has balanced the two to avoid the administrative complexity with a minimum sacrifice to
security.

Universal Data Mover Server security concerns are:

1. Access to product data sets
2. Access to Stonebranch Solutions configuration files
3. Universal Broker user account
4. Privacy and integrity of transmitted network data
5. User authentication

File Permissions
Only trusted user accounts should have write permission to the Universal Data Mover
Server installation directory and subdirectories, and all of the files within them.

Only trusted user accounts should have write permission to the Universal Data Mover Server installation data
sets. No general user access is required.

Object Permissions
Only administrator accounts should have write permission to the following Stonebranch Solutions libraries
(and all objects within these libraries):
• Installation library, UNVPRD430 (by default)
• Product temporary library, UNVTMP430
• Universal spool library, UNVSPL430
For maximum security, only trusted accounts (administrators and the UNVUBR430 user profile) should have
management, existence, alter, add, update or delete authority to these objects. As a reminder, the system
value QCRTAUT controls public access authority to created objects unless overridden by specific commands.

Configuration Files
Only trusted user accounts should have write access to the Universal Data Mover Server
configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

z/OS

IBM i

Windows
infitran-user-4301 Confidential & Proprietary 171

Security of Infitran Components Security
Universal Data Mover Server User ID
Universal Data Mover Server requires read access to its installation directory and its
working directory (defined in the component definition).

Universal Data Mover Server requires read access to its installation data sets and its HFS working directory
(defined in the component definition).

If user security is activated, the Server requires root access to create processes that execute with another
user’s identity. The Server security identity is inherited from the Broker. If the Broker is running with a non-root
user ID, then the Server program must have the set user ID on execution permission set and root as owner.

Universal Data Mover Server User Profile
If user security is activated, the UDM Server for IBM i requires, by default, *ALLOBJ
authority to switch user profiles. This *ALLOBJ authority requirement may be removed.
The UDM Server initially inherits authority from the UNVUBR430 user profile. Following the
switch to the user profile, the UDM Server runs under the authority of the user initiating
the data transfer.

The UNVUBR430 user profile requires *SPLCTL authority in order to provide Universal
Submit Job with job logs in specific limited situations. The *SPLCTL authority requirement
can be removed. Removing *SPLCTL from the UNVUBR430 user profile may prevent the
job log processing in limited situations.

(See Universal Broker User Account in Section 7.2.1 Universal Broker for information on
removing the *ALLOBJ and *SPLCTL authorities.)

User Authentication
User authentication is the process of verifying that a user is known and valid to the
system. The process used by UDM Server requires the user to provide a user name / ID
and a password. The UDM Server passes the name / ID and password to the operating
system for verification; this is referred to as logging on the user.

For Windows, user authentication is optional. However, if security is enabled, a user name / ID and password
are required in order to verify the user’s credentials. (With security enabled, you transfer files using a specific
user’s security context.)

z/OS

UNIX

Windows
infitran-user-4301 Confidential & Proprietary 172

Security of Infitran Components Security
For UNIX, user authentication is optional. However, if security is enabled, a user name / ID and password are
required in order to verify the user's credentials. With security enabled, you transfer files using a specific
user's security context.
Universal Data Mover can use three different types of user authentication methods:
1. Default authentication uses the UNIX traditional password comparison method.
2. PAM authentication uses the PAM API to authenticate users. The PAM modules, which authenticate and

account, are called. This option is available only for certain UNIX platforms.
3. HP-UX Trusted Security uses HP-UX Trust Security APIs to authenticate users. This is available only on

Hewlett Packard HP-UX platforms.

By default, supplemental group memberships are recorded in the /etc/group file. However, if an
/etc/logingroup file exists, it governs all supplemental group memberships and effectively overrides the entries
in /etc/group.
Note: /etc/logingroup is not required to record supplemental group membership. If /etc/logingroup does not

exist, /etc/group is sufficient to record the groups in which a user belongs.
If any Stonebranch Solutions component fails to access system resources that are secured based on
supplemental group membership, make sure that the authenticated user has an entry in /etc/logingroup, if
that file exists. Otherwise, the default entry in /etc/group should be sufficient.
For more information about /etc/logingroup, please see the HP-UX system documentation.

For IBM i, user authentication is optional. However, if security is enabled, a user name / ID and password are
required in order to verify the user's credentials. With security enabled, you transfer files using a specific
user's security context.

UNIX

HP-UX 11.00 and later

IBM i
infitran-user-4301 Confidential & Proprietary 173

Security of Infitran Components Security
7.2.4 Universal Event Monitor Manager

File Permissions
Only trusted user accounts, which are most likely those that are members of the
Administrators group, should be granted write access to the UEM Manager installation
directory and subdirectories, and the files within them.

Eligible users of UEM require read access to the national language support library SUNVNLS, the
configuration file UNVCONF, and the load library SUNVLOAD.

Authorized users of UEM require read access to the message catalogs (*.umc files), which reside in the
.\Universal\nls directory. If UEM Manager is installed on an NTFS partition, these file permissions are set
automatically during the installation.

Authorized users of UEM require read access to the message catalogs (*.umc files) in the nls subdirectory of
the primary Stonebranch Solutions installation directory.

Data Privacy
Data transmitted from a UEM Manager across a network connection to the Universal
Broker and demand-driven UEM Server is protected using features present in all
Stonebranch Inc. Stonebranch Solutions components.

For more information on the steps taken to protect transferred data, see Chapter 16
Network Data Transmission.

RACF Protection
The UEM Manager for z/OS verifies a user's access to a RACF general resource profile.
The resource profile controls a user’s ability to monitor an event on a remote host with a
specific remote user identity.

See the Stonebranch Solutions 4.3.0 Installation Guide for complete details on installing
and administering UEM Manager RACF profiles.

IBM i

Windows

UNIX
infitran-user-4301 Confidential & Proprietary 174

Security of Infitran Components Security
Configuration Files
Only trusted user accounts should have write access to the Universal Event Monitor
Manager configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

Windows
infitran-user-4301 Confidential & Proprietary 175

Security of Infitran Components Security
7.2.5 Universal Event Monitor Server

Data Privacy
Data transmitted to a UEM Server across a network connection is protected using
features present in all Stonebranch Inc. Stonebranch Solutions components.

For more information on the steps taken to protected transferred data, see Chapter 16
Network Data Transmission.

File Permissions
Only trusted user accounts should have write access to the UEM Server installation
directory and subdirectories, and the files within them. Authorized users of UEM require
read access to the message catalogs (*.umc files), which reside in the ./universal/nls
directory.

If UEM Server is installed on an NTFS partition, these file permissions are automatically set during
installation.
The component definitions for demand-driven and event-driven UEM Servers include the location of a
WORKING_DIRECTORY. By default, this is .\Universal\UEMHome.
When the USER_SECURITY option is enabled, and before a demand-driven UEM Server begins monitoring
an event or an event-driven UEM Server executes an event handler process, the UEM Server will create a
subdirectory (if it does not already exist) for the authenticated user under this working directory. The name of
the directory matches the ID of the user account specified from the UEM Manager command line or stored in
the event handler record. If a Windows domain account is used, the name of the directory is userid.domain,
where userid is the user ID and domain is the domain name. After the directory is created, the specified user
account is given ownership of it and granted full control over it.

Configuration Files
Only trusted user accounts should have write access to the Universal Event Monitor
Server configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

Windows

Windows
infitran-user-4301 Confidential & Proprietary 176

Security of Infitran Components Security
User Authentication

When the USER_SECURITY option is enabled, a demand-driven UEM Server requires the ID and password
of a valid local user account before it will begin monitoring the event. Likewise, an event-driven UEM Server
requires this information to be stored in an event handler record before it can execute a process on behalf of
that handler. All handler processes started by UEM Server when the USER_SECURITY option is enabled are
executed in the security context of this user account.
To allow Windows to verify the user account information, a UEM Server will attempt to log that user on to the
system via a call to a Windows system function.
Windows provides two types of logon methods: interactive and batch. Unless they have been explicitly denied
the ability to do so, most user accounts can be validated with the interactive logon method. Conversely, a user
account typically must be granted an additional privilege before they can be authenticated using the batch
logon method. This privilege is shown in Windows as “Log on as a batch job.”
For information on configuring UEM Server to use this logon method, see the LOGON_METHOD
configuration option in the Universal Event Monitor 4.3.0 Reference Guide.

When the USER_SECURITY option is enabled, a demand-driven UEM Server requires the ID of a valid local
user account before it will begin monitoring the event. A password also may be required, depending on the
rules set up in the ACCESS_ACL.
Likewise, an event-driven UEM Server requires this information to be stored in an event handler record
before it can execute a process on behalf of that handler. All handler processes started by UEM Server when
the USER_SECURITY option is enabled are executed in the security context of this user account.
UEM Server for UNIX supports three different types of user authentication methods:
1. Default authentication uses the UNIX traditional password comparison method.
2. PAM authentication uses the PAM API to authenticate users. This option is only available for certain

UNIX platforms.
3. HP-UX Trusted Security uses HP-UX Trust Security APIs to authenticate users. This is only available on

Hewlett Packard HP-UX platforms.

By default, supplemental group memberships are recorded in the /etc/group file. However, if an
/etc/logingroup file exists, it governs all supplemental group memberships and effectively overrides the entries
in /etc/group.
Note: /etc/logingroup is not required to record supplemental group membership. If /etc/logingroup does not

exist, /etc/group is sufficient to record the groups in which a user belongs.
If any Stonebranch Solutions component fails to access system resources that are secured based on
supplemental group membership, make sure that the authenticated user has an entry in /etc/logingroup, if
that file exists. Otherwise, the default entry in /etc/group should be sufficient.
For more information about /etc/logingroup, please see the HP-UX system documentation.

Windows

UNIX

HP-UX 11.00 and later
infitran-user-4301 Confidential & Proprietary 177

Security of Infitran Components Security
7.2.6 Universal Control Manager

File Permissions
Only trusted user accounts should have write permission to the Universal Control
Manager installation directory and subdirectories, and all of the files within them. This
most likely means that only the administrator group should have write access.

Eligible users of Universal Control require read access to the message catalogs (*.umc
files) in the NLS directory.

Eligible users of Universal Control require read access to the message catalogs (*.umc files) in the nls
subdirectory of the Stonebranch Solutions installation directory. If Universal Control Manager is installed on
an NTFS partition, these file permissions are set automatically during the installation.

Data set permissions: Eligible users of Universal Control require read access to:
• National language support library SUNVNLS
• Load library SUNVLOAD

Configuration Files
Only trusted user accounts should have write access to the Universal Control Manager
configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

Universal Configuration Manager
Universal Control Manager for Windows configuration options can be set by the Universal
Configuration Manager. To protect access to the configuration settings, the Universal
Configuration Manager can be executed only by accounts in the Administrator group.

For more information on the Universal Configuration Manager, see Section 8.4 Universal
Configuration Manager.

Windows

z/OS

Windows
infitran-user-4301 Confidential & Proprietary 178

Security of Infitran Components Security
RACF Protection
The Universal Control Manager for z/OS verifies a user’s access to a RACF general
resource profile. The resource profile controls a user’s access to execute a control
request on a remote host.

See the Stonebranch Solutions 4.3.0 Installation Guide for complete details on installing
and administering Universal Control Manager RACF profiles.
infitran-user-4301 Confidential & Proprietary 179

Security of Infitran Components Security
7.2.7 Universal Control Server

File Permissions
Only trusted user accounts should have write permission to the Universal Control Server
installation directory and subdirectories, and all of the files within them.

Eligible users of UCTL require read access to the message catalogs (*.umc files) in the nls subdirectory of the
Stonebranch Solutions installation directory.
If security is activated, all eligible users of UCTL require permission to create directories in the UCTL Server
working directory. A directory named after the user ID requesting the command is created for each user. The
directory is created while impersonating the user; hence, it is created using the user's security account.
Home directories are created with permissions giving the user full control of both the directory and the files
within them.

Configuration Files
Only trusted user accounts should have write access to the Universal Control Server
configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

Universal Control Server User ID
Universal Control Server requires read access to its installation directory and its working
directory (defined in the component definition). The Universal Control Server security
identity is inherited from the Universal Broker.

UCTL Server requires read access to its installation data sets and its HFS working directory (defined in the
component definition).

The associated user profile (UNVUBR430) provides *ALLOBJ authority.

Windows

Windows

z/OS

IBM i
infitran-user-4301 Confidential & Proprietary 180

Security of Infitran Components Security
User Authentication
User authentication is the process of verifying that a user is a known and valid user. The
process used by Universal Control Server requires the user to provide a user name / ID
and a password. The Universal Control Server passes the name / ID and password to the
operating system for verification; this is referred to as logging on the user.

Windows provides two primary types of log on processes: batch and interactive.
A user must be given the right to log on as a batch job in order for the user to do a batch log on. All users can
do an interactive log on. (See Section 6.7 LOGON_METHOD in the Stonebranch Solutions Utilities 4.3.0
Reference Guide for more details.)

Windows
infitran-user-4301 Confidential & Proprietary 181

Security of Infitran Components Security
7.2.8 Universal Event Log Dump

No special security access is required to run Universal Event Log Dump (UELD).
However, accessing the event logs and setting configuration options may require some
special security considerations.

Event Log Access
The system and application event logs can be read by all user accounts.

The security log can be accessed only by accounts with Administrator privileges.
Administrator privileges also are required to clear any of the event logs.

Configuration Files
Only trusted user accounts should have write access to the Universal Event log Dump
configuration files.

Although you may edit configuration files with any text editor (for example, Notepad), we recommend that you
manage configuration options using the Universal Configuration Manager Control Panel application. Only
user accounts in the Administrator group can execute the Universal Configuration Manager (see Section 8.4
Universal Configuration Manager).

7.2.9 Universal Spool List

The account used to execute the Universal Spool List utility must have read access to the
database files listed in Chapter 14 Databases.

7.2.10 Universal Spool Remove

The user account used to run the Universal Spool Remove utility must have read/write
access to the database files.

Windows
infitran-user-4301 Confidential & Proprietary 182

Encryption Security
7.3 Encryption
Stonebranch Solutions programs have the ability to read command line options contained
in command files. Command files that contain private information must be protected by
using local file system security. This ensures that only authorized accounts have read
access.

The Universal Encrypt (UENCRYPT) utility adds an additional layer of security by
encrypting the contents of command files into an unintelligible format.

Although all command line options can be encrypted with the Universal Encrypt utility,
most organizations use it to encrypt and store authentication credentials such as user ID
and/or password.

An encrypted command file can be decrypted only by Stonebranch product programs. No
decrypt command is provided to decrypt the command file.

Note: Universal Encrypt should not be used as a replacement for file system security.

7.3.1 Encrypting Files

Files do not have to be encrypted on the same platform or server on which they will be
used. They can be encrypted on any platform or server and then transferred. This means
that applications development, platform administrators, and security administrators can
encrypt passwords in their own environments.

Universal Encrypt encrypts files with either:
• 56-bit DES
• 256-bit AES

Universal Encrypt reads an unencrypted file from its standard input and writes the
encrypted version to its standard output.

Encrypted files are text files and contain comments that can be edited if required. Lines
within the Uencrypted file that start with the # character are comments. Default comments
are created with the following information:
• Date of encryption.
• Userid that encrypted the file.
• System on which the file was encrypted.
• Version of Universal Encrypt used.
• Level of encryption used.
infitran-user-4301 Confidential & Proprietary 183

Encryption Security
7.3.2 Transferring Encrypted Files between Servers

Files encrypted via Universal Encrypt are text files.

You can transfer them between servers, using FTP or similar tools, in text mode. You also
can email them between like systems (for example, Windows to Windows).

Security Considerations
For production implementations, thought should be given to the location and security of
encrypted files containing passwords. Consider who needs access to create, update, and
use these files.

Many implementations are centralized around an enterprise scheduling solution. In this
case, the encrypted files are often secured in such a way that only the enterprise
scheduler is able to access them.

There are additional layers of security available to Infitran, such as Universal Access
Control List and X.509 Certificates. These can be further used to ensure that access to
servers is properly controlled.
infitran-user-4301 Confidential & Proprietary 184

Encryption Examples Security
7.4 Encryption Examples
This section provides examples of how to use Universal Encrypt to encrypt a command
file (and how to use the encrypted file). Each example will encrypt a case sensitive
password using AES 256 encryption.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

Creating Encrypted Command File for z/OS

Using Encrypted Command File on z/OS

Windows

Creating Encrypted Command File for Windows

Using Encrypted Command File on Windows

UNIX

Creating Encrypted Command File for UNIX

Using Encrypted Command File on UNIX

IBM i

Creating Encrypted Command File for IBM i

Using Encrypted Command File on IBM i
infitran-user-4301 Confidential & Proprietary 185

Encryption Examples Security
7.4.1 Creating Encrypted Command File for z/OS

Assume that a command file named MY.CLEAR.CMDFILE contains the following data:

The following JCL encrypts the command file allocated to ddname UNVIN using AES
encryption and an encryption key MYKEY123:

The resulting encrypted command file is written to ddname UNVOUT.

The figure below illustrates the contents of MY.ENCRYPT.CMDFILE.

This encrypted command file can now be used by any Stonebranch Solutions command
on any platform by specifying the encryption key MYKEY123.

Components

Universal Command Manager for z/OS

Universal Encrypt

-userid T02JAH1 –pwd thames

//UENCRYPT EXEC PGM=UENCRYPT

//STEPLIB DD DISP=SHR,DSN=UNV.SUNVLOAD

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//UNVIN DD DISP=SHR,MY.CLEAR.CMDFILE

//UNVOUT DD DISP=SHR,MY.ENCRYPT.CMDFILE

//SYSIN DD *
 -key MYKEY123 –aes YES
/*

Universal Encrypt
Date : Thu Nov 3 07:29:03 2010
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 4.3.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA5021F

D92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F0686EFF

37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1
infitran-user-4301 Confidential & Proprietary 186

Encryption Examples Security
7.4.2 Using Encrypted Command File on z/OS

For z/OS, the Universal Command Manager COMMAND_FILE_ENCRYPTED option
specifies the ddname in the JCL that references the location of the Uencrypted file.

Figure 7.1 z/OS -encryptedfile example

Components

Universal Command Manager for z/OS

Universal Encrypt

//UCM#000 JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//*

// JCLLIB ORDER=#HLQ.UNV.SUNVSAMP

//*

//STEP1 EXEC UCMDPRC

//UENCRYPT DD DISP=SHR,DSN=TEST.UENFILES(TESTPWD)

//COMMANDS DD *

 DIR

//SYSIN DD *

 -host 10.252.2.232

 -userid "testid"

 -encryptedfile UENCRYPT

 -script COMMANDS
infitran-user-4301 Confidential & Proprietary 187

Encryption Examples Security
7.4.3 Creating Encrypted Command File for Windows

Assume that a command file named cmdfile.txt contains the following data:

The following command encrypts the command file using AES encryption with an
encryption key MYKEY123.

The resulting encrypted command file is written to file encfile.txt.

The figure below illustrates the contents of encfile.txt.

This encrypted command file now can be used by any Stonebranch Solutions command,
on any operating system, by specifying the encryption key MYKEY123.

Components

Universal Command Manager for Windows

Universal Encrypt

-userid T02JAH1 –pwd thames

uencrypt –key MYKEY123 -aes yes <cmdfile.txt >encfile.txt

Universal Encrypt
Date : Thu Nov 3 07:29:03 2010
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 4.3.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA502
1FD92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F068
6EFF37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1
infitran-user-4301 Confidential & Proprietary 188

Encryption Examples Security
7.4.4 Using Encrypted Command File on Windows

For Windows, the Universal Command Manager COMMAND_FILE_ENCRYPTED option
specifies the location of the Uencrypted file.

Figure 7.2 Windows -encryptedfile example

Components
Universal Command Manager for Windows

Universal Encrypt

ucmd -host 10.252.2.232 -userid testid -encryptedfile
c:\Universal\Encrypted\encfile.txt -cmd "dir"
infitran-user-4301 Confidential & Proprietary 189

Encryption Examples Security
7.4.5 Creating Encrypted Command File for UNIX

Assume that a command file named cmdfile.txt contains the following data:

The following command encrypts the command file using AES encryption with an
encryption key MYKEY123.

The resulting encrypted command file is written to file encfile.txt.

The figure below illustrates the contents of encfile.txt.

This encrypted command file now can be used by any Stonebranch Solutions command,
on any operating system, by specifying the encryption key MYKEY123.

Components

Universal Command Manager for UNIX

Universal Encrypt

-userid T02JAH1 –pwd thames

uencrypt –key MYKEY123 -aes yes <cmdfile.txt >encfile.txt

Universal Encrypt
Date : Thu Nov 3 07:29:03 2010
User : T02JAH1
Host : hosta.acme.com
Program . . . : uencrypt 4.3.0 Level 5 Release Build 130
Encryption . . : AES 256-bit

1F7DAF62583C813EA874CA168FF626C348F7BF171477D380D9A2FFFED33C539B71B4206EA502
1FD92CDFDD931C3B88B9CD711A4693EFE6B49FAE9431E9C946F7F35C9B4C31335BFB3F97F068
6EFF37068245A6B58CBFE2ADE32997A132C4114AC52CD615B2E7E8672ED0BF9867CA13B1
infitran-user-4301 Confidential & Proprietary 190

Encryption Examples Security
7.4.6 Using Encrypted Command File on UNIX

For the UNIX, the Universal Command Manager COMMAND_FILE_ENCRYPTED option
specifies the location of the Uencrypted file.

Figure 7.3 UNIX -encryptedfile example

Components
Universal Command Manager for UNIX

Universal Encrypt

/opt/universal/bin/ucmd -host 10.252.2.232 -userid testid \

-encryptedfile /universal/encrypted/encfile.txt -cmd "dir"
infitran-user-4301 Confidential & Proprietary 191

Encryption Examples Security
7.4.7 Creating Encrypted Command File for IBM i

Assume that a command file named MYLIB/QTXTSRC(TESTLOGIN) contains the following
data:

The following command encrypts the command file using non-AES encryption with an
encryption key MYKEY123 for default codepage IBM1047.

The resulting encrypted command file is written to file ENCRYPTEDF in MYLIB library.

The figure below illustrates the contents of MYLIB/ENCRYPTEDF(ENCRYPTEDF).

This encrypted file now can be used as command file input for Stonebranch Solutions
command on any platform that uses the encryption key MYKEY123.

Components
Universal Command Manager for IBM i

Universal Encrypt

-userid T02JAH1 –pwd tz74gan

STRUEN INFILE(MYLIB/QTXTSRC) INMBR(TESTLOGIN) OUTFILE(MYLIB/ENCRYPTEDF)
OUTMBR(ENCRYPTEDF) KEY(MYKEY123)

Universal Encrypt

Created on Wed Feb 22 18:43:51 2010

Created by uencrypt 4.3.0 Level 0

9ACB96416816600CB9D24C9072D80C11768B93CB0E79B944EC37D3495097AD793F97399220C9BB

472DF1E04F5BA8909BCA6C8C72DFD3B706487B1713E6F73F5A0539F17076DEF6D14083EF6E7023

158526E70BE3AF688579805DCAC0CFF1EB6A
infitran-user-4301 Confidential & Proprietary 192

Encryption Examples Security
7.4.8 Using Encrypted Command File on IBM i

For the IBM i, the Universal Command Manager COMMAND_FILE_ENCRYPTED option
(ECMFILE and ECMMBR) specify the location of the Uencrypted file.

Figure 7.4 IBM i -encryptedfile example

Components
Universal Command Manager for IBM i

Universal Encrypt

STRUCM HOST('10.252.2.232') USERID(testid) ECMFILE(UNIVERSAL/ENCRYPTED)
ECMMBR(TETSPWD) CMD('DIR')
infitran-user-4301 Confidential & Proprietary 193

Universal Access Control List Security
7.5 Universal Access Control List
Many Infitran components utilize the Universal Access Control List (UACL) feature as an
extra layer of security to the services they offer. The UACL determines if a request is
denied or allowed to continue and can assign security attributes to the request.

The following Infitran components use the UACL feature:
• Universal Broker uses UACLs to permit or deny TCP/IP connections based on the

remote host IP address (see the Universal Broker Reference Guide for complete
details).

• Universal Data Mover Server uses UACLs to permit or deny Manager access based
on the Managers IP address and user ID (see the Universal Data Mover Reference
Guide for complete details).

• Universal Control Server uses UACLs to permit or deny Manager access based on
the Managers IP address and user ID, and to control whether or not the Manager
request requires user authentication (see Chapter 4 Universal Control in the
Stonebranch Solutions Utilities Reference Guide for complete details).

This section of the Infitran User Guide describes the UACL capabilities in general,
non-component specific terms.
infitran-user-4301 Confidential & Proprietary 194

Universal Access Control List Security
7.5.1 UACL Configuration

The method used to configure UACL rules is platform dependent. The following sections
discuss each of the methods.

All UACL rules are defined in library UNVCONF, member ACLCFG00. The Universal Broker allocates the
UACL configuration data set to ddname UNVACL.
The UACL file syntax is the same as all other Stonebranch Solutions z/OS configuration files. See
Configuration File Syntax for details.

All UACL rules are defined in one file, uacl.conf. This file is required for products utilizing UACL rules;
otherwise, the product will not start. The configuration file consists of zero or more UACL entries.
The UACL file syntax is the same as all other Universal UNIX configuration files. See Configuration File
Syntax for details.

All UACL rules are stored in the configuration file.
UACL entries for each component are maintained using the Universal Configuration Manager (see
Section 8.4 Universal Configuration Manager).

All UACL rules are defined in file unvconf and member uacl. This file is required for products utilizing UACL
rules, else the product will not start. The configuration file consists of zero or more UACL entries.
The UACL file is searched for in the same manner as all other product configuration files. See Section 8.2.4
Configuration File for information on how configuration files are located.
The UACL file syntax is the same as all other Stonebranch Solutions for IBM i configuration files. See
Configuration File Syntax for details.

z/OS

UNIX

Windows

IBM i
infitran-user-4301 Confidential & Proprietary 195

Universal Access Control List Security
7.5.2 UACL Entries

UACL entries are composed of two parts: type and rule.
• Type identifies the Stonebranch Solutions component for which the rule applies. For

example, the Universal Broker product utilizes UACL rules of type ubroker_access.
• Rule defines the client's identity and the client's request for which the entry pertains

and the security attributes it enforces.

UACL configuration file syntax is the same as all other configuration files, where the
configuration file keyword corresponds to the UACL type part and the configuration file
value corresponds to the UACL rule part.

The entire rule part of the UACL entry must be enclosed in quotation characters, not just
a sub-field of the rule, if a space or tab is part of the value.

The correct syntax would be as follows:
udm_access "prod.host.name,MVS USER,user,cmd,DSPLIB
QGPL,allow,auth"

For each client that connects and sends a request, Broker and Server components
search UACL entries to find the best match for the client identity and the client request.
Entries are searched in the order they are listed. The first entry found stops the search.

Note: There is no limit to the number of UACL entries that can be specified.

Client Identification
Rule matching is based on the client identity and the client request.

There are two client identification methods:

1. X.509 certificate authentication.
2. Client IP address and reported user account.
infitran-user-4301 Confidential & Proprietary 196

Universal Access Control List Security
X.509 Certificate Authentication
X.509 certificates identify an entity. An entity can be a program, person, or host computer.
When an X.509 certificate is authenticated, it authenticates that the entity is who it claims
to be.

X.509 certificates are utilized in UACL entries by first mapping a client certificate to a
UACL certificate identifier. The certificate identifier then is used in the UACL entries. A
certificate identifier provides for:

1. Concise representation of certificates in UACL entries. There are a large number of
certificate fields that may be used and many of the fields have lengthy, tedious
naming formats. A certificate map only needs to be defined once and then the concise
certificate identifier can be used in the UACL entries.

2. Mapping of one or more certificates to a single certificate identity. A group of entities
that share a common security access level may be represented by one certificate
identity reducing the number of UACL entries to maintain.

UACL certificate map entries are searched sequentially (that is, top to bottom) matching
the client certificate to each entry until a match is found. The certificate map defines a set
of X.509 certificate fields that may be used as matching criteria.

Table 7.1, below, defines the certificate map matching criteria.

Table 7.1 Certificate Map Matching Criteria

Criteria Description

SUBJECT Matches the X.509 subject field. The subject field is formatted as an X.501
Distinguished Name (DN). A DN is a hierarchical list of attributes referred to as Relative
Distinguished Names (RDNs).
RDNs are separated with a comma (,) by default. If a different separator is required
(perhaps one of the RDN values uses a comma), start the DN with the different separator
character. Valid separators are slash (/), comma (,) and period (.).
Many RDN values can be used in a DN. Some of the most common values are:
• C Country name
• CN Common name
• L Locality
• O Organization
• OU Organizational Unit
• ST State
The RDN attributes must be listed in the same order as they are defined in the certificate
to be considered matched.
A partial DN can be specified. All certificates that have a subject name that matches up
to the last RDN are considered a match. This permits a group of certificates to be
matched.
The RDN attribute values can include pattern matching characters. An asterisk (*)
matches 0 or more characters and a question mark (?) matches one character.
Some example of SUBJECT values are:

• subject=” C=US,ST=Georgia,O=Acme,CN=Road Runner”
• subject=” C=US,ST=Georgia,O=Acme,CN=Road * ”
• subject=” C=US,ST=Georgia,O=Acme,CN=Road ?unner”
Whether an RDN value is case sensitive or not depends on the format in which the value
is stored. The certificate creator has some control over which format is used. All formats
except for printableString are case sensitive.
infitran-user-4301 Confidential & Proprietary 197

Universal Access Control List Security
If a certificate map rule is found that matches the client certificate, the rule's identifier is
assigned to the client's request. The certificate identifier is then used in matching
certificate-based UACL entries.

Table 7.2, below, defines the certificate identifier field as used in UACL entries.

Table 7.2 Certificate Identifier Field

EMAIL Matches the X.509 emailAddress attribute of the subject field and rfc822Name of the
subjectAltName extension value. Both fields format the email address as an RFC 822
addr-spec in the form of identifier@domain.
The attribute values may include pattern matching characters. An asterisk (*) matches 0
or more characters and a question mark (?) matches one character.
Some example EMAIL values are:

• email=user1@acme.com
• email=*@acme.com
• email=user?@acme.com
RFC 822 names are not case sensitive.

HOSTNAME Matches the following X.509 fields in the order listed:
1. dNSName of the subjectAltName extension value.
2. commonName (CN) RDN attribute of the subject field’s DN value.
Some example HOSTNAME values are:
• hostname=bigfish.acme.com
• hostname=*.acme.com
The values are not case sensitive.

IP
ADDRESS

Matches the X.509 iPAddress field of the subjectAltName extension value.
An example IPADDRESS value is:

• ipaddress=10.20.30.40
SERIAL
NUMBER

Matches the X.509 serialNumber value.
The value can be specified in a hexadecimal format by prefixing the value with 0x or 0X,
otherwise, the value is considered a decimal format. For example, the value
0x016A392E7F would be considered a hexadecimal format.
An example SERIALNUMBER value is:

• serialnumber=0x7a2d52cbae

Criteria Description

CERTID Matches the certificate identifier defined by the certificate map entry. The CERTID value
has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches one

character. For example, AB*M matches ABCDM and ABM. AB?M matches ABCM,
but not ABCDM.

• The comparison is case insensitive.
• Pattern matching characters, such as the asterisk and question mark, are included in

the text to be matched by prefixing them with a forward slash (/) character. For
example, A/*B matches A*B. A//B matches A/B.

Criteria Description
infitran-user-4301 Confidential & Proprietary 198

Universal Access Control List Security
Client IP Address Identification
TCP/IP provides a method to obtain a client's IP address. The IP address typically
identifies the host computer on which the client is executing. There are exceptions to this
though. Networks can be configured with Network Address Translation (NAT) systems
between the client and the Broker that hides the client's IP address. In addition to the
client IP address, Stonebranch Solutions clients provide a user account name with which
they are executing that is used to further refine the client's identity.

UACL entries are searched matching the client's IP address and user account to each
entry until a match is found.

Table 7.3, below, defined possible matching criteria for IP address and user account client
identification.

Table 7.3 Client IP Address - Matching Criteria

Criteria Description

HOST Matches the TCP/IP address of the remote user.
The HOST value has the following syntax:
• Dotted numeric form of an IP address. For example, 10.20.30.40.
• Dotted numeric prefix of the IP addresses. For example, 10.20.30. matches all IP

addresses starting with 10.20.30. The last dot (.) is required.
• A net/mask expression. For example, 131.155.72.0/255.255.254.0 matches IP

address range 131.155.72.0 through 131.155.73.255. The mask and the host
value are AND'ed together. The result must match net.
Note: Contact your network administrator for calculation of the correct net /

mask expression.
• Host name for an IP address. For example, sysa.abc.com.
• Host name suffix for a range of IP addresses. For example, .abc.com matches all

host names ending with abc.com, such as, sysa.abc.com. The first dot (.) is
required.

• A value of ALL matches all IP addresses. The value must be uppercase.

REMOTE_USER Matches the user name with which the remote user is executing as on the remote
system.
The REMOTE_USER value has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches

one character. For example, AB*M matches ABCDM and ABM. AB?M matches
ABCM but not ABCDM.

• Control code /c switches off case-sensitivity and /C switches on case-sensitivity
matching. The default is on. For example, /cABC matches abc. /ca/Cbc matches
Abc but not ABC.

• Pattern matching characters, such as the asterisk and question mark, are included
in the text to be matched by prefixing them with a forward slash (/) character. For
example, A/*B matches A*B. A//B matches A/B.
infitran-user-4301 Confidential & Proprietary 199

Universal Access Control List Security
Request Identification
In addition to the client identity being used to search for UACL entries, the client's request
may be part of the matching criteria. The exact request fields used is dependent on the
component's UACL entry type.

Table 7.4, below, lists a complete set of the request fields that are possible. See each
component's UACL entry definitions for further details.

Table 7.4 Request Fields

Criteria Description

LOCAL_USER Matches the local user name with which the remote user is requesting to execute as
on the local host. LOCAL_USER value has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches

one character. For example, AB*M matches ABCDM and ABM. AB?M matches
ABCM but not ABCDM.

• Control code /c switches off case-sensitivity and /C switches on case-sensitivity
matching. The default is on. For example, /cABC matches abc. /ca/Cbc matches
Abc but not ABC.

• Pattern matching characters, such as the asterisk and question mark, are
included in the text to be matched by prefixing them with a forward slash (/)
character. For example, A/*B matches A*B. A//B matches A/B.

• Variable name $RMTUSER can be included in the value. The variable name
itself is not case sensitive. $RMTUSER and $rmtuser are the same. The
$RMTUSER variable value is the user name with which the remote user is
executing. It is the same value used in matching the REMOTE_USER field.

A space character delimits the variable name, or it can be enclosed in parentheses
(for example, $(RMTUSER)), in which case it is delimited by the right parenthesis.
This is useful if it is immediately followed by text.
For example, if the remote user name is TOM, a LOCAL_USER value of $RMTUSER
will match if the local user name requested is also TOM. A LOCAL_USER value of
$(RMTUSER)01 will match if the local user name requested is TOM01.

The LOCAL_USER value is not case sensitive since Windows user account names
are not.

REQUEST_TYPE Matches the type of request a Universal Command Manager is requesting. The
REQUEST_TYPE value has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches

one character. For example, AB*M matches ABCDM and ABM. AB?M matches
ABCM but not ABCDM.

• The comparison is case insensitive.
• Pattern matching characters, such as the asterisk and question mark, are

included in the text to be matched by prefixing them with a forward slash (/)
character. For example, A/*B matches A*B. A//B matches A/B.

Windows
infitran-user-4301 Confidential & Proprietary 200

Universal Access Control List Security
Certificate-Based and Non Certificate-Based UACL Entries
Stonebranch Solutions components that support X.509 certificates define their UACL
entries in two varieties:

1. Certificate-based entries
2. Non certificate-based entries

The two entry types are distinguished by their name. For example, cmd_cert_access is the
certificate-based form of the entry and ucmd_access is a non certificate-based entry. All
entries follow the same format.

Certificate-based UACL entries are searched under the following conditions:
• Client provides an X.509 certificate that matches a certificate map entry.

Non certificate-based UACL entries are searched under the following conditions:
• Client provides an X.509 certificate and no certificate map entry matches.
• Client does not provide an X.509 certificate.

Either the certificate-based UACL entries or the non certificate-based UACL entries are
searched, but not both.

REQUEST_NAME The REQUEST_NAME field matches the name of a Universal Command Manager is
request. The REQUEST_NAME value has the following syntax:
• An asterisk (*) matches 0 or more characters and a question mark (?) matches

one character. For example, AB*M matches ABCDM and ABM. AB?M matches
ABCM but not ABCDM.

• Case sensitivity depends on the REQUEST_TYPE and the operating system on
which the Universal Command Server is executing. See the Server’s Security
section for the operating system in question.

• Control code /c switches off case-sensitivity and /C switches on case-sensitivity
matching. The default is on. For example, /cABC matches abc. /ca/Cbc matches
Abc but not ABC.

• Control code /s normalizes spaces and /S does not normalize spaces. Space
normalization removes preceding and trailing spaces as well as reduce
consecutive multiple spaces to a single space. The default is no space
normalization. For example, /sa b c matches a b c. /Sa b c matches a b c but
not a bc.

• Pattern matching characters, such as the asterisk and question mark, are
included in the text to be matched by prefixing them with a forward slash (/)
character. For example, A/*B matches A*B. A//B matches A/B.

Criteria Description
infitran-user-4301 Confidential & Proprietary 201

Universal Access Control List Examples Security
7.6 Universal Access Control List Examples
This section provides the following UACL examples.

z/OS

Universal Broker for z/OS

Universal Data Mover Server for z/OS

Universal Control Server for z/OS

Windows

Universal Broker for Windows

Universal Data Mover Server for Windows

Universal Control Server for Windows

Universal Event Monitor Server for Windows

UNIX

Universal Broker for UNIX

Universal Data Mover Server for UNIX

Universal Control Server for UNIX

Universal Event Monitor Server for UNIX

IBM i

Universal Broker for IBM i

Universal Data Mover Server for IBM i

Universal Control Server for IBM i
infitran-user-4301 Confidential & Proprietary 202

Universal Access Control List Examples Security
7.6.1 Universal Broker for z/OS

The following set of rules authorize the Universal Enterprise Controller at address
10.20.30, with update access to the product configuration files and setting of the
configuration managed mode of the Broker, and denies all other connections.

The following set of rules permit connections for the subnet 10.20.30 and denies all other
connections.

The following set of rules permit connections from host 10.20.30.40 and 10.20.30.50 and
denies all other connections.

The following set of rules map X.509 certificates to certificate identifiers.

Components
Universal Broker for z/OS

remote_config_access 10.20.30.,allow,allow
remote-config_access ALL,deny,deny

ubroker_access 10.20.30.,allow
ubroker_access ALL,deny

ubroker_access 10.20.30.40,allow
ubroker_access 10.20.30.50,allow
ubroker_access ALL,deny

cert_map id=joe,subject=”/C=US/ST=Georgia/O=Acme, Inc./
 OU=Sales/CN=Joe Black”
infitran-user-4301 Confidential & Proprietary 203

Universal Access Control List Examples Security
7.6.2 Universal Data Mover Server for z/OS

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

Components

Universal Data Mover Server for z/OS

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
infitran-user-4301 Confidential & Proprietary 204

Universal Access Control List Examples Security
7.6.3 Universal Control Server for z/OS

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections unless an X.509 certificate is presented that maps to certificate ID
operations.

When no certificate is presented that maps to a certificate ID, the following set of rules
effectively permit connections from any host, but has limited access from host
10.20.30.40 to user TS1004 on that host. No host can execute commands as local user
root. User TS1004 on host 10.20.30.40 can execute commands as local user tsup1004
without providing the password. Users TS1004 from host 10.20.30.40 can execute
commands as any local user by providing the local user password.

When a certificate is presented that maps to a certificate ID, certificate ID joe can request
local user id TSUP1004 without a password. Certificate ID joe is allowed to execute
commands with any other local user ID with a password. Certificate ID operations cannot
run anything. All other certificate IDs can execute commands with any user ID except for
SUPERID with a password.

Components

Universal Control

uctl_access 10.20.30.,*,*,allow,auth
uctl_access ALL,*,*,deny,auth

uctl_cert_access operations,*,allow,auth
uctl_cert_access *,*,deny,auth

uctl_access 10.20.30.40,TS1004,tsup1004,allow,noauth
uctl_access 10.20.30.40,TS1004,*,allow,auth
uctl_access 10.20.30.40,*,*,deny,auth
uctl_access ALL,*,root,deny,auth

uctl_cert_access joe,tsup1004,allow,noauth
uctl_cert_access joe,*,allow,auth
uctl_cert_access operations,*,deny,auth
uctl_cert_access *,root,deny,auth
infitran-user-4301 Confidential & Proprietary 205

Universal Access Control List Examples Security
7.6.4 Universal Broker for Windows

Although UACL files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to update UACL entries. From there, ACL entries can be added,
changed, deleted or sorted (rules are applied in the order in which they are listed).

Figure 7.5, below, illustrates an example.

Figure 7.5 Universal Configuration Manager - Universal Broker - Access ACL

Components

Universal Broker for Windows
infitran-user-4301 Confidential & Proprietary 206

Universal Access Control List Examples Security
7.6.5 Universal Data Mover Server for Windows

Although UACL files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to update UACL entries. From there, ACL entries can be added,
changed, deleted or sorted (rules are applied in the order in which they are listed).

Figure 7.6, below, illustrates an example. The set of ACL entries only allows connections
from host 10.20.30.40 if the user on that host is TS1004. All other remote users will be
blocked. TS1004 may run processes on the local system using any user account,
provided the correct password is supplied. No processes may be run with Universal Data
Mover using the Administrator account on the local system, regardless of where the
request originated.

Figure 7.6 Universal Configuration Manager - Universal Data Mover Server - Access ACL

Components

Universal Data Mover
infitran-user-4301 Confidential & Proprietary 207

Universal Access Control List Examples Security
7.6.6 Universal Control Server for Windows

Although UACL files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to update UACL entries. From there, ACL entries can be added,
changed, deleted or sorted (rules are applied in the order in which they are listed).

Figure 7.7, below, illustrates an example. The set of ACL entries only allows connections
from host 10.20.30.40 if the user on that host is TS1004. All other remote users will be
blocked. TS1004 may run processes on the local system using any user account,
provided the correct password is supplied. No processes may be run with Universal
Command using the Administrator account on the local system, regardless of where the
request originated.

Figure 7.7 Universal Configuration Manager - Universal Control Server - Access ACL

Components

Universal Control
infitran-user-4301 Confidential & Proprietary 208

Universal Access Control List Examples Security
7.6.7 Universal Event Monitor Server for Windows

Although UACL files can be edited with any text editor (for example, Notepad), the
Universal Configuration Manager application, accessible via the Control Panel, is the
recommended way to update UACL entries. From there, ACL entries can be added,
changed, deleted, or sorted (rules are applied in the order in which they are listed).

Figure 7.8, below, illustrates an example. The set of ACL entries only allows connections
from host 10.20.30.40 if the user on that host is TS1004. All other remote users will be
blocked. TS1004 may run processes on the local system using any user account,
provided the correct password is supplied. No processes may be run with Universal Event
Monitor using the Administrator account on the local system, regardless of where the
request originated.

Figure 7.8 Universal Configuration Manager - Universal Event Monitor Server - Access ACL

Components

Universal Event Monitor
infitran-user-4301 Confidential & Proprietary 209

Universal Access Control List Examples Security
7.6.8 Universal Broker for UNIX

The following set of rules is required to allow I-Management Console to access Universal
Broker.

The following set of rules permit connections for the subnet 10.20.30 and denies all other
connections.

The following set of rules permit connections from host 10.20.30.40 and 10.20.30.50 and
denies all other connections.

The following set of rules map X.509 certificates to certificate identifiers.

Components
Universal Broker for UNIX

remote_config_access 10.20.30.,allow
remote-config_access ALL,deny

ubroker_access 10.20.30.,allow
ubroker_access ALL,deny

ubroker_access 10.20.30.40,allow
ubroker_access 10.20.30.50,allow
ubroker_access ALL,deny

cert_map id=joe,subject=”/C=US/ST=Georgia/O=Acme, Inc./”
infitran-user-4301 Confidential & Proprietary 210

Universal Access Control List Examples Security
7.6.9 Universal Data Mover Server for UNIX

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

Components

Universal Data Mover Server for UNIX

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
infitran-user-4301 Confidential & Proprietary 211

Universal Access Control List Examples Security
7.6.10 Universal Control Server for UNIX

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections unless an X.509 certificate is presented that maps to certificate ID
operations.

When no certificate is presented that maps to a certificate ID, the following set of rules
effectively permits connections from any host, but has limited access from host
10.20.30.40 to user TS1004 on that host. No host can execute commands as local user
root.

User TS1004 on host 10.20.30.40 can execute commands as local user tsup1004 without
providing the password.

User TS1004 from host 10.20.30.40 can execute commands as any local user by
providing the local user password.

When a certificate is presented that maps to a certificate ID, certificate ID joe can request
local user id tsup1004 without a password. Certificate ID joe is allowed to execute
commands with any other local user ID with a password. Certificate ID operations cannot
run anything. All other certificate IDs can execute commands with any user ID except for
root with a password.

Components

Universal Control

uctl_access 10.20.30.,*,*,allow,auth
uctl_access ALL,*,*,deny,auth

uctl_cert_access operations,*,allow,auth
uctl_cert_access *,*,deny,auth

uctl_access 10.20.30.40,TS1004,tsup1004,allow,noauth
uctl_access 10.20.30.40,TS1004,*,allow,auth
uctl_access 10.20.30.40,*,*,deny,auth
uctl_access ALL,*,root,deny,auth

uctl_cert_access joe,tsup1004,allow,noauth
uctl_cert_access joe,*,allow,auth
uctl_cert_access operations,*,deny,auth
uctl_cert_access *,root,deny,auth
infitran-user-4301 Confidential & Proprietary 212

Universal Access Control List Examples Security
7.6.11 Universal Event Monitor Server for UNIX

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections unless an X.509 certificate is presented that maps to certificate ID
operations.

The following set of rules effectively permit connections from any host but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can monitor events
as local user root. User TS1004 on host 10.20.30.40 can monitor events as local user
tsup1004 without providing the password. Users TS1004 from host 10.20.30.40 can
execute commands as any local user by providing the local user password.

Components

Universal Event Monitor Server for UNIX

uem_access 10.20.30.,*,*,allow,auth
uem_access ALL,*,*,deny,auth

uem_access 10.20.30.40,TS1004,tsup1004,allow,noauth
uem_access 10.20.30.40,TS1004,*,allow,auth
uem_access 10.20.30.40,*,*,deny,auth
uem_access ALL,*,root,deny,auth
infitran-user-4301 Confidential & Proprietary 213

Universal Access Control List Examples Security
7.6.12 Universal Broker for IBM i

The following set of rules permit connections for the subnet 10.20.30 and denies all other
connections.

The following set of rules permit connections from host 10.20.30.40 and 10.20.30.50 and
denies all other connections.

The following set of rules map X.509 certificates to certificate identifiers.

Components

Universal Broker for IBM i

ubroker_access 10.20.30.,allow
ubroker_access ALL,deny

ubroker_access 10.20.30.40,allow
ubroker_access 10.20.30.50,allow
ubroker_access ALL,deny

cert_map id=joe,subject=”/C=US/ST=Georgia/O=Acme, Inc./
 OU=Sales/CN=Joe Black”
infitran-user-4301 Confidential & Proprietary 214

Universal Access Control List Examples Security
7.6.13 Universal Data Mover Server for IBM i

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections.

The following set of rules effectively permit connections from any host, but has limited
access from host 10.20.30.40 to user TS1004 on that host. No host can execute
commands as local user root. User TS1004 on host 10.20.30.40 can execute commands
as local user tsup1004 without providing the password. Users TS1004 from host
10.20.30.40 can execute commands as any local user by providing the local user
password.

Components

Universal Data Mover Server for IBM i

udm_access 10.20.30.,*,*,allow,auth
udm_access ALL,*,*,deny,auth

udm_access 10.20.30.40,TS1004,tsup1004,allow,noauth
udm_access 10.20.30.40,TS1004,*,allow,auth
udm_access 10.20.30.40,*,*,deny,auth
udm_access ALL,*,root,deny,auth
infitran-user-4301 Confidential & Proprietary 215

Universal Access Control List Examples Security
7.6.14 Universal Control Server for IBM i

The following set of rules permit services for the subnet 10.20.30 and denies all other
connections unless an X.509 certificate is presented that maps to certificate ID
operations.

When no certificate is presented that maps to a certificate ID, the following set of rules
effectively permit connections from any host but has limited access from host 10.20.30.40
to user TS1004 on that host. No host can execute commands as local user root. User
TS1004 on host 10.20.30.40 can execute commands as local user tsup1004 without
providing the password. Users TS1004 from host 10.20.30.40 can execute commands as
any local user by providing the local user password.

When a certificate is presented that maps to a certificate ID, certificate ID joe can request
local user ID tsup1004 without a password. Certificate ID joe is allowed to execute
commands with any other local user ID with a password. Certificate ID operations cannot
run anything. All other certificate IDs can execute commands with any user ID except for
root with a password.

Components
Universal Control

uctl_access 10.20.30.,*,*,allow,auth
uctl_access ALL,*,*,deny,auth

uctl_cert_access operations,*,allow,auth
uctl_cert_access *,*,deny,auth

uctl_access 10.20.30.40,TS1004,tsup1004,allow,noauth
uctl_access 10.20.30.40,TS1004,*,allow,auth
uctl_access 10.20.30.40,*,*,deny,auth
uctl_access ALL,*,root,deny,auth

uctl_cert_access joe,tsup1004,allow,noauth
uctl_cert_access joe,*,allow,auth
uctl_cert_access operations,*,deny,auth
uctl_cert_access *,root,deny,auth
infitran-user-4301 Confidential & Proprietary 216

X.509 Certificates Security
7.7 X.509 Certificates
A certificate is an electronic object that identifies an entity. It is analogous to a passport in
that it must be issued by a party that is trusted by all who accept the certificate.
Certificates are issued by trusted parties called Certificate Authorities (CA's). For
example, VeriSign Inc. is a CA that most parties trust. We all have faith that a trusted CA
takes the necessary steps to confirm the identity of a user before issuing the user a
certificate.

Certificate technology is based on public / private key technology. There are a few
different types of public / private keys: RSA, DH, and DSS. As their name denotes, the
private key must be kept private, like a password. The public key can be given to anyone
or even published in a newspaper.

A property of public / private keys is that data encrypted with one can be decrypted only
with the other. Therefore, if someone wants to send you a secret message, they encrypt
the data with your public key, which everyone has. However, since you are the only one
with your private key, you are the only one who can decrypt it. If you want to send
someone message, such as a request for $100,000 purchase, you can "sign" it with your
private key.

Note: Signing does not encrypt the data. Once a person receives your request, that
person can verify it is from you by verifying your electronic signature with your
public key.

A certificate ties a statement of identity to a public key. Without the public key, the
certificate is meaningless. Possession of a certificate alone does not prove your identity.
You must have the corresponding private key. The two together prove your identity to any
third party that trusts the CA that issued your certificate. This is a key point; if you do not
trust the CA that signed a certificate, you cannot trust the certificate.

Since certificates originally were designed to be used for internet authentication, global
directory technologies were developed to make them available via the internet. This
directory technology is known as X.500 Directory Access Protocol. Later LDAP was
introduced by Netscape to make it Lightweight Directory Access Protocol.

X.500 divides the world into a hierarchical directory. A person's identity is located by
traversing down the hierarchy until it reaches the last node. Each node in the hierarchy
consists of a type of object, such as a country, state, company, department, or name.
infitran-user-4301 Confidential & Proprietary 217

X.509 Certificates Security
7.7.1 Sample Certificate Directory

Figure 7.9, below, provides a sample diagram of a small X.500 directory.

Figure 7.9 X.500 Directory (sample)

The keywords listed on each node are referred to as a Relative Distinguished Name
(RDN). A person is identified by a Distinguished Name (DN). The DN value for Joe Black
is C=US/ST=Georgia/O=Stonebranch, Inc./OU=Sales/CN=Joe Black.

A certificate is composed of many fields and possible extensions. Many of the most
popular fields are specified as X.500 DN values.
infitran-user-4301 Confidential & Proprietary 218

X.509 Certificates Security
7.7.2 Sample X.509 Certificate

Figure 7.10, below, illustrates a sample X.509 version 3 certificate for Joe Buck at the
Acme corporation.

Figure 7.10 X.509 Version 3 Certificate (sample)

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 01:02:03:04:05:06:07:08

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=US, ST=Florida, O=Acme, Inc., OU=Security, CN=CA
Authority/emailAddress=ca@acme.com

 Validity

 Not Before: Aug 20 12:59:55 2004 GMT

 Not After : Aug 20 12:59:55 2005 GMT

 Subject: C=US, ST=Florida, O=Acme, Inc., OU=Sales, CN=Joe Buck

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:be:5e:6e:f8:2c:c7:8c:07:7e:f0:ab:a5:12:db:

 fc:5a:1e:27:ba:49:b0:2c:e1:cb:4b:05:f2:23:09:

 77:13:75:57:08:29:45:29:d0:db:8c:06:4b:c3:10:

 88:e1:ba:5e:6f:1e:c0:2e:42:82:2b:e4:fa:ba:bc:

 45:e9:98:f8:e9:00:84:60:53:a6:11:2e:18:39:6e:

 ad:76:3e:75:8d:1e:b1:b2:1e:07:97:7f:49:31:35:

 25:55:0a:28:11:20:a6:7d:85:76:f7:9f:c4:66:90:

 e6:2d:ce:73:45:66:be:56:aa:ee:93:ae:10:f9:ba:

 24:fe:38:d0:f0:23:d7:a1:3b

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Alternative Name:

 email:joe.buck@acme.com

 Signature Algorithm: md5WithRSAEncryption

 a0:94:ca:f4:d5:4f:2d:da:a8:6d:e3:41:6e:51:83:57:b3:b5:

 31:95:32:b6:ca:7e:d1:4f:fb:01:82:db:23:a0:39:d8:69:71:

 31:9c:0a:3b:ce:f6:c6:e2:5c:af:23:f0:d7:ee:87:3e:8a:7b:

 40:03:39:64:a1:8c:29:7d:5b:99:93:fa:23:19:e1:e4:ac:4d:

 13:0f:de:ad:51:27:e3:4e:4b:9f:40:4c:05:fd:f2:82:09:3e:

 46:05:f0:ad:cc:f7:78:25:3e:11:f8:ca:b6:df:f7:37:57:9b:

 63:00:d0:b5:b5:18:ec:38:73:d2:85:a3:c7:24:21:47:ee:f2:

 8c:0d
infitran-user-4301 Confidential & Proprietary 219

X.509 Certificates Security
Note: The contents of a certificate file does not look like the information in Figure 7.10,
which is produced by a certificate utility that uses the certificate file as input.
Certificates can be saved in multiple file formats, so their file contents will look
very different.

7.7.3 Certificate Fields

A certificate is composed of many fields.

Table 7.5, below, describes the main certificate fields.

Table 7.5 Certificate Fields

Field or Section Description

Version X.509 certificates come in two versions: 1 and 3.

Serial Number CA is required to provide each certificate it issues a unique serial number. The
serial number is not unique for all certificates, only for the certificates issued by
each CA.

Issuer DN name of the CA that issued the certificate.

Validity Starting and ending date for which this certificate is valid.

Subject Identity of the certificate. A certificate may identify a person or a computer. In
this case, the certificate identifies Joe Buck in the Sales organization of the
Acme company in the state of Florida in the United States.

Public Key Public key associated with the certificate identity.

X509v3 Extensions X.509 version 3 introduced this section so that additional certificate fields may
be added. In this case, the identity’s email address is included as a Subject
Alternative Name field.
This section is not available in X.509 version 1.

Signature CA’s digital signature of the certificate.
infitran-user-4301 Confidential & Proprietary 220

X.509 Certificates Security
7.7.4 SSL Peer Authentication

The SSL protocol utilizes X.509 certificates to perform peer authentication. For example,
a Universal Data Mover Manager may want to authenticate that it is connected to the
correct Broker.

Peer authentication is performed by either one or both of the programs involved in the
network session. If a Manager wishes to authenticate the Broker to which it connects, the
Broker will send its certificate to the Manager for the Manager to authenticate. Should the
Broker wish to authenticate the Manager, the Manager sends its certificate to the Broker.

Certificate authentication is performed in the following steps:

1. Check that the peer certificate is issued by a trusted CA.
2. Check that the certificate has not been revoked by the CA.
3. Check that the certificate identifies the intended peer.

If a step fails, the network session is terminated immediately.

Certificate Verification
The Stonebranch Solutions component must be configured with a list of trusted CA
certificates. When a peer certificate is received, the trusted CA certificates are used to
verify that the peer certificate is issued by one of the trusted CA's.

The trusted CA certificate list must be properly secured so that only authorized accounts
have update access to the list. Should the trusted CA list become compromised, there is
a possibility that an untrusted CA certificate was added to the list.

The CA certificate list configuration option is CA_CERTIFICATES. It specifies a PEM
formatted file that contains one or more CA certificates used for verification.

Should a peer certificate not be signed by a trusted CA, the session is immediately
terminated.

Certificate Revocation
After a certificate is verified to have come from a trusted CA, the next step is to check if
the CA has revoked the certificate. Since a certificate is held by the entity for which it
identifies, a CA cannot take a certificate back after it is issued. So when a CA needs to
revoke a certificate for some reason, it issues a list of revoked certificates referred to as
the Certificate Revocation List (CRL). A program that validates certificates needs to have
access to the latest CRL issued by the CA.

The CERTIFICATE_REVOCATION_LIST configuration option specifies the PEM
formatted file that contains the CRL. This option is available in all Stonebranch Solutions
components that utilize certificates.
infitran-user-4301 Confidential & Proprietary 221

X.509 Certificates Security
Certificate Identification
Once a certificate is validated as being issued by a trusted CA, and not revoked by the
CA, the next step is to check that it identifies the intended peer.

A Stonebranch Solutions Manager validates a Broker certificate by the Broker host name
or IP address or the certificate serial number. The VERIFY_HOST_NAME configuration
option is used to specify the host name or IP address that is identified in the Broker
certificate. Each certificate signed by a CA must have a unique serial number for that CA.
The VERIFY_SERIAL_NUMBER option is used to specify the serial number in the Broker
certificate.

Should certificate identification fail, the session is immediately terminated.

Universal Brokers work differently than the Managers. A Broker maps a peer certificate to
a certificate ID. The certificate map definitions are part of the Universal Access Control
List (UACL) definitions. At that point, the certificate ID is used by UACL definitions to
control access to Broker and Server services.

Certificate Support
Many certificate authority applications, also known as Public Key Infrastructure (PKI)
applications, are available. Stonebranch Solutions should be able to utilize any certificate
in a PEM format file. PEM (Privacy Enhanced Mail) is a common text file format used for
certificates, private keys, and CA lists.

Stonebranch Solutions support X.509 version 1 and version 3 certificates.

Although implementing a fully featured PKI infrastructure is beyond the scope of
Stonebranch Solutions and this documentation, some assistance is provided using the
OpenSSL toolkit (http://www.openssl.org).

Stonebranch Solutions on most of the supported platforms utilize the OpenSSL toolkit for
its SSL and certificate implementation. OpenSSL is delivered on most UNIX distributions
and Windows distributions are available on the OpenSSL website.

Stonebranch Solutions supports z/OS System SSL on the IBM z/OS operating system as
well as OpenSSL. System SSL interfaces directly with the RACF security product for
certificate access. All certificates, CA and user certificates, and private keys must be
stored in the RACF database to use System SSL.

The Stonebranch Solutions suite includes an X.509 certificate utility, Universal Certificate,
to create certificates for use in the Stonebranch Solutions suite. See Chapter 2 Universal
Certificate in the Stonebranch Solutions Utilities Reference Guide for details.
infitran-user-4301 Confidential & Proprietary 222

Creating Certificates Examples Security
7.8 Creating Certificates Examples
This section provides examples that illustrate how to use Universal Certificate.

The examples provide the command line options only so that they can be used easily in
any environment.

Creating a Certificate Authority Certificate

Creating a Certificate
infitran-user-4301 Confidential & Proprietary 223

Creating Certificates Examples Security
7.8.1 Creating a Certificate Authority Certificate

The first step in creating a certificate hierarchy is creating the root Certificate Authority
(CA) certificate. The CA certificate is used to issue user certificates.

A certificate is created by creating a certificate request and then having the CA validate
and sign the certificate. Since we are creating a root CA certificate, there is no CA to sign
the certificate request, so instead a self-signed certificate is created and the CA flag is
set.

The following command creates:
• Certificate request, which it writes it to file req.pem
• Private key, which it writes it to file cakey.pem

It is imperative that the private key file cakey.pem is secured so that no one other than the
CA has read access. If unauthorized access is gained to the CA’s private key, all
certificates issued by the CA no longer can be trusted.

The following command creates the CA certificate and writes it to file cacert.pem.

The CA certificate, cacert.pem, must be made available to any system that wants to
consider the certificates issued by the CA as valid.

Components

Universal Certificate

-create request –request_file req.pem –private_key_file cakey.pem
–country US –state Maryland –locality Baltimore –organization “Acme, Inc.”
–common_name “Acme CA”

-create cert –request_file req.pem –cert_file cacert.pem
–private_key_file cakey.pem –ca yes
infitran-user-4301 Confidential & Proprietary 224

Creating Certificates Examples Security
7.8.2 Creating a Certificate

There are two steps in creating a certificate:
• First step is performed by the party that wants the certificate.
• Second step is performed by the Certificate Authority (CA) that creates the certificate.

Step 1
Step one is creating the certificate request. The certificate request will then be sent to the
CA that verifies the request and creates the certificate from the request. The command
that creates the certificate request also creates a private key. The private key must be
secured so that only the entity identified by the certificate request has read access.

The following command creates:
• Certificate request, which it writes it to file req.pem.
• Private key, which it writes it to file pkey.pem.

Step 2

Step two is for the CA to create a certificate from the request and sign it with the CA’s
private key.

The following command creates the certificate and writes it to file cert.pem.

Components

Universal Certificate

-create request –request_file req.pem –private_key_file pkey.pem –country US
–state Maryland –locality Baltimore –organization “Acme, Inc.”
–common_name “Joe Buck”

-create cert –request_file req.pem –cert_file cert.pem
–private_key_file cakey.pem –ca_cert_file cacert.pem
infitran-user-4301 Confidential & Proprietary 225

CHAPTER 8
Configuration Management
8.1 Overview
Configuration consists of specifying options that control component behavior and
resource allocation.
• An example of configurable component behavior is whether or not data transferred

over the network is compressed.
• An example of configurable resource allocation is the directory location in which the

product creates its log files.

Configuration can be done either by:
• Setting default options and preferences for all executions of a component.
• Setting options and preferences for a single execution of a component.

Each option is comprised of a pre-defined parameter, which identifies the option, and one
or more values. The format of the parameter depends on the method being used to
specify the option.

Although there are many configurable component options, components are – in general –
designed to require minimal configuration and administration. The default options will
work very well in most environments. When local requirements do require a change in
product configuration, there are multiple methods available to configure the products in
order to meet your needs.
infitran-user-4301 Confidential & Proprietary 226

Configuration Methods Configuration Management
8.2 Configuration Methods
All components provide a consistent and flexible method of configuration. An operating
system’s native configuration methods, such as configuration files, are utilized in order to
integrate with existing system management policies and procedures for the platform.

Depending on the specific Stonebranch Solutions component, and the operating system
on which it is being run, component configuration is performed by one or more methods.

These configuration methods, in their order of precedence, are:

1. Command Line
2. Command File
3. Environment Variables
4. Configuration File

The command line, command file, and environment variables methods let you set
configuration options and preferences for a single execution of a component.

The configuration file method lets you set default configuration options and preferences
for all executions of a component.

This order of precedence means that an option specified on the command line overrides
the same option specified in a command file, which overrides the same option specified
with an environment variable, which overrides the same option specified in a
configuration file.

Note: For security reasons, not all options can be overridden.

Universal Broker / Servers Configuration Method
Universal Broker, and all Stonebranch Solutions servers, are configurable only by
modifying their configuration files (see Section 8.2.4 Configuration File). They are not
configurable via command line, command file, or environmental variables.
infitran-user-4301 Confidential & Proprietary 227

Configuration Methods Configuration Management
8.2.1 Command Line

Command line options affect one instance of a program execution. Each time that you
execute a program, command line options let you tailor the behavior of the program to
meet the specific needs for that execution.

Command line options are the highest in order of precedence of all the configuration
methods (see Section 8.2 Configuration Methods). They override the options specified
using all other configuration methods, except where indicated.

Each command line options consist of:
• Parameter (name of the option)
• Value (pre-defined or user-defined value of the option)

The command line syntax depends, in part, on the operating system, as noted below.

An value may or may not be case-sensitive, depending on what it is specifying. For
example, if a value is either yes or no, it is not case-sensitive. It could be specified as
YES, Yes, or yes. However, if a value specifies a directory name or file name, it would be
case-sensitive if the operating system's file system is case-sensitive.

If an option is specified more than once on the command line, the last instance of the
option specified is used.

z/OS command line options are specified in the JCL EXEC statement PARM keyword or on the SYSIN
ddname. The PARM keyword is used to pass command line options to the program being executed with the
EXEC statement.
Command line options are prefixed with a dash (-) character. For many options, there are two different forms
in which they can be specified:
• Short form: one case-sensitive character
• Long form: two or more case-insensitive characters

The parameter and value must be separated by at least one space.
Example command line options specified in the PARM value follow:

As noted above, z/OS command line options also can be specified on the SYSIN ddname. This is the easiest
and least restrictive place to specify options, since the PARM values are limited in length. The options
specified in the SYSIN ddname have the same syntax. Options can be specified on one line or multiple lines.
The data set or inline data allocated to the SYSIN ddname cannot have line numbers in the last 8 columns
(that is, all columns of the records are used as input).

z/OS

Short form:
PARM='-l INFO –G yes'

Long form:
PARM='-LEVEL INFO -LOGIN YES'
infitran-user-4301 Confidential & Proprietary 228

Configuration Methods Configuration Management
UNIX and Windows command line options are prefixed with a dash (-) character, and alternatively on
Windows, the slash (/) character.
For many options, there are two different forms in which they can be specified:
• Short form: one case-sensitive character.
• Long form: two or more case insensitive characters.
The parameter and value must be separated by at least one space or tab character.
Example command line options follow:

IBM i command line options use the native conventions for Command Language (CL) commands. The option
name is specified as a CL parameter with its value enclosed in parentheses.
Example command line options follow:

All of the Stonebranch Inc. Stonebranch Solutions components provide IBM i-style command panels. The
panels are accessed by entering the command name on the command line and pressing the F4 (PROMPT)
key.

UNIX and Windows

Short form:
-l info –G yes

Long form:
-level info -login yes

-LEVEL info -LoGiN YES

IBM i

Command line options:
MSGLEVEL(INFO) COMPRESS(*YES)
infitran-user-4301 Confidential & Proprietary 229

Configuration Methods Configuration Management
8.2.2 Command File

The command file contains command line options specified in a file. The command file
enables you to save common command line options in permanent storage and reference
them as needed.

The command file is the second to highest in the precedence order, after command line
options (see Section 8.2 Configuration Methods).

Individual command line options can be specified on one or multiple lines. Blank lines are
ignored. Lines starting with the hash (#) character are ignored and can be used for
comments.

The command file can be encrypted if it is necessary to secure the contents.

Note: If the contents of the file contain sensitive material, the operating system's native
file and user security facilities should be used in addition to the file encryption
provided by Stonebranch Solutions.

In order to use a command file, either of the following is used:
• COMMAND_FILE_PLAIN option is used to specify the command file name.
• COMMAND_FILE_ENCRYPTED option is used to specify the encrypted command

file name.
infitran-user-4301 Confidential & Proprietary 230

Configuration Methods Configuration Management
8.2.3 Environment Variables

Environment variables, like command line options, allow options to be specified for one
instance of a program execution. Each time that you execute a program, environment
variables allow you to tailor the behavior of the program to meet the specific needs for
that execution.

Environment variables are the third to highest in the precedence order, after command file
options (see Section 8.2 Configuration Methods).

Each operating system has its own unique method of setting environment variables.

All environment variables used by Stonebranch Solutions are upper case and are
prefixed with a product identifier consisting of three or four characters. The product
sections specify the value of the environment variables. Values are case-sensitive.

Environment variables in z/OS are specified in the JCL EXEC statement PARM keyword. Environment
variables are part of the IBM Language Environment (LE) and as such are specified as LE runtime options.
The PARM value is divided into LE options and application options by a slash (/) character. Options to the
left of the slash are LE options and options to the right are application options.
Example of setting an environment variable:

Environment variables in UNIX are defined as part of the shell environment. As such, shell commands are
used to set environment variables. The environment variable must be exported to be used be a called
program.
Example of setting an environment variable:

z/OS

Set option UCMDLEVEL to a value of INFO:
PARM='ENVAR("UCMDLEVEL=INFO")/'

UNIX

Set option UCMDLEVEL to a value of INFO in a bourne, bash, or korn shell:
UCMDLEVEL=INFO

export UCMDLEVEL
infitran-user-4301 Confidential & Proprietary 231

Configuration Methods Configuration Management
Environment variables in Windows are defined as part of the Windows console command environment. As
such, console commands are used to set environment variables.
Example of setting an environment variable:

Environment variables in IBM i are defined with Command Language (CL) commands for the current job
environment.
Example of setting an environment variable:

Windows

Set option UCMDLEVEL to a value of INFO:
SET UCMDLEVEL=INFO

IBM i

Set option UCMDLEVEL to a value of INFO:
ADDENVVAR ENVVAR(UCMDLEVEL) VALUE(INFO)
infitran-user-4301 Confidential & Proprietary 232

Configuration Methods Configuration Management
8.2.4 Configuration File

Configuration files are used to specify system-wide configuration values. This method is
last in the order of precedence; that is, configuration file option values can be overridden
by every other method of configuration (see Section 8.2 Configuration Methods).

(For most Stonebranch Solutions components, some options can be specified only in a
configuration file, while other options can be overridden by individual command
executions. The Stonebranch Solutions reference guide for each component identifies
these options.)

The configuration files for all Stonebranch Solutions components on a system are
maintained by the local Universal Broker. Universal Broker serves the configuration data
to the other Stonebranch Solutions components. The components do not read the
configuration files themselves (except for Universal Enterprise Controller, which does
read its own configuration files).

When a component starts, it first registers with the locally running Universal Broker. As
part of the registration process, the Broker returns the component’s configuration data to
the component.

Universal Broker reads the configuration files when it first starts or when it receives a
configuration refresh request from Universal Control or Universal Enterprise Controller.
Any changes made to a configuration file are not in effect until the Broker is recycled or
receives a configuration refresh request (see Section 8.5 Configuration Refresh).

Universal Broker can operate in managed or unmanaged mode:
• In unmanaged mode, the configuration information for the various Stonebranch

Solutions components can be modified either:
• Locally (either by editing the configuration files or, on Windows systems, via the

Universal Configuration Manager).
• Remotely, via the Universal Enterprise Controller I-Management Console

application.
• In managed mode, the configuration information for the various Stonebranch

Solutions components is "locked down" and can be modified or viewed only via the
I-Management Console.

(For detailed information on unmanaged and managed modes, see Section 8.3 Remote
Configuration).

Configuration files are members of a PDSE. The data set record format is fixed or fixed block with a record
length of 80. No line numbers can exist in columns 72-80. All 80 columns are processed as data.
All configuration files are installed in the UNVCONF library.
See Configuration File Syntax for the configuration file syntax.

z/OS
infitran-user-4301 Confidential & Proprietary 233

Configuration Methods Configuration Management
Configuration files are regular text files on UNIX.
Universal Broker searches for the configuration files in a fixed list of directories. The Broker will use the first
configuration file that it finds in its search. The directories are listed below in the order they are searched:

Table 8.1 UNIX Configuration File Directory Search

See Configuration File Syntax for the configuration file syntax.

Although configuration files can be edited with any text editor (for example, Notepad), the Universal
Configuration Manager application, accessible via the Control Panel, is the recommended way to set
configuration options.
The Universal Configuration Manager provides a graphical interface and context-sensitive help, and helps
protect the integrity of the configuration file by validating all changes to configuration option values (see
Section 8.4 Universal Configuration Manager).

The configuration files on IBM i are stored in a source physical file named UNVCONF in the UNVPRD430
library. The files can be edited with a text editor.
See Configuration File Syntax for the configuration file syntax.

UNIX

Directory Notes

/etc/opt/universal

/etc/universal Installation default

/etc/stonebranch Obsolete as of version 2.2.0

/etc

/usr/etc/universal

/usr/etc/stonebranch Obsolete as of version 2.2.0

/usr/etc

Windows

IBM i
infitran-user-4301 Confidential & Proprietary 234

Configuration Methods Configuration Management
Configuration File Syntax
Configuration files are text files that can be edited with any available text editor.

The following rules apply for configuration file syntax:
• Options are specified in a keyword / value format.
• Keywords can start in any column.
• Keywords must be separated from values by at least one space or tab character.
• Keywords are not case sensitive.
• Keywords cannot contain spaces or tabs.
• Values can contain spaces and tabs, but if they do, they must be enclosed in single

(’) or double (") quotation marks. Repeat the enclosing characters to include them
as part of the value.

• Values case sensitivity depends on the value being specified. For example:
• Directory and file names are case sensitive.
• Pre-defined values (such as yes and no) are not case sensitive.

• Each keyword / value pair must be on one line.
• Characters after the value are ignored.
• Newline characters are not permitted in a value.
• Values can be continued from one line to the next either by ending the line with a:

• Plus (+) character, to remove all intervening spaces.
• Minus (-) character, to preserve all intervening spaces between the end of the

line being continued and the beginning of the continuing line.
Ensure that the line continuation character is the last character on a line.

• Comment lines start with a hash (#) character.
• Blank lines are ignored.

Note: If an option is specified more than once in a configuration file, the last option
specified is used.
infitran-user-4301 Confidential & Proprietary 235

Remote Configuration Configuration Management
8.3 Remote Configuration
Stonebranch Solutions can be configured remotely by Universal Enterprise Controller
using the I-Management Console client application, and can be "locked down" so that
they only can be remotely configured.

I-Management Console instructs the Universal Broker of a remote Agent to modify the
configurations of all Stonebranch Solutions components managed by that Universal
Broker.

Universal Broker supports remote configuration in either of two modes:
• Unmanaged Mode
• Managed Mode

8.3.1 Unmanaged Mode

Unmanaged mode is the default mode of operations for Universal Broker. It allows a
Universal Broker – and the Stonebranch Solutions components managed by that
Universal Broker – to be configured either:
• Locally, by editing configuration files.
• Remotely, via I-Management Console.

The system administrator for the machine on which an Agent resides can use any text
editor to modify the configuration files of the various local Stonebranch Solutions
components.

Via I-Management Console, selected users can modify all configurations of any Agent,
including the local Agent. I-Management Console sends the modified data to the
Universal Broker of that agent, which Universal Broker then uses to update the
appropriate configuration files.

If I-Management Console sends modifications for a Universal Broker configuration,
Universal Broker validates the modified data before it accepts it. If the data fails
validation, Universal Broker does not update its configuration file.

If I-Management Console sends modification to the configuration of any other
Stonebranch Solutions component, the Universal Broker updates the appropriate
configuration file. The component will use this new configuration at its next invocation.

Note: If errors or invalid configuration values are updated via I-Management Console for
a component other than Universal Broker, the component may not run
successfully until the configuration has be corrected.
infitran-user-4301 Confidential & Proprietary 236

Remote Configuration Configuration Management
8.3.2 Managed Mode

When a Universal Broker is operating in managed mode, the configuration information for
all Stonebranch Solutions components managed by that Universal Broker is "locked
down." Universal Broker stores the information in a database file located within its
specified spool directory. The information can be modified only via I-Management
Console.

From this point on, Universal Broker uses the database file – not the configuration files –
to access configuration information. Any configuration changes made to the components
– via I-Management Console – are placed in the database file. Therefore, as long as
Universal Broker stays in managed mode, the configuration files may no longer contain
current or valid configuration information.

If managed mode is de-selected for the Universal Broker, it reads the database file where
it stored the configuration information. Universal Broker uses this information to create
and/or update configuration files for the components.
• If a configuration file exists in the configuration directory, it is overwritten.
• If a configuration file does not exist, it is created.

Note: Because of remote configuration and the desire to be able to "lock down" all
product configurations, Universal Broker – and all Stonebranch Solutions servers
– no longer support the command line and environmental variables methods of
specifying configuration options.

Selecting Managed Mode
The managed mode of operations for Universal Broker is selected via the I-Administrator
client application.

(See the Universal Enterprise Controller Client Applications User Guide for specific
information on how to select managed mode.)
infitran-user-4301 Confidential & Proprietary 237

Remote Configuration Configuration Management
Figure 8.1, below, illustrates remote configuration for one Agent in managed mode and
one Agent in unmanaged mode.

Figure 8.1 Remote Configuration - Unmanaged and Managed Modes of Operation
infitran-user-4301 Confidential & Proprietary 238

Remote Configuration Configuration Management
8.3.3 Universal Broker Start-up

At Universal Broker start-up, in both managed and unmanaged modes, the Universal
Broker configuration file is always read.

Unmanaged Mode
At Universal Broker start-up in unmanaged mode, Universal Broker reads the
configuration files of all Stonebranch Solutions components into its memory. The
Universal Broker configuration file is used to define the Universal Broker configuration,
just as all configuration files are used in unmanaged mode. Universal Broker updates its
memory from the configuration files whenever Universal Control issues a configuration
refresh request.

Managed Mode
At Universal Broker start-up in managed mode, the Universal Broker configuration file
points Universal Broker to the location of the configuration spool file, from which the
Broker retrieves configuration information for all Stonebranch Solutions components.
Universal Broker updates its memory from the configuration spool file and, automatically,
after changes are made via I-Management Console.

If more configuration information than needed is included in the Universal Broker
configuration file at Universal Broker start-up, Universal Broker will update its running
configuration with the information that it retrieved from the spool file. The configuration file
that was used at start-up is made obsolete.
infitran-user-4301 Confidential & Proprietary 239

Universal Configuration Manager Configuration Management
8.4 Universal Configuration Manager
The Universal Configuration Manager is a Stonebranch Solutions graphical user interface
application that enables you to configure all of the Stonebranch Solutions components
that have been installed on a Windows operating system.

It is the recommended method of specifying configuration data that will not change with
each command invocation. Universal Configuration Manager helps protect the integrity of
the configuration file by validating all changes to configuration option values.

8.4.1 Availability

Universal Configuration Manager is installed automatically on the Windows operating
system as part of every Stonebranch Solutions for Windows installation.

It is available to all user accounts in the Windows Administrator group.

When opening the Universal Configuration Manager for the first time on Windows Vista / Windows 7, two new
operating system features, the Program Compatibility Assistant (PCA) and User Account Control (UAC), may
affect its behavior.
With these two features enabled, the expected Universal Configuration Manager behavior is as follows:
1. Universal Configuration Manager may issue the following error.

Figure 8.2 Universal Configuration Manager Error dialog – Windows Vista / Windows 7

2. Click OK to dismiss the error message.

The Windows Vista / Windows 7 Program Compatibility Assistant (PCA) displays the following dialog:

Windows Vista, Windows 7
infitran-user-4301 Confidential & Proprietary 240

Universal Configuration Manager Configuration Management
Figure 8.3 Program Compatibility Assistant – Windows Vista / Windows 7

3. To continue, select Open the control panel using recommended settings. This instructs the PCA to "shim"
(Microsoft term) the Configuration Manager, establishing it as an application that requires elevated
privileges.
Windows Vista / Windows 7 User Account Control (UAC) then displays a prompt seeking permission to
elevate the logged-in account's access token.

4. Select Continue to give the account full administrative privileges.
Subsequent attempts to open Universal Configuration Manager should result only in the UAC prompt.
infitran-user-4301 Confidential & Proprietary 241

Universal Configuration Manager Configuration Management
8.4.2 Accessing the Universal Configuration Manager

To access the Universal Configuration Manager:

1. Click the Start icon at the lower left corner of your Windows operating system screen
to display the Start menu.

2. Click (Settings/) Control Panel on the Start menu to display the Control Panel screen.
3. Select the Universal Configuration Manager icon to display the Universal

Configuration Manager screen (see Figure 8.4).

Newer versions of Windows support a Control Panel view that places applet icons within categories. This
"category view" may affect the location of the Universal Configuration Manager icon.
For example, the Windows XP Category View places the Universal Configuration Manager icon under the
Other Control Panel Options link. Windows Vista, Windows 7, and Windows Server 2008 / 2008 R2 place the
icon within the Additional Options category.
If you have trouble locating the Universal Configuration Manager icon, simply switch to the Classic View to
display all Control Panel icons at the same time.

The Windows Control Panel places icons for all 32-bit applets under the View x86 Control Panel Icons (or, on
newer versions, the View 32-bit Control Panel Icons) category, even when the Classic View is enabled.
When using the Category View, look for the 32-bit Control Panel applet icons in the Additional Options
category.

Windows XP, Windows Vista, Windows 7, Windows Server 2008 / 2008 R2

64-bit Windows Editions
infitran-user-4301 Confidential & Proprietary 242

Universal Configuration Manager Configuration Management
Figure 8.4 Universal Configuration Manager

Each Universal Configuration Manager screen contains two sections:

1. Left side of the screen displays the Installed Components tree, which lists:
• Stonebranch Solutions components currently installed on your system.
• Property pages available for each component (as selected), which include one or

more of the following:
• Configuration options
• Access control lists
• Licensing information
• Other component-specific information

2. Right side of the screen displays information for the selected component / page.

(By default, Universal Configuration Manager displays the first property page of the first
component in the Installed Components tree.)
infitran-user-4301 Confidential & Proprietary 243

Universal Configuration Manager Configuration Management
8.4.3 Navigating through Universal Configuration Manager

To display general information about a component, click the component name in the
Installed Components list.

To display the list of property pages for a component, click the + icon next to the
component name in the Installed Components list.

To display a property page, click the name of that page in the Installed Components list.

If a property page has one or more of its own pages, a + icon displays next to the name of
that property page in the Installed Components list. Click that + icon to display a list of
those pages.

In Figure 8.4, for example:
• List of property pages is displayed for Universal Broker.
• Message Options property page has been selected, and information for that property

is displayed on the right side of the page.
• No + icons next to any of the property pages indicates that they do not have one or

more of their own property pages.

8.4.4 Modifying / Entering Data

On the property pages, modify / enter data by clicking radio buttons, selecting from
drop-down lists, and/or typing in data entry fields.

Some property pages provide panels that you must click in order to:
• Modify or adjust the displayed information.
• Display additional, modifiable information.

Note: You do not have to click the OK button after every modification or entry, or on
every property page on which you have modified and/or entered data. Clicking OK
just once, on any page, will save the modifications and entries made on all pages
– and will exit Universal Configuration Manager (see Section 8.4.5 Saving Data.)

Rules for Modifying / Entering Data
The following rules apply for the modification and entry of data:
• Quotation marks are not required for configuration values that contain spaces.
• Edit controls (used to input free-form text values) handle conversion of any case

sensitive configuration values. Except where specifically noted, values entered in all
other edit controls are case insensitive.
infitran-user-4301 Confidential & Proprietary 244

Universal Configuration Manager Configuration Management
8.4.5 Saving Data

To save all of the modifications / entries made on all of the property pages, click the OK
button at the bottom of any property page. The information is saved in the configuration
file, and Universal Broker is automatically refreshed.

Clicking the OK button also exits the Universal Configuration Manager. (If you click OK
after every modification, you will have to re-access Universal Configuration Manager.)

To exit Universal Configuration Manager without saving any of the modifications / entries
made on all property pages, click the Cancel button.

8.4.6 Accessing Help Information

Universal Configuration Manager provides context-sensitive help information for the fields
and panels on every Stonebranch Solutions component options screen.

To access Help:

1. Click the question mark (?) icon at the top right of the screen.
2. Move the cursor (now accompanied by the ?) to the field or panel for which you want

help.
3. Click the field or panel to display Help text.
4. To remove the displayed Help text, click anywhere on the screen.

The Universal Configuration Manager’s context-sensitive help is a WinHelp file, which Windows Vista,
Windows 7, and Windows Server 2008 / 2008 R2 do not support.
Microsoft offers the 32-bit WinHelp engine as a separate download from its website. If you require access to
the Universal Configuration Manager’s context-sensitive help, simply download and install the WinHelp
engine.

Windows Vista, Windows 7, Windows Server 2008 / 2008 R2
infitran-user-4301 Confidential & Proprietary 245

Universal Configuration Manager Configuration Management
8.4.7 Universal Data Mover Installed Components

Universal Data Mover Manager
Figure 8.5 illustrates the Universal Configuration Manager screen for the Universal Data
Mover Manager.

The Installed Components list identifies all of the UDM Manager property pages.

The text describes the selected component, Universal Data Mover Manager.

Figure 8.5 Universal Configuration Manager - UDM Manager
infitran-user-4301 Confidential & Proprietary 246

Universal Configuration Manager Configuration Management
Universal Data Mover Server
Figure 8.6 illustrates the Universal Configuration Manager screen for the Universal Data
Mover Server.

The Installed Components list identifies all of the UDM Server property pages.

The text describes the selected component, Universal Data Mover Server.

Figure 8.6 Universal Configuration Manager - UDM Server
infitran-user-4301 Confidential & Proprietary 247

Universal Configuration Manager Configuration Management
8.4.8 Universal Event Monitor Installed Components

Universal Event Monitor Manager
Figure 8.7 illustrates the Universal Configuration Manager screen for the Universal Event
Monitor Manager.

The Installed Components list identifies all of the UEM Manager property pages.

The text describes the selected component, Universal Event Monitor Manager.

Figure 8.7 Universal Configuration Manager - UEM Manager
infitran-user-4301 Confidential & Proprietary 248

Universal Configuration Manager Configuration Management
Universal Event Monitor Server
Figure 8.8, illustrates the Universal Configuration Manager screen for the Universal Event
Monitor Server.

The Installed Components list identifies all of the UEM Server property pages.

The text describes the selected component, Universal Event Monitor Server.

Figure 8.8 Universal Configuration Manager - UEM Server
infitran-user-4301 Confidential & Proprietary 249

Universal Configuration Manager Configuration Management
8.4.9 Universal Enterprise Controller Component

Figure 8.9 illustrates the Universal Configuration Manager screen for the Universal
Enterprise Controller.

The Installed Components list identifies all of the UEC property pages.

The text describes the selected component, Universal Enterprise Controller.

Figure 8.9 Universal Configuration Manager - Universal Enterprise Controller
infitran-user-4301 Confidential & Proprietary 250

Universal Configuration Manager Configuration Management
8.4.10 Universal Broker Installed Component

Figure 8.10 illustrates the Universal Configuration Manager screen for the Universal
Broker.

The Installed Components list identifies all of the Universal Broker property pages.

The text describes the selected component, Universal Broker.

Figure 8.10 Universal Configuration Manager - Universal Broker
infitran-user-4301 Confidential & Proprietary 251

Universal Configuration Manager Configuration Management
8.4.11 Universal Automation Center Registration Server Installed
Component

Figure 8.11 illustrates the Universal Configuration Manager screen for the Universal
Automation Center Registration Server.

The Installed Components list identifies all of the Universal Automation Center
Registration Server property pages.

The text describes the selected component, Universal Automation Center Registration
Server.

Figure 8.11 Universal Configuration Manager - Universal Automation Center Registration Server
infitran-user-4301 Confidential & Proprietary 252

Universal Configuration Manager Configuration Management
8.4.12 Stonebranch Solutions Utilities Installed Components

Universal Control Manager
Figure 8.12 illustrates the Universal Configuration Manager screen for the Universal
Control Manager.

The Installed Components list identifies all of the Universal Control Manager property
pages.

The text describes the selected component, Universal Control Manager.

Figure 8.12 Universal Configuration Manager - Universal Control Manager
infitran-user-4301 Confidential & Proprietary 253

Universal Configuration Manager Configuration Management
Universal Control Server
Figure 8.13 illustrates the Universal Configuration Manager screen for the Universal
Control Server.

The Installed Components list identifies all of the Universal Control Server property
pages.

The text describes the selected component, Universal Control Server.

Figure 8.13 Universal Configuration Manager - Universal Control Server
infitran-user-4301 Confidential & Proprietary 254

Universal Configuration Manager Configuration Management
Universal Event Log Dump
Figure 8.14 illustrates the Universal Configuration Manager screen for the Universal
Event Log Dump utility.

The Installed Components list identifies all of the Universal Event Log Dump property
pages.

The text describes the selected component, Universal Event Log Dump.

Figure 8.14 Universal Configuration Manager - Universal Event Log Dump
infitran-user-4301 Confidential & Proprietary 255

Universal Configuration Manager Configuration Management
Universal Query
Figure 8.15 illustrates the Universal Configuration Manager screen for the Universal
Query utility.

The Installed Components list identifies all of the Universal Query property pages.

The text describes the selected component, Universal Query.

Figure 8.15 Universal Configuration Manager - Universal Query
infitran-user-4301 Confidential & Proprietary 256

Configuration Refresh Configuration Management
8.5 Configuration Refresh
Universal Broker maintains the configuration files for all Stonebranch Solutions
components that it manages. The components do not read their configuration files
themselves (except for Universal Enterprise Controller, which does read its own
configuration file).

When a component starts, it first registers with its local Universal Broker. As part of the
registration process, Universal Broker returns the configuration data to the component.

Universal Broker reads the configuration files at initial start-up and, thereafter, whenever it
is refreshed; that is, when either of the following occurs:
• Universal Broker is recycled (stopped and restarted).
• Universal Broker is refreshed by Universal Control.
• Universal Broker is refreshed by Universal Enterprise Controller (via I-Management

Console).

• Universal Broker is refreshed by Universal Configuration Manager.

After a configuration file has been modified, the Universal Broker must be refreshed in
order for the modified values to take effect. Refreshing a Universal Broker directs it to
read its configuration data and update its current configuration settings.

Windows
infitran-user-4301 Confidential & Proprietary 257

Configuration Refresh Configuration Management
8.5.1 Configuration Refresh Via Universal Control

Universal Control refreshes the Universal Broker by issuing a configuration refresh
request via its REFRESH_CMD configuration option.

Universal Control directs Universal Broker to refresh the configuration data of all
components, including itself, or a single component. (Currently, the only individual
component can be refreshed this way is the Universal Event Monitor Server.)

Configuration Refresh for Universal Event Monitor Server
Because an event-driven Universal Event Monitor (UEM) Server typically is a
long-running process, the ability to refresh an active UEM Server's configuration and list
of assigned event definitions is provided. Automatic refresh of configuration and event
information for a demand-driven UEM Server is not supported; the values it obtains at
startup are the ones it uses throughout its lifetime.

When a change is made to the stored UEM Server configuration settings (see Section
8.2.4 Configuration File), active event-driven UEM Servers must be notified that a

change has taken place. This is done via Universal Control, using the Universal Control
Manager REFRESH_CMD option, along with a component type value that identifies the
component to refresh (see Section 8.6 Refreshing via Universal Control Examples).

A request to update the configuration of local event-driven UEM Servers is issued automatically whenever a
change is made to a UEM Server's configuration through the Universal Configuration Manager (see
Section 8.4 Universal Configuration Manager).

When Universal Control or the Universal Configuration Manager (Windows only) instructs
an active event-driven UEM Server to refresh its cached configuration, the event-driven
Server processes the request immediately.

The UEMLoad utility automatically notifies an event-driven UEM Server of an event
definition change via a flag that resides in the local Universal Broker. UEM Server checks
this flag every two minutes and updates its cached list of event definitions whenever
UEMLoad updates them. This eliminates the need to refresh UEM Server with Universal
Control following a database change.

Windows
infitran-user-4301 Confidential & Proprietary 258

Configuration Refresh Configuration Management
8.5.2 Configuration Refresh Via Universal Configuration
Manager

When any of the options that can be refreshed are updated using the Universal
Configuration Manager, a configuration refresh request is sent to Universal Broker, and
its configuration is refreshed automatically.

The configuration refresh request directs Universal Broker to take the following actions:

8.5.3 Universal Broker Configuration Options Refresh

As with all Stonebranch Solutions components, all Universal Broker options can be
modified by editing the configuration file directly. However, unlike other components, not
all Universal Broker options can be modified via I-Management Console. In
I-Management Console, these Universal Broker options are read-only.

Some Universal Broker options can be modified only by editing the Universal Broker
configuration file, ubroker.conf. For these modifications to take effect, Universal Broker
must be recycled.

All other Universal Broker options can be modified either:
• By editing ubroker.conf.
• Via I-Management Console.
• Via the Universal Configuration Manager.

Depending on the option, for a modification to take effect:
• Universal Broker must be recycled.
• Universal Broker must be refreshed by issuing a Universal Control configuration

refresh request (via the REFRESH_CMD configuration option), if the modifications
are made in ubroker.conf.

• Universal Broker is refreshed automatically, if the modifications are made via
I-Management Console or the Universal Configuration Manager.

For a list of the Universal Broker configuration options in each category, see the Universal
Broker Reference Guide, Chapter 10 Universal Broker Configuration Options Refresh.

Step Description

Step 1 Read its configuration file.
Universal Broker refreshes its configuration options.

Step 2 Read all component definitions found in the component definition directory. The Broker
replaces all component definitions with the newly read component definitions. New
component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration entries from the registry.
The Broker replaces its UACL entries with the newly read entries.
infitran-user-4301 Confidential & Proprietary 259

Refreshing via Universal Control Examples Configuration Management
8.6 Refreshing via Universal Control Examples
This section provides examples of how to refresh configuration data of all components,
including itself, or a single component, using a Universal Control. (Currently, the only
individual component that can be refreshed is the Universal Event Monitor Server.)

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

Refreshing Universal Broker from z/OS

Refreshing a Component from z/OS

Windows

Refreshing Universal Broker via Universal Control from Windows

Refreshing a Component via Universal Control from Windows

UNIX

Refreshing Universal Broker via Universal Control from UNIX

Refreshing a Component via Universal Control from UNIX

IBM i

Refreshing Universal Broker via Universal Control from IBM i

Refreshing a Component via Universal Control from IBM i
infitran-user-4301 Confidential & Proprietary 260

Refreshing via Universal Control Examples Configuration Management
8.6.1 Refreshing Universal Broker from z/OS

This example refreshes the Universal Broker from z/OS.

Figure 8.16 Refreshing Universal Broker via Universal Control from z/OS

This example refreshes the Broker configuration on host dallas.

//jobname JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//***

//* (c) Copyright 2001-2008, Stonebranch, Inc. All rights reserved.

//*

//* Stonebranch, Inc.

//* Universal Control

//*

//* Description

//* -----------

//* This sample demonstrates the use of the UCTL program to refresh

//* a running component on host dallas.

//*

//* Make the following modifications as required by your local

//* environment:

//*

//* - Modify the JOB statement as appropriate.

//* - Change all '#HLQ' to the high-level qualifier of the

//* Universal Command data sets.

//* - If not already done, modify the JCL procedure UCTLPRC

//* as required by your local environment.

//**

//*

// JCLLIB ORDER=#HLQ.UNV.SUNVSAMP

//*

//STEP1 EXEC UCTLPRC

//SYSIN DD *

 -refresh -host dallas

/*
infitran-user-4301 Confidential & Proprietary 261

Refreshing via Universal Control Examples Configuration Management
The REFRESH command directs the Broker to take the following actions:

SYSIN Options
The SYSIN options used in this example are:

Components

Universal Control

Step Procedure

Step 1 Read its configuration file.
The Broker refreshes configuration options.

Step 2 Read all component definitions found in ddname UNVCONF. The Broker replaces all
component definitions with the newly read component definitions. New component
definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration file allocated to ddname UNVACL.
The Broker replaces its UACL entries with the newly read entries.

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of dallas.
infitran-user-4301 Confidential & Proprietary 262

Refreshing via Universal Control Examples Configuration Management
8.6.2 Refreshing a Component from z/OS

This example refreshes a component on a remote system.

Figure 8.17 Refreshing Component via Universal Control from z/OS

SYSIN Options

The SYSIN options used in this example are:

Components

Universal Control

//jobname JOB CLASS=A,MSGCLASS=X

//STEP1 EXEC UCTLPRC

//SYSIN DD *

 -refresh uems –cmdid “UEM-dallas” –host dallas –userid joe -pwd akkSdiq

/*

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 263

Refreshing via Universal Control Examples Configuration Management
8.6.3 Refreshing Universal Broker via Universal Control from
Windows

This example refreshes Universal Broker on a remote system.

Figure 8.18 Refreshing Universal Broker via Universal Control from Windows

Command Line Options

The command line options used in this example are:

This refresh request directs Universal Broker to take the following actions:

Components

Universal Control

uctl –refresh -host dallas -userid joe –pwd akkSdiq

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Step Description

Step 1 Read its configuration file.
Universal Broker refreshes its configuration options.

Step 2 Read all component definitions found in the component definition directory. The Broker
replaces all component definitions with the newly read component definitions. New
component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration entries from the registry.
The Broker replaces its UACL entries with the newly read entries.
infitran-user-4301 Confidential & Proprietary 264

Refreshing via Universal Control Examples Configuration Management
8.6.4 Refreshing a Component via Universal Control from
Windows

This example refreshes a component on a remote system.

Figure 8.19 Refreshing Component via Universal Control from Windows

Command Line Options

The command line options used in this example are:

Components

Universal Control

uctl –refresh uems –cmdid “UEM-dallas” -host dallas -userid joe –pwd akkSdiq

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 265

Refreshing via Universal Control Examples Configuration Management
8.6.5 Refreshing Universal Broker via Universal Control from
UNIX

This example refreshes Universal Broker on a remote system.

Figure 8.20 Refreshing Universal Broker via Universal Control from UNIX

Command Line Options

The command line options used in this example are:

This refresh request directs Universal Broker to take the following actions:

Components

Universal Control

uctl –refresh -host dallas -userid joe –pwd akkSdiq

Option Description

-refresh Instruction to refresh Universal Broker on the remote system.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.

Step Description

Step 1 Read its configuration file ubroker.conf.
Universal Broker refreshes the following configuration options:
• MESSAGE_LANGUAGE
• RUNNING_MAX

Step 2 Read all component definitions found in the component definition directory. The Broker
replaces all component definitions with the newly read component definitions. New
component definitions are added and deleted component definitions are removed.

Step 3 Read the Universal Access Control List configuration file uacl.conf.
The Broker replaces its UACL entries with the newly read entries.
infitran-user-4301 Confidential & Proprietary 266

Refreshing via Universal Control Examples Configuration Management
8.6.6 Refreshing a Component via Universal Control from UNIX

This example refreshes a component on a remote system.

Figure 8.21 Refreshing Component via Universal Control from UNIX

Command Line Options

The command line options used in this example are:

Components

Universal Control

uctl –refresh uems –cmdid “UEM-dallas” -host dallas -userid joe –pwd akkSdiq

Option Description

-refresh Type of component to refresh on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 267

Refreshing via Universal Control Examples Configuration Management
8.6.7 Refreshing Universal Broker via Universal Control from
IBM i

This example refreshes a component on a remote system.

Figure 8.22 Refreshing Universal Broker via Universal Control from IBM i

Command Line Options

The command line options used in this example are:

The REFRESH command directs Universal Broker to take the following actions:

Components

Universal Control

STRUCT RFSHCMPNM(*yes) HOST(dallas) USERID(joe) PWD(akkSdiq)

Option Description

RFSHCMPNM Instruction to refresh Universal Broker on the remote system.

HOST Directs the command to a computer with a host name of dallas.

USERID Remote user ID with which to execute the Universal Control Server process.

PWD Password for the user ID.

Step Description

Step 1 Read its configuration file UNVCONF and member UBROKER.

Step 2 Read all component definitions found in the component definition file, UNVPRD430 /
UNVCOMP. The Broker replaces all component definitions with the newly read
component definitions. New component definitions are added and deleted component
definitions are removed.

Step 3 Read the Universal Access Control List configuration file UNVCONF and member UACL.
The Broker replaces its UACL entries with the newly read entries.
infitran-user-4301 Confidential & Proprietary 268

Refreshing via Universal Control Examples Configuration Management
8.6.8 Refreshing a Component via Universal Control from IBM i

This example refreshes a component on a remote system.

Figure 8.23 Refreshing Component via Universal Control from IBM i

Command Line Options

The command line options used in this example are:

Components

Universal Control

STRUCT RFSHCMPNM(*yes) RFSHCMPNM(uems) CMDID('UEM-dallas') HOST(dallas)
USERID(joe) PWD(akkSdiq)

Option Description

RFSHCMPNM Specification for whether or not to refresh.

RFSHCMPNM Type of component to refresh on the remote system.

CMDID Assigns a command identifier of ‘UEM-dallas’ to the started component.

HOST Directs the command to a computer with a host name of dallas.

USERID Remote user ID with which to execute the Universal Control Server process.

PWD Password for the user ID.
infitran-user-4301 Confidential & Proprietary 269

Merging Configuration Options during an Upgrade Installation Examples Configuration Management
8.7 Merging Configuration Options during an
Upgrade Installation Examples

This section provides examples illustrating the merging of Stonebranch Solution
components’ configuration options, via the Universal Products Install Merge (UPI)
component, during a Stonebranch Solutions upgrade installation.

Windows and UNIX

The following list provides a link to each example:

Merge Files Using Program Defaults

Merge Files Introducing New Options

Merge Files Using Installation-Dependent Values
infitran-user-4301 Confidential & Proprietary 270

Merging Configuration Options during an Upgrade Installation Examples Configuration Management
Files Used in Examples
The examples in this section demonstrate the expected results when Universal Products
Install Merge is executed using two configuration files with the contents identified in
Table 8.2 and Table 8.3.

Note: Although these examples show Windows path names, the Universal Install Merge
behavior demonstrated also applies to UNIX systems.

Table 8.2, below, identifies the contents of infile.txt, a sample file in Stonebranch Solutions'
standard keyword / value configuration file format.

For the examples in this section, infile.txt could represent an existing or archived
configuration file, or a work file used to introduce and distribute configuration values
across one or more target systems.

Table 8.2 Stonebranch Solutions Configuration File Sample (infile.txt)

Table 8.3, below, identifies the contents of outfile.txt, another sample file in Stonebranch
Solutions’ standard keyword / value configuration file format.

For the examples in this section, outfile.txt might represent a default configuration file that
is delivered during product installation, or an existing production configuration file that
needs to be updated with values from infile.txt.

Table 8.3 Stonebranch Solutions Configuration File Sample (outfile.txt)

Keyword Value

installation_directory “C:\Program Files\Universal\UCmdMgr”

message_level info

#host some.remote.host

port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301 *

* This license key is for demonstration purposes only. It is not a valid license key.

Keyword Value

port 7887

activity_monitoring yes

event_generation *,x100
infitran-user-4301 Confidential & Proprietary 271

Merging Configuration Options during an Upgrade Installation Examples Configuration Management
8.7.1 Merge Files Using Program Defaults

Figure 8.24, below, illustrates the command line used to merge configuration options from
infile.txt into outfile.txt.

In this example, UPIMERGE executes using program defaults.

Figure 8.24 Merge infile.txt into outfile.txt Using Program Defaults

Table 8.4, below, identifies the contents of outfile.txt after UPIMERGE completes.

To obtain this result, UPIMERGE added options from infile.txt that did not exist in outfile.txt
(that is, installation_directory, message_level, license_key, and so on). It also preserved the
value for the port option by replacing the 7887 value with the currently defined 7850.

UPIMERGE also dropped the commented host option from infile.txt. UPIMERGE ignores
any comments in the input file, because merging those lines into the output file would
have no effect on the application’s behavior.

Finally, UPIMERGE commented out the activity_monitoring and event_generation options
introduced by outfile.txt. UPIMERGE cannot distinguish between options for new features
and new values for existing options. To prevent the introduction of a new value into an
application currently running with application-defined defaults, UPIMERGE’s default
response is to comment out any option in the output file with no match in the input file.

Table 8.4 Contents of outfile.txt after Default Merge

Components

Universal Products Install Merge

upimerge -dest outfile.txt -source infile.txt

Keyword Value

installation_directory “C:\Program Files\Universal\UCmdMgr”

message_level info

port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

#activity_monitoring yes

#event_generation *,x100
infitran-user-4301 Confidential & Proprietary 272

Merging Configuration Options during an Upgrade Installation Examples Configuration Management
8.7.2 Merge Files Introducing New Options

Figure 8.25, below, illustrates the command line used to merge configuration options from
infile.txt into outfile.txt.

In this example, UPIMERGE changes its default behavior, and introduces new values for
the activity_monitoring and event_generation options by not commenting them out in the
merged file.

Figure 8.25 Merge infile.txt into outfile.txt Keeping New Options

Table 8.5, below, identifies the contents of outfile.txt after UPIMERGE completes.

The result is almost identical to the example shown in Table 8.4. Executing UPIMERGE
with -keep_nomatch set to yes enables the activity_monitoring and event_generation options
in the output file.

Table 8.5 Contents of outfile.txt when Keeping Unmatched Destination Values

Components

Universal Products Install Merge

upimerge -dest outfile.txt -source infile.txt

-keep_nomatch yes

Keyword Value

installation_directory “C:\Program Files\Universal\UCmdMgr”

message_level info

port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

activity_monitoring yes

event_generation *,x100
infitran-user-4301 Confidential & Proprietary 273

Merging Configuration Options during an Upgrade Installation Examples Configuration Management
8.7.3 Merge Files Using Installation-Dependent Values

Figure 8.26, below, illustrates the command line used to merge configuration options from
infile.txt into outfile.txt. In this example, UPIMERGE applies logic specific to a particular
configuration file, and updates any references to locations that depend on the installed
location of that Stonebranch Solutions application.

Figure 8.26 Merge infile.txt into outfile.txt Using Installation-Dependent Values

Table 8.6, below, identifies the contents of outfile.txt after UPIMERGE completes. The
result is almost identical to the example shown in Table 8.4, except for the value of the
-installdir option.

Even though infile.txt contained a value for-installdir, UPIMERGE interpreted that value as
the application’s current location. UPIMERGE then updated any values in outfile.txt
(executing logic based on the specified – cfgtype) that depend on the installed location.

This example might be useful in a situation where it is necessary to recover configuration
settings from an archived file, but the application no longer resides in the directory
specified in the archive file. This is the logic that UPIMERGE uses during a Stonebranch
Solutions installation to ensure that installation-dependent locations are always correct.

Table 8.6 Contents of outfile.txt when Using Installation-Dependent Values

Components

Universal Products Install Merge

upimerge -dest outfile.txt -source infile.txt

-cfgtype ucmd

-installdir "D:\Program Files\Universal\UDmdMgr"

Keyword Value

installation_directory “D:\Program Files\Universal\UCmdMgr”

message_level info

Port 7850

license_product "UNIVERSAL COMMAND MANAGER"

license_customer "STONEBRANCH, INC."

license_type DEMO

license_expiration_date 2012.12.21

license_nt_servers 1

license_key 078B-E180-64E6-3016-EA20-0CF4-58F9-B301

#activity_monitoring yes

#event_generation *,x100
infitran-user-4301 Confidential & Proprietary 274

CHAPTER 9
Component Management
9.1 Overview
This chapter provides information on Infitran component management:
• Component Definition
• Starting Components
• Stopping Components
• Starting / Stopping Universal Broker Examples
• Starting / Stopping Universal Enterprise Controller Examples
• Starting / Stopping Components via Universal Control Examples
• Maintaining Universal Broker Definitions in the Universal Enterprise Controller

Database
infitran-user-4301 Confidential & Proprietary 275

Component Definition Component Management
9.2 Component Definition
Each Infitran Server component (for Universal Data Mover, Universal Event Monitor,
Universal Control, and Universal Application Container) has a Component Definition.

The Component Definition is a text file of options that defines component-specific
information required by the Universal Broker.

Each Component Definition defines the following type of information:
• Component type (for Universal Event Monitor Servers only).
• Component name.
• Component command name.
• Component configuration file name.
• Component working directory path.
• Number of component instances that can run simultaneously.
• Specification for whether or not the component starts automatically when the

Universal Broker starts.

The reference guide for each component contains detailed information about its
Component Definition.

9.2.1 Universal Event Monitor Component Definition

The Component Definition for a Universal Event Monitor Server defines whether it is a
demand-driven or an event-driven server. Among other factors, this determines how the
server is started (see Starting Components).

For a complete explanation of the difference between demand-driven and event-driven
Universal Event Monitor Servers, see Demand-Driven vs. Event-Driven.
infitran-user-4301 Confidential & Proprietary 276

Starting Components Component Management
9.3 Starting Components
There are four ways in which Infitran components are started.

Starting Manually
The following components are started manually and run in the background until they are
stopped manually:
• Universal Broker
• Universal Enterprise Controller

Starting via Manager
The following components are started on demand (that is, via their Managers) and run
until the specified task has completed, then stop automatically.
• Universal Data Mover Server
• Universal Control Server
• Universal Event Monitor Server (demand-driven)

Starting Automatically
The following components are auto-start components; that is, they start automatically
when the Universal Broker starts and run until they are stopped manually:
• Universal Application Container Server
• Universal Event Monitor Server (event-driven)
• Universal Automation Center Registration Server

Note: A Universal Event Monitor Server Component Definition also can specify that an
event-driven server is not started automatically (see Starting via Universal
Control).

Starting via Universal Control
Universal Control can start Server components that do not require interaction with a
Manager. Currently, only two Infitran components can be started via Universal Control:
• Universal Event Monitor Server (event-driven)
• Universal Automation Center Registration Server
infitran-user-4301 Confidential & Proprietary 277

Stopping Components Component Management
9.4 Stopping Components
Any Infitran Server component can stopped via the Universal Control STOP command.

Authorized users also are able to use the I-Activity Monitor, a Universal Enterprise
Controller client application, to stop running any Infitran Server component (if it is a
component of an Agent being polled by UEC).
infitran-user-4301 Confidential & Proprietary 278

Starting / Stopping Universal Broker Examples Component Management
9.5 Starting / Stopping Universal Broker Examples
This section provides operating system-specific information for starting and stopping
Universal Broker.

z/OS

Starting / Stopping Universal Broker for z/OS

Windows

Starting Universal Broker for Windows

UNIX

Starting Universal Broker for UNIX

IBM i

Starting, Ending and Working With Universal Broker for IBM i
infitran-user-4301 Confidential & Proprietary 279

Starting / Stopping Universal Broker Examples Component Management
9.5.1 Starting / Stopping Universal Broker for z/OS

Universal Broker for z/OS executes as a started task.

The UBROKER program utilizes the z/OS UNIX System Services environment.

Start Universal Broker
To start Universal Broker, execute the START console command:
START UBROKER[,UPARM=’ options’]

Stop Universal Broker
To stop Universal Broker, execute the STOP console command:
STOP UBROKER
infitran-user-4301 Confidential & Proprietary 280

Starting / Stopping Universal Broker Examples Component Management
9.5.2 Starting Universal Broker for Windows

Universal Broker can be executed in two different environments: Console application and
Windows service.

Console Application
The ubroker command starts Universal Broker as a console application.

Enter ubroker either from the:
• Command Prompt window
• Run dialog (Select Run... from the Windows Start menu.)

Console Security
Universal Broker inherits its user account from the user that starts it. The Broker itself
does not require any additional permissions or rights other than the default ones granted
to the Windows group user.

However, components started by the Broker also run with the same user account as the
Broker. Some components may require permissions or rights other than those granted to
the user account that started the Broker.

For additional information on the security requirements of Universal Broker and all Infitran
components, see Chapter 7 Security.
infitran-user-4301 Confidential & Proprietary 281

Starting / Stopping Universal Broker Examples Component Management
Windows Service
Universal Broker is installed as a Windows service that starts automatically when the
system is started. Windows provides a utility called Services that is used to interact with
and manage all installed services. Services is an item in the Administrative Tools program
group, which is accessible from the Control Panel.

Service Security
The Universal Broker service may be configured to execute with the Local System
account or with a specially-configured Administrative account. The Local System account
automatically provides the permissions necessary to execute the Broker.

An administrative account must have the following privileges to execute the Broker:
• Act as part of the operating system
• Adjust memory quotas for a process
• Bypass traverse checking
• Debug programs
• Log on as a service
• Impersonate a client after authentication
• Increase scheduling priority
• Replace a process level token
• Take ownership of files and other objects

To restrict interactive access by the account to the system, we also recommend adding
the following policies:
• Deny log on as batch job
• Deny log on locally
• Deny log on through Terminal Services

Any existing Administrative account may be configured as described above to execute
the Broker. The Stonebranch Solutions install also provides the ability to create and
configure an Administrative account with the privileges above.

Configuring the Broker to run with an Administrative account not only allows the service to
execute with just the privileges it needs, it also enables the Broker service to access
network resources it would not have visibility to while executing as Local System.
infitran-user-4301 Confidential & Proprietary 282

Starting / Stopping Universal Broker Examples Component Management
9.5.3 Starting Universal Broker for UNIX

Universal Broker can be executed in two different environments:
• Daemon
• Console Application

Differences between the environments are described in the following sections.

Only one instance of the Universal Broker can execute at any one time. A PID file is used
to help ensure that there is only one active instance; it is a locking mechanism that
prevents the execution of a second Broker. The PID file, ubroker.pid, is created in directory
/var/opt/universal by default. If the PID file is in the PID directory, it is assumed that a
Broker instance is executing.

Daemon
Universal Broker can run as a UNIX daemon process. This is the preferred method of
running the Broker. A daemon start-up script is provided to manage the starting and
stopping of the Broker daemon. The startup script utilizes the PID file to ensure that only
one instance of the Broker is executing at any one time. For this reason, the start-up
script should be used to start and stop the Broker.

Note: Although they have the same name, the Broker daemon start-up script should not
be confused with the actual Broker daemon program file.
• Startup script is installed in the primary Broker directory (that is,

./universal/ubroker).
• Program file is installed in the Broker’s bin directory (that is,

./universal/ubroker/bin).

Figure 9.1 Universal Broker for UNIX - Daemon Startup Script Syntax

Table 9.1, below, describes the command line arguments to the Universal Broker daemon
start-up script.

Table 9.1 Universal Broker - Command Line Arguments to Daemon Startup Script

ubrokerd { start | stop | status | restart }

Command Description

start Starts the Universal Broker daemon. Only one instance of Universal Broker can run at
any given time, so if the Broker already is running, the command fails and the script
returns.

stop Stops the Universal Broker daemon. If the Broker daemon is not running, the script
simply returns.

status Returns the status of the Universal Broker daemon, either running or stopped. If the
daemon is running, the script displays its process ID.

restart Performs a stop request followed by a start request.
infitran-user-4301 Confidential & Proprietary 283

Starting / Stopping Universal Broker Examples Component Management
Daemon Security
When a daemon is started at system initialization, it is started as user root. The root user
ID provides sufficient authority for the Broker and any component it may start.

If the daemon is started with a non-root user ID, the environment is the same as if it was
started as a console application. (See Console Security in Console Application for more
details.)

Console Application
The ubroker command starts Universal Broker as a console application.

Console Security
Universal Broker runs with the same user ID as the user who starts it. The Broker does
not require superuser rights. It only requires access to its installation directory and files,
which often are created by the superuser account when the product is installed.

However, components started by the Broker also run with the same user ID as the Broker.
Some of these components may require superuser rights.

See Chapter 7 Security for details on their security requirements for specific Infitran
components.
infitran-user-4301 Confidential & Proprietary 284

Starting / Stopping Universal Broker Examples Component Management
9.5.4 Starting, Ending and Working With Universal Broker
for IBM i

Universal Broker executes within its own IBM i subsystem, named UNVUBR430. The
UNVUBR430 subsystem provides a self-contained environment in which Universal Broker
can be managed. The UNVUBR430 subsystem description (object type *SBSD) is named
UNVUBR430.

The UNVUBR430 subsystem contains several entries that define the subsystem
environment. The two most visible are:
• Autostart entry
• Pre-start job entries

The subsystem autostart entry defines what jobs are started automatically when the
subsystem is started. The UNVUBR430 subsystem defines one autostart entry,
UNVUBR430. The UBROKER job executes with the job description UBROKER (object type
*JOBD) and user profile UNVUBR430 (object type *USRPRF). Only one instance of the
UBROKER job, which runs continuously, can be active at any one time.

The subsystem pre-start job entries define jobs that are in an initialized state. They are
not executing but are ready to accept a request and execute at any time. Pre-starting jobs
before they are required improves the overall throughput of the subsystem jobs.

Universal Broker jobs running under UNVUBR430 use the UBROKER job queue and class
located in the product installation library. See the Stonebranch Solutions 4.3.0 Installation
Guide for additional information.

The Universal Command (UCMD) Server jobs log all significant events to the UBROKER
job log. However, by default, IBM i does not keep job logs unless the job terminates due
to an error. As a result, important information relevant to server errors may be discarded
when the UBROKER job is shut down normally.

To preserve the server-related information, the UBROKER job description specifies
Message Logging as 4 0 *MSG. The UBROKER job's job log will be sent automatically to
the output queue and printer device designated in the UBROKER job description, which is
located in the Stonebranch Solutions installation library, UNVPRD430 (by default).

In some very large organizations with heavy UBROKER usage, the job log may fill. By
default, IBM i jobs are stopped when the job log fills. To ensure continuous UBROKER
operation, Stonebranch Solutions sets the job log to wrap. (See Chapter 6 IBM i
Installation in the Stonebranch Solutions 4.3.0 Installation Guide for additional
information.)
infitran-user-4301 Confidential & Proprietary 285

Starting / Stopping Universal Broker Examples Component Management
Commands
The following O/S commands help manage the UNVUBR430 subsystem.

Start Subsystem Command (STRSBS)
Starts the Universal Broker subsystem, UNVUBR430.

Figure 9.2 Universal Broker for IBM i - Subsystem Start Command

End Subsystem Command (ENDSBS)
Ends the Universal Broker subsystem, UNVUBR430.

Figure 9.3 Universal Broker for IBM i - Subsystem End Command

Work With Subsystem Command (WRKSBS)
Allows users to work with all active subsystems. Choose the UNVUBR430 subsystem from
the list of subsystems displayed.

Figure 9.4 Universal Broker for IBM i - Subsystem Work With Command

STRSBS UNVPRD430/UNVUBR430

ENDSBS UNVUBR430

WRKSBS
infitran-user-4301 Confidential & Proprietary 286

Starting / Stopping Universal Enterprise Controller Examples Component Management
9.6 Starting / Stopping Universal Enterprise
Controller Examples

This section provides operating system-specific information for starting and stopping
Universal Enterprise Controller.

z/OS

Starting / Stopping Universal Enterprise Controller for z/OS

Windows

Starting / Stopping Universal Enterprise Controller for Windows
infitran-user-4301 Confidential & Proprietary 287

Starting / Stopping Universal Enterprise Controller Examples Component Management
9.6.1 Starting / Stopping Universal Enterprise Controller for z/OS

Universal Enterprise Controller (UEC) for z/OS executes as a started task.

Starting UEC
The UEC started task, UECTLR, is started with the z/OS START command:
S UECTLR

Stopping UEC
The UEC started task, UECTLR, is stopped with the z/OS MODIFY STOP command:
P UECTLR

After the STOP command is issued, UEC may take several seconds to shut down.

Note: The UECTLR started task should run at a high dispatch priority in order to avoid
not being dispatched in a timely enough manner to process the agent polling
protocol. If UECTLR is not dispatched appropriately, the Broker may be reported
as timed out when the Broker itself still is operational.
infitran-user-4301 Confidential & Proprietary 288

Starting / Stopping Universal Enterprise Controller Examples Component Management
System MODIFY Command
The UEC started task accepts commands via the system MODIFY command. The
MODIFY command’s APPL= parameter is required, since UEC runs as a USS address
space.

DUMP Command

The DUMP command directs UEC to produce a Language Environment dump. The dump
is written to the CEEDUMP ddname. While the dump is being produced, UEC is paused by
LE until the dump completes, after which UEC continues processing.

In the following example, the procedure name UECTLR is assumed:
F UECTLR,APPL=DUMP

The DUMP command is used for diagnostic purposes. It should be executed only at the
request of Stonebranch, Inc.

BROKERSTAT Command
The BROKERSTAT command provides on-demand Broker status alerting. It causes UEC
to issue an alert message for all defined Brokers indicating their current internal state.
• Alert UNV1056T (Unable to connect) is issued for Brokers that are down.
• Alert UNV1059T (Broker responding) is issued for Brokers that are up.

The alert message is equivalent to what UEC issued at the time the alert was originally
generated.

In the example below, the procedure name UECTLR is assumed:
F UECTLR,APPL=BROKERSTAT

Alerts issued on-demand (by BROKERSTAT) are not sent to the I-Activity Monitor client.
(When issued under normal processing by UEC, the alerts are sent to I-Activity Monitor.)
infitran-user-4301 Confidential & Proprietary 289

Starting / Stopping Universal Enterprise Controller Examples Component Management
9.6.2 Starting / Stopping Universal Enterprise Controller
for Windows

Universal Enterprise Controller (UEC) for Windows executes as a service.

By default, UEC for Windows is set to start automatically whenever Windows is booted.

Changes to UEC configuration requires it to be stopped and restarted by the Windows
Service Control Manager.

To access the Service Control Manager:

1. Click the Control Panel on the Windows Start menu.
2. Double-click the Administrative Tools icon on the Control Panel window.
3. Double-click the Services icon on the Administrative Tools window.
4. On the Services window, select Universal Enterprise Controller in the list of services.
5. In the Action menu, click:

a. Stop to stop UEC for Windows.
b. Start to start UEC for Windows.
infitran-user-4301 Confidential & Proprietary 290

Starting / Stopping Components via Universal Control Examples Component Management
9.7 Starting / Stopping Components via Universal
Control Examples

This section provides examples of starting and stopping components via Universal
Control.

Note: Currently, only Universal Event Monitor Servers can be started by Universal
Control.

The examples assume that Universal Control Server is installed on a remote system
named dallas. The user ID and password used in the examples must be changed to a
valid user ID and password for the remote system.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

Starting a z/OS Component via Universal Control

Stopping a z/OS Component via Universal Control

Windows

Starting a Windows Component via Universal Control

Stopping a Windows Component via Universal Control

UNIX

Starting a UNIX Component via Universal Control

Stopping a UNIX Component via Universal Control

IBM i

Starting an IBM i Component via Universal Control

Stopping an IBM i Component via Universal Control
infitran-user-4301 Confidential & Proprietary 291

Starting / Stopping Components via Universal Control Examples Component Management
9.7.1 Starting a z/OS Component via Universal Control

This example – located in the Universal Control SUNVSAMP library – starts a component
on a remote system.

It assumes that Universal Control Server is installed on a remote system named dallas.
The user ID and password used in the example must be changed to a valid user ID and
password for the remote system.

Figure 9.5 Universal Control for z/OS - Start Component Example

SYSIN Options

The SYSIN options used in this example are:

Components
Universal Control

//jobname JOB CLASS=A,MSGCLASS=X

//STEP1 EXEC UCTLPRC

//SYSIN DD *

 -start uems –cmdid “UEM-dallas” –host dallas –userid joe -pwd akkSdiq

/*

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.
The started component, in fact, will execute with the Universal Broker’s security
context.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 292

Starting / Stopping Components via Universal Control Examples Component Management
9.7.2 Stopping a z/OS Component via Universal Control

This example – located in the Universal Control SUNVSAMP library – stops a component
on a remote system.

It assumes that Universal Control Server is installed on a remote system named dallas.
The user ID and password used in the example must be changed to a valid user ID and
password for the remote system.

Figure 9.6 Universal Control for z/OS - Stop Example

The sample JCL is located in member UCTSAM1.

The JCL procedure UCTLPRC is used to execute the stop request.

The stop request is sent to a remote system named dallas for execution.

SYSIN Options

The SYSIN options used in this example are:

Components

Universal Control

//jobname JOB CLASS=A,MSGCLASS=X

//STEP1 EXEC UCTLPRC

//SYSIN DD *

 -stop 999234133 –host dallas –userid joe -pwd akkSdiq

/*

Option Description

-stop Specifies the component to stop.

-host Directs the command to a computer with a host name of dallas.

-userid Specifies the remote user ID with which to execute the stop request.

-pwd Specifies the password for the user ID.
infitran-user-4301 Confidential & Proprietary 293

Starting / Stopping Components via Universal Control Examples Component Management
9.7.3 Starting a Windows Component via Universal Control

This example starts a component on a remote system.

Figure 9.7 Universal Control for Windows - Start Component Example

Command Line Options
The command line options used in this example are:

Components

Universal Control

uctl –start uems –cmdid “UEM-dallas” -host dallas -userid joe –pwd akkSdiq

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.
The started component, in fact, will execute with the Universal Broker’s security
context.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 294

Starting / Stopping Components via Universal Control Examples Component Management
9.7.4 Stopping a Windows Component via Universal Control

This example stops a component on a remote system.

Figure 9.8 Universal Control for Windows - Stop Component Example

Command Line Options
The command line options used in this example are:

Components

Universal Control

uctl –stop 10739132 -host dallas -userid joe –pwd akkSdiq

Option Description

-stop Component ID on the remote system to stop.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the command. This must match the user
ID originally used to start the component.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 295

Starting / Stopping Components via Universal Control Examples Component Management
9.7.5 Starting a UNIX Component via Universal Control

This example starts a component on a remote system.

Figure 9.9 Start Component Example

Command Line Options
The command line options used in this example are:

Components

Universal Control

uctl –start uems –cmdid “UEM-dallas” -host dallas -userid joe –pwd akkSdiq

Option Description

-start Name of the component to start on the remote system.

-cmdid Assigns a command identifier of "UEM-dallas" to the started component.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the Universal Control Server process.
The started component, in fact, will execute with the Universal Broker’s security
context.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 296

Starting / Stopping Components via Universal Control Examples Component Management
9.7.6 Stopping a UNIX Component via Universal Control

This example stops a component on a remote system.

Figure 9.10 Universal Control Manager for UNIX - Stop Component Example 1

Command Line Options
The command line options used in this example are:

Components

Universal Control

uctl –stop 10739132 -host dallas -userid joe –pwd akkSdiq

Option Description

-stop Name of the component to stop.

-host Directs the command to a computer with a host name of dallas.

-userid Remote user ID with which to execute the command. This must match the user
ID originally used to start the component.

-pwd Password for the user ID.
infitran-user-4301 Confidential & Proprietary 297

Starting / Stopping Components via Universal Control Examples Component Management
9.7.7 Starting an IBM i Component via Universal Control

This example starts a component on a remote system.

Figure 9.11 Start Component Example

Note: This example references the IBM i command by its untagged name. If you are
using commands with tagged names to run Universal Control, substitute the
tagged names for the untagged names.

Command Line Options

The command line options used in this example are:

Components

Universal Control

STRUCT START(uems) CMDID('UEM-dallas') HOST(dallas) USERID(joe) PWD(akkSdiq)

Option Description

START Component to start on the remote system.

CMDID Assigns a command identifier of ‘UEM-dallas’ to the started component.

HOST Directs the command to a computer with a host name of dallas.

USERID Remote user ID with which to execute the Universal Control Server process.
The started component, in fact, will execute with the Universal Broker’s security
context.

PWD Password for the user ID.
infitran-user-4301 Confidential & Proprietary 298

Starting / Stopping Components via Universal Control Examples Component Management
9.7.8 Stopping an IBM i Component via Universal Control

This example stops a component on a remote system.

Figure 9.12 Universal Control for IBM i - Stop Component Example

Note: This example references the IBM i command by its untagged name. If you are
using commands with tagged names to run Universal Control, substitute the
tagged names for the untagged names.

Command Line Options

The command line options used in this example are:

Components

Universal Control

STRUCT STOP(10739132) HOST(dallas) USERID(joe) PWD(akkSdiq)

Option Description

STOP Component on the remote system to stop.

HOST Directs the command to a computer with a host name of dallas.

USERID Remote user ID with which to execute the stop request. This must match the
user ID originally used to start the component.

PWD Password for the user ID.
infitran-user-4301 Confidential & Proprietary 299

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8 Maintaining Universal Broker Definitions in the
Universal Enterprise Controller Database

This section contains examples demonstrating the use of the UECLoad utility.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS and Windows

List All Defined Universal Brokers

Export a Specific, Defined Universal Broker

Export Events

Delete a Specific, Defined Universal Broker

Add Specific Defined Universal Broker via deffile

Add Existing Universal Brokers to a Broker Group

Delete Existing Universal Brokers from a Broker Group

z/OS

Export Events into ARC Format for z/OS

Retrieve Archived File and Export into XML for z/OS

Windows

Export Events into ARC Format for Windows

Retrieve Archived File and Export into CSV for Windows

Note: All examples in this section are implemented with use of the UECLoad Utility component.
infitran-user-4301 Confidential & Proprietary 300

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.1 List All Defined Universal Brokers

Figure 9.13, below, illustrates the output of a user-friendly format of the Universal Brokers
defined in the UEC database.

Figure 9.13 UECLoad - List All Defined Universal Brokers

9.8.2 Export a Specific, Defined Universal Broker

Figure 9.14, below, illustrates the output of a Universal Broker defined in the UEC
database in a format suitable for use within a Universal Broker definition file.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.14 UECLoad - Export a Specific, Defined Universal Broker

9.8.3 Export Events

Figure 9.15, below, illustrates the export of an events file into CSV format.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.15 UECLoad - Export Events

uecload –port 8778 –userid joe –pwd akkSdiq -list –broker_name “*”

uecload –port 8778 –userid joe –pwd akkSdiq –level audit

 –export –broker_name mybroker1

uecload -port 8778 -userid joe -pwd akkSdiq -level audit -export EVENTS

-stime *-5 -etime * -format CSV -deffile events.csv
infitran-user-4301 Confidential & Proprietary 301

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.4 Delete a Specific, Defined Universal Broker

Figure 9.16, below, illustrates the deletion of a Universal Broker defined in the UEC
database. Specifically, Universal Broker mybroker1 is deleted from use of UEC.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.16 UECLoad - Delete a Specific, Defined Universal Broker

uecload –port 8778 –userid joe –pwd akkSdiq –level audit

 –delete –broker_name mybroker1
infitran-user-4301 Confidential & Proprietary 302

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.5 Add Specific Defined Universal Broker via deffile

Figure 9.17, below, illustrates the addition of a group of Universal Broker definitions
specified within a definition file in the UEC database. The name sample_deffile represents
the name of the created file.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.17 UECLoad - Add Specific, Defined Universal Broker via a Definition File

Figure 9.18, below, is the definition file to be used for this example.

Figure 9.18 UECLoad - Definition File used for Adding Specific Defined Broker

uecload –port 8778 –userid joe –pwd akkSdiq –level audit

 –add –deffile sample_deffile

<BROKERDEF>

broker_name mybroker1

broker_host localhost

broker_port 7887

broker_desc "This is a description of broker1."

groups "Group 1, Group 2,Group 3"

</BROKERDEF>

<BROKERDEF>

broker_name mybroker2

broker_host 127.0.0.1

broker_port 7887

broker_desc "This is a description of broker2."

groups "Group 1, Group 2, Group 3"

</BROKERDEF>

<BROKERDEF>

broker_name mybroker3

broker_host 10.20.30.40

broker_port 7887

broker_desc "This is a description of broker3."

groups "Group 1, Group 2, Group 3"

</BROKERDEF>
infitran-user-4301 Confidential & Proprietary 303

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.6 Add Existing Universal Brokers to a Broker Group

Figure 9.19, below, illustrates the addition of existing Universal Brokers to a Broker group.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.19 UECLoad - Add Existing Universal Brokers to a Broker Group

9.8.7 Delete Existing Universal Brokers from a Broker Group

Figure 9.20, below, illustrates the deletion of existing Universal Brokers from a Broker
group.

Note: Although this command is illustrated on two lines, it should be entered as one line
at the command prompt.

Figure 9.20 UECLoad - Delete Existing Universal Brokers to a Broker Group

uecload –port 8778 –userid joe –pwd akkSdiq –add –deffile brokers
–groups “Test 1, Test 2, Test 3”

uecload –port 8778 –userid joe –pwd akkSdiq –delete –deffile brokers
–groups “Test 2, Test 3”
infitran-user-4301 Confidential & Proprietary 304

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.8 Export Events into ARC Format for z/OS

Figure 9.21, below, illustrates the export of events into an ARC format file on z/OS.

Figure 9.21 UECLoad for z/OS - Export Events into ARC Format

9.8.9 Retrieve Archived File and Export into XML for z/OS

Figure 9.22, below, illustrates the retrieval of an archived file and its export into XML on
z/OS.

Figure 9.22 UECLoad for z/OS- Retrieve Archived File and Export into XML

//STEP1 EXEC PGM=UECLOAD,PARM='ENVAR(TZ=EST5EDT)/'

//STEPLIB DD DISP=SHR,DSN=#HLQ.UNV.SUNVLOAD

//*

//UNVCONF DD DISP=SHR,DSN=#HLQ.UNV.UNVCONF(UECCFG00)

//*

//UNVTRACE DD SYSOUT=*

//ARCFILE DD DSN=APP.UEC.ARCH,

// DISP=(,CATLG),UNIT=3390,VOL=SER=STG001,

// SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=200,BLKSIZE=8000)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSIN DD *

 -export EVENTS -port 8778 -userid joe -pwd akkSdiq -level audit

 -stime 2008/04/29,10:00:00 -etime 2008/04/30,10:00:00

 -format ARC -deffile ARCFILE

//STEP1 EXEC PGM=UECLOAD,PARM='ENVAR(TZ=EST5EDT)/'

//STEPLIB DD DISP=SHR,DSN=#HLQ.UNV.SUNVLOAD

//*

//UNVCONF DD DISP=SHR,DSN=#HLQ.UNV.UNVCONF(UECCFG00)

//OUTPUT DD SYSOUT=*

//UNVTRACE DD SYSOUT=*

//ARCFILE DD DSN=APP.UEC.ARCH,DISP=SHR

//DEFFILE DD DSN=APP.UEC.DEFFILE,DISP=SHR

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSIN DD *

-export EVENTS -arcfile ARCFILE -level audit

-format XML -deffile DEFFILE
infitran-user-4301 Confidential & Proprietary 305

Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database Component Management
9.8.10 Export Events into ARC Format for Windows

Figure 9.23, below, illustrates the export of events into an ARC format file on Windows.

Figure 9.23 UECLoad for Windows - Export Events into ARC Format

9.8.11 Retrieve Archived File and Export into CSV for Windows

Figure 9.24, below, illustrates the retrieval of an archived file and its export into CSV on
Windows.

Figure 9.24 UECLoad for Windows - Retrieve Archived File and Export into CSV

Note: -port, -userid, and -pwd are not used, since no connection is made to UEC for this
operation.

uecload -export EVENTS -userid admin -pwd admin -format ARC -stime 2008/07/24
-etime 2008/07/24 -deffile c:\test.xml -arcfile c:\test.arc

uecload -arcfile c:\test.arc -export EVENTS -stime 2006/10/07 -etime
2008/01/01 -level audit -format CSV -deffile c:\test.csv
infitran-user-4301 Confidential & Proprietary 306

CHAPTER 10
Messaging and Auditing
10.1 Overview
All Stonebranch Solutions components have the same message facilities. Messages — in
this context — are text messages written to a console, file, or system log that:

1. Document the actions taken by a program.
2. Inform users of error conditions encountered by a program.

This section describes the message and audit facilities that are common to all
Stonebranch Solutions components. (See the individual Stonebranch Solutions 4.3.0
documentation for detailed technical information.)
infitran-user-4301 Confidential & Proprietary 307

Messaging Messaging and Auditing
10.2 Messaging
This section describes the Stonebranch Solutions messaging facility:

Message Types

Message ID

Message Levels

Message Destinations

10.2.1 Message Types

There are six types (or severity levels) of Stonebranch Solutions messages. (The severity
level is based on the type of information provided by those messages.)

1. Audit messages document the configuration options used by the program's execution
and resource allocation details. They provide complete description of the program
execution for auditing and problem resolution.

2. Informational messages document the actions being taken by a program. They help
determine the current stage of processing for a program. Informational messages
also document statistics about data processed.

3. Warning messages document unexpected behavior that may cause or indicate a
problem.

4. Error messages document program errors. They provide diagnostic data to help
identify the cause of the problem.

5. Diagnostic messages document diagnostic information for problem resolution.
6. Alert messages document a notification that a communications issue, which does not

disrupt the program or require action, has occurred.

The MESSAGE_LEVEL configuration option in each Stonebranch Solutions component
lets you specify which messages are written (see Section 10.2.3 Message Levels).
infitran-user-4301 Confidential & Proprietary 308

Messaging Messaging and Auditing
10.2.2 Message ID

Each message is prefixed with a message ID that identifies the message.

The message ID format is UNVnnnnl, where:
• nnnn is the message number.
• l is the message severity level:

• A (Audit)
• I (Informational)
• W (Warning)
• E (Error)
• T (alerT)
• D (Diagnostic)

Note: The Stonebranch Solutions 4.3.0 Messages and Codes document identifies all
messages numerically, by product, using the nnnn message number.

10.2.3 Message Levels

Each Stonebranch Solutions component includes a MESSAGE_LEVEL configuration
option that lets you select which levels (that is, severity levels) of messages are to be
written.
• Audit specifies that all audit, informational, warning, and error messages are to be

written.
• Informational specifies that all informational, warning, and error messages are to be

written.
• Warning specifies that all warning and error messages are to be written.
• Error specifies that all error messages are to be written.
• Trace specifies that a trace file is created, to which data used for program analysis will

be written. The trace file name and location are component-dependent (see the
appropriate Stonebranch Solutions component documentation for details).
(Trace should be used only at the request of Stonebranch, Inc. Customer Support.)

Note: Diagnostic and Alert messages always are written, regardless of the level
selected in the MESSAGE_LEVEL option.
infitran-user-4301 Confidential & Proprietary 309

Messaging Messaging and Auditing
10.2.4 Message Destinations

The location to which messages are written is the message destination.

Some Stonebranch Solutions components have a MESSAGE_DESTINATION
configuration option that specifies the message destination. If a program is used only
from the command line or batch job, it may have only one message destination, such as
standard error.

Valid message destination values depend on the host operating system.

z/OS Message Destinations

Stonebranch Solutions on z/OS run as batch jobs or started tasks. Batch jobs do not
provide the MESSAGE_DESTINATION option. All messages are written to the SYSOUT
ddname.

Started task message destinations are listed in the following table.

UNIX Message Destinations
Message destinations are listed in the following table.

Destination Description

LOGFILE Messages are written to ddname UNVLOG.
All messages written to log files include a date and time stamp and the program's USS
process ID.

SYSTEM Messages are written to the console log as WTO messages.

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console
commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.
The recommended directory for log files is /var/opt/universal/log. This can be changed
with the LOG_DIRECTORY option. All messages written to log files include a date and
time stamp and the program's process ID.

SYSTEM Messages are written to the syslog daemon. Not all programs provide this destination.
Universal programs that execute as daemons write to the syslog's daemon facility. All
messages include the programs process ID. If an error occurs writing to the syslog, the
message is written to the system console.
infitran-user-4301 Confidential & Proprietary 310

Messaging Messaging and Auditing
Windows Message Destinations
Message destinations are listed in the following table.

IBM i Message Destinations
Message destinations are listed in the following table.

Destination Description

STDERR Messages are written to standard error. This destination is most useful for console
commands.

LOGFILE Messages are written to a log file. Not all programs provide this destination.
Log files are written to product specific log directories, which can be modified with the
LOG_DIRECTORY option. All messages written to log files include a date and time
stamp and the program's process ID.

SYSTEM Messages are written to the Windows Application Event Log.

Destination Description

STDERR Messages are written to standard error. A batch job's standard error file is allocated to the
print file QPRINT.

LOGFILE Messages are written to the job's job log.

SYSTEM Messages are written to the system operator message queue QSYSOPR.
infitran-user-4301 Confidential & Proprietary 311

Auditing Messaging and Auditing
10.3 Auditing
Within Stonebranch Solutions, an event is the occurrence of some action or condition at a
particular location in the computer network and at a particular time at that location. There
are a number of different types of events, such as the start of a Stonebranch Solutions
component, a user authentication failure, or a file transfers completing.

The Universal Event Subsystem (UES) provides the means by which Stonebranch
Solutions components generate data about those events and, in a single repository, have
those events recorded. This collection of recorded events (that is, the event records) is
maintained in the UES database and archived to external storage. It represent the work
and activity of all distributed workload managed by Stonebranch Solutions components.

Stonebranch Solutions consist of a set of components distributed across a computer
network. The components work together to perform some unit of work. The components
that are working together have an association that must be maintained in the event data.
For that reason, UES event records not only include information about the event, but also
information about associations between the components reporting the events.

The Universal Enterprise Controller (UEC) maintains a central UES database for all event
data within its domain of responsibility. The UES database contains all UES event records
collected by UEC from Universal Broker components that are defined to it. The UES
database provides medium-term persistent storage for the UES events. Periodically, the
UES database events must be exported to long-term storage in order to maintain a
historical record of events. If the export is not performed periodically, the UES database
will continue to grow and eventually exhaust all disk space available to it.

Examples of components and their associations are:
• Universal Command Manager is associated with a remote Universal Command

Server, and the Universal Command Server is associated with the job process it has
started on behalf of the Universal Command Manager.

• Universal Data Mover Manager is associated with a remote Universal Data Mover
Server, and the Universal Data Mover Server is associated with a file being
transferred on behalf of the Universal Data Mover Manager.

The components and their associations partly define the Stonebranch Solutions
architecture. This section provides the necessary understanding of the Stonebranch
Solutions architecture as presented by the UES event data.
infitran-user-4301 Confidential & Proprietary 312

Creating Write-to-Operator Messages Examples Messaging and Auditing
10.4 Creating Write-to-Operator Messages
Examples

This section provides examples demonstrating how to create write-to-operator message
in a z/OS USS environment via the Universal Write-to-Operator utility.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

z/OS

Issue WTO Message to z/OS Console

Issue WTO Message to z/OS Console and Wait for Reply
infitran-user-4301 Confidential & Proprietary 313

Creating Write-to-Operator Messages Examples Messaging and Auditing
10.4.1 Issue WTO Message to z/OS Console

Figure 10.1, below, illustrates the issuing of a WTO message to the z/OS console.

No reply is required.

Figure 10.1 Universal WTO - Issue WTO to z/OS Console

The message text “This message is written to the Console” will be written to the default z/OS
consoles.

SYSIN Options
The SYSIN option used in this example is:

Components

Universal Write-to-Operator

uwto –msg “This message is written to the Console”

Option Description

-msg Specifies the text to write to the z/OS operator console. The text is written as a
single-line WTO or WTOR message.
infitran-user-4301 Confidential & Proprietary 314

Creating Write-to-Operator Messages Examples Messaging and Auditing
10.4.2 Issue WTO Message to z/OS Console and Wait for Reply

Figure 10.2, illustrates the issuing of a WTOR message to the z/OS console.

A reply is required.

Figure 10.2 Universal WTO - Issue WTOR to z/OS Console

The message text “This message is written to the Console” will be written to the default z/OS
consoles.

The process will wait 120 seconds for a required reply. If a reply is not received within this
time, the WTOR message is deleted and Universal WTO ends with exit code 2. The reply
length is limited to 119 characters. The reply is written to UWTO's standard output file.

Note: A valid operator reply to a WTOR message can be zero characters. In this case,
nothing is written to stdout.

SYSIN Options

The SYSIN options used in this example are:

Components

Universal Write-to-Operator

uwto –msg “This message is written to the Console” –reply yes –timeout 120

Option Description

-msg Text to write to the z/OS operator console. The text is written as a single-line
WTO or WTOR message.

-reply Directs Universal WTO to issue a WTOR message and wait for an operator
reply to the message.

-timeout Number of seconds to wait for a WTOR operator reply.
If a reply is not received within this time, the WTOR message is deleted and
UWTO ends with exit code 2.
Default is 0 (wait indefinitely).
infitran-user-4301 Confidential & Proprietary 315

CHAPTER 11
Message Translation
11.1 Overview
Infitran component error messages are translated, by the Universal Message Translator
utility, into return (exit) codes based on a user-defined translation table.

Every command ends with a return code that indicates the success or failure of the
command execution. Typically, a return code of 0 indicates success; all other codes
indicate failure.

However, a small number of commands do not set their return code under failure
conditions; instead, they issue error messages. Based on the user-defined translation
table, Universal Message Translator translates these error messages into return codes.
infitran-user-4301 Confidential & Proprietary 316

Usage Message Translation
11.2 Usage
Universal Message Translator requires two input files:

1. Message Input file (user-specified or standard input) containing the error messages
that are to be translated into a return codes.

2. Translation Table file containing the user-defined translation table that controls the
error message-to-return code translation process.

To perform a translation, Universal Message Translator:

1. Reads the messages in the input file.
2. Matches each line against the translation table entries.
3. Exits with an return code from the best match in the translation table.

If no match is found, Universal Message Translator ends with return code 0.

Universal Message Translator performs operations specified by the configuration options.
This section describes each option and their syntax.

11.2.1 Translation Table

The translation table specifies:
• Text to search for.
• Return code associated with the text.
• Precedence when multiple matches are found.

Translation Table Format
The translation table consists of one or more lines.

Each line is either:
• Comment line (# in column one)
• Blank line (ignored)
• Translation table entry

Translation table entries consist of two fields separated by spaces or tabs. An entry
cannot be continued onto multiple lines.
infitran-user-4301 Confidential & Proprietary 317

Usage Message Translation
Translation Table Fields
Table 11.1, below, identifies the translation table entry fields.

Table 11.1 Universal Message Translator – Translation Table

11.2.2 Matching Algorithm

The input file is read line by line. For each line, the line is compared to each entry in the
translation table. All the matching entries are saved.

After the entire input file is read, the matched entries from the translation table are sorted
in ascending order by their line number in the translation table. The first entry in this
sorted list is the resulting translation table entry. The exit code from the resulting
translation table entry is used as the return code of UMET. If no matching entry is found,
UMET exits with 0.

The resulting return code from the translation process is converted into an IBM i escape message.
The escape message ID and message severity depend on the return code value as identified in Table 11.2,
below.

Table 11.2 Universal Message Translator for IBM i - Return Codes

Field Description

Message Mask Selects which messages to match in the input file. The mask must be enclosed in
double (") quotation marks.
Mask characters include the asterisks (*) and the question mark (?). The asterisk
matches 0 or more characters and the question mark matches one character.
If an asterisk, question mark, or quotation mark is required in the message text, it
must be preceded with a back slash (\). If a back slash is required in the message
text, it must be preceded by another back slash.

Exit Code Specifies an integer value that UMET exits with if this entry is the resulting match.
The exit code is in the range of –99999 to 99999.

IBM i

Return Code Message ID Message Severity

1 – 10 UNV0344 10

11 – 20 UNV0345 20

21 – 30 UNV0346 30

31 and higher UNV0347 40
infitran-user-4301 Confidential & Proprietary 318

Message Translation Examples Message Translation
11.3 Message Translation Examples

All Operating Systems

Translating Error Messages (Part 1)

Translating Error Messages (Part 2)

z/OS

Execute Universal Message Translator from z/OS

Windows

Execute Universal Message Translator from Windows

UNIX

Execute Universal Message Translator from UNIX

IBM i

Execute Universal Message Translator from IBM i

Note: IBM i examples reference the IBM i commands by their untagged names. If you
are using commands with tagged names to run Universal Message Translator,
substitute the tagged names for the untagged names.
infitran-user-4301 Confidential & Proprietary 319

Message Translation Examples Message Translation
11.3.1 Translating Error Messages (Part 1)

Note: This example is not specific to a particular operating system.

In this example, a command generates the following stderr file.

Figure 11.1 Universal Message Translator - Example 1, Message File

From the contents of the message file, we can see that the program failed to open a
resource configuration file.

Either of the following translation tables could match error messages in the message file.
Message masks should be general enough to match a set of error messages.

Figure 11.2 Universal Message Translator - Example 1, Translation Table 1

Translation Table 1 will result in a match if any input line contains the word error. The
resulting exit code will be 8 if a match occurs.

Figure 11.3 Universal Message Translator - Example 1, Translation Table 2

Translation Table 2 will result in a match only if the exact message text "Ending due to
error.” appears as a line in the input file. This is less general, but may be sufficient for this
command.

Components
Universal Message Translator

Error opening rc file /etc/arc.rc
No rc file opened.
Ending due to error.

UMET Translation Table 1
#
Message Mask Exit Code
--------------------------- ------------
 “*error*” 8

UMET Translation Table 2
#
Message Mask Exit Code
--------------------------- ------------
 “Ending due to error.” 8
infitran-user-4301 Confidential & Proprietary 320

Message Translation Examples Message Translation
11.3.2 Translating Error Messages (Part 2)

This example continues from Translating Error Messages (Part 1).

In this example, the command now generates the following stderr file.

Figure 11.4 Universal Message Translator - Example 2, Message File

From the contents of the message file, we can see that the program failed to open a
resource configuration file /etc/arc.rc, but successfully opened file /usr/etc/arc.rc.

The following translation table is one of many that could match error messages in the
message file.

Figure 11.5 Universal Message Translator - Example 2, Translation Table 1

Translation Table 1 contains three entries:
• First entry matches against a specific error message that always indicates an error if

present.
• Second and third entries match messages produced by resource configuration file

processing.

Components

Universal Message Translator

Error opening rc file /etc/arc.rc
Processing rc file /usr/etc/arc.rc
Ending successfully

UMET Translation Table 1
#
Message Mask Exit Code
--------------------------- ------------
 “Ending due to error.” 8
 “Processing rc file *” 0
 “Error opening rc file *” 8
infitran-user-4301 Confidential & Proprietary 321

Message Translation Examples Message Translation
11.3.3 Execute Universal Message Translator from z/OS

Figure 11.6, below, illustrates the execution of Universal Message Translator from z/OS.

Figure 11.6 Universal Message Translator - Execute from z/OS

The -table option points to the DD statement TABLEDD, which defines the return codes to
end this process based on matching text. The first column defines the text to match; the
second defines the return code to set if the matching text exists in the SYSIN DD.

The -level option turns on messaging. All messages will be written to SYSPRINT. The
SYSIN DD statement points to the text file to be interrogated.

PARM Options

The PARM options used in this example are:

Components
Universal Message Translator

//S1 EXEC PGM=UMET,PARM='-table tabledd -level verbose'

//STEPLIB DD DISP=SHR,DSN=hlq.UNV.SUNVLOAD

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//TABLEDD DD *

 "*ERROR*" 8

 "*WARN*" 4

 "*ERROR*" 7

/*

//SYSIN DD *

THIS IS AN ERROR MESSAGE RESULTING IN RETURN CODE 8.

/*

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.
infitran-user-4301 Confidential & Proprietary 322

Message Translation Examples Message Translation
11.3.4 Execute Universal Message Translator from Windows

Figure 11.7, below, illustrates the execution of Universal Message Translator from
Windows.

Figure 11.7 Universal Message Translator - Execute from Windows

The -table option points to the file that defines the return codes with which to end this
process, based on matching text. The first column of the file defines the text to match; the
second defines the exit code to set if the matching text exists in the file defined by the
-file option.

The -level option turns on messaging. All messages will be written to stdout.

Command Line Options

The command line options used in this example are:

Components

Universal Message Translator

umet -table c:\umettable.txt –file c:\umetfile.txt -level verbose

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

-file Input message file name. If the option is not specified, UMET reads its input
from stdin.
infitran-user-4301 Confidential & Proprietary 323

Message Translation Examples Message Translation
11.3.5 Execute Universal Message Translator from UNIX

Figure 11.8, below, illustrates the execution of Universal Message Translator from UNIX.

Although the command is shown on two lines, it should be entered on one line at the
command prompt or within a script, or it can be continued within the script with the UNIX
continuation character \.

Figure 11.8 Universal Message Translator - Execute from UNIX

The -table option points to the translation table file, which defines the return codes with
which to end this process, based on matching text. The first column of the file defines the
text to match; the second defines the return code to set if the matching text exists in the
file defined by the -file option. All messages will be written to stdout.

Command Line Options

The command line options used in this example are:

Components

Universal Message Translator

/opt/universal/ucmdsrv-2.2.0/bin/umet -table /tmp/umettable.txt

-file /tmp/umetfile.txt -level verbose

Option Description

-table Translation table file name.

-level Level of messages that will be displayed.

-file Input message file name. If the option is not specified, UMET reads its input
from stdin.
infitran-user-4301 Confidential & Proprietary 324

Message Translation Examples Message Translation
11.3.6 Execute Universal Message Translator from IBM i

Figure 11.9, below, illustrates the execution of Universal Message Translator from IBM i.

Figure 11.9 Universal Message Translator - Execute from IBM i

The TBL / TBLMBR option points to the file, which defines the exit codes with which to end
this process, based on matching text. The first column of the file defines the text to match;
the second defines the return code to set if the matching text exists in the file defined by
the MSGFILE / MSGMBR option.

Diagnostic message UNV0383 and Informational message CPF9815 are issued if an
error occurs during execution of the STRUME command. All other informational
messages will be written to STDOUT. To avoid messages written to stdout, either allow
MSGLEVEL to default to *warn or specify MSGLEVEL as *error.

Command Line Options

The command line options used in this example are:

Components

Universal Message Translator

STRUME MSGFILE(input_file) MSGMBR(member) TBL(table_file) TBLMBR(member)
MSGLEVEL(*VERBOSE)

Option Description

-TBL [TBLMBR] Translation table file name.

-MSGLEVEL Level of messages that will be displayed.

-MSGFILE [MSGMBR] Input message file name. If the option is not specified, UMET reads its input
from stdin, which is allocated to the terminal for interactive jobs and to
QINLINE for non-interactive jobs.
infitran-user-4301 Confidential & Proprietary 325

CHAPTER 12
Monitoring and Alerting
12.1 Overview
The Monitoring and Alerting feature of Infitran provides for the monitoring the status and
activity of all Infitran Agents in an enterprise and the posting of alerts regarding the
statuses.

Monitoring is provided through continuous Monitoring of All Agents or by Querying for Job
Status and Activity of a specific Agent.
infitran-user-4301 Confidential & Proprietary 326

Monitoring of All Agents Monitoring and Alerting
12.2 Monitoring of All Agents
Infitran provides for the continuous monitoring of all Agents in an enterprise through its
Universal Enterprise Controller component.

12.2.1 Monitored Information

Infitran monitors for four types of information:

1. Alerts for all Agents and SAP systems being monitored.
2. Jobs (active, completed, and failed) for all Agents being monitored.
3. Files (active, completed, and failed) transferred by Infitran for all Agents being

monitored.
4. Systems (Agents and SAP systems) being monitored.

This information can be viewed via the I-Activity Monitor client application.

12.2.2 Polling

Infitran periodically polls each Agent and SAP system in an enterprise in order to retrieve
its status information.

It determines whether or not a change in status of the Agent or SAP system has occurred
since the last poll. If the status has changed, it sends this information to the I-Activity
Monitor.

12.2.3 Alerts

Infitran sends out alerts to any connected Agent-monitoring applications whenever:
• Agent is unreachable.
• Agent is not responding.
• Agent component enters an orphaned or disconnected state.

These alerts are posted to the:
• Event Log (when running under Windows)
• Console (when running under z/OS)

Automation tools can be used in conjunction with these messages to perform operations
based on agent failures.
infitran-user-4301 Confidential & Proprietary 327

Monitoring of All Agents Monitoring and Alerting
Alert Types
UEC creates three types of alerts:
• Agent Down

UEC was unable to establish a connection with the broker on the last poll attempt.
• Component Disconnected

Server is not connected to the Manager. This occurs when a network error has
occurred, the manager halted, or the manager host halted. The server is executing
with either the network fault tolerant protocol, is restartable, or both.

Note: The Server cannot determine whether or not the Manager is still executing
because it cannot communicate with it.

• Component Orphaned
Manager has terminated. The manager sends a termination message to the server to
notify it of its termination prior to terminating. This state only occurs if the server is
restartable.
infitran-user-4301 Confidential & Proprietary 328

Querying for Job Status and Activity Monitoring and Alerting
12.3 Querying for Job Status and Activity
Infitran has the ability to query any specific Universal Broker in an enterprise for
Broker-related, and active component-related, activity via the Universal Query utility.

Universal Query returns information for a Universal Broker that is installed on the host, as
specified by configuration options on the command line or in a configuration file.
Information regarding the components managed by a particular Broker also can be
requested.

Universal Query registers with a locally running Universal Broker. Consequentially, a
Universal Broker must be running in order for a Universal Query to execute.
infitran-user-4301 Confidential & Proprietary 329

Querying for Job Status and Activity Examples Monitoring and Alerting
12.4 Querying for Job Status and Activity
Examples

This chapter provides user scenarios for the Querying Job Status feature of Infitran.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

All Operating Systems

Universal Query Output

z/OS

Universal Query for z/OS

UNIX and Windows

Universal Query for UNIX and Windows

IBM i

Universal Query for IBM i
infitran-user-4301 Confidential & Proprietary 330

Querying for Job Status and Activity Examples Monitoring and Alerting
12.4.1 Universal Query Output

Figure 12.1, below, illustrates an example of the output generated by the execution of the
Universal Query command.

This sample output is from the execution of Universal Query to host dallas.domain.com
using a NORMAL report.

Figure 12.1 Universal Query Output

 Universal Query Report

 for

 Mon 20 May 2010 05:54:00 PM EDT

 host: 10.20.30.40 port: 7887 ping: NO report: NORMAL

 Ubroker Host Name...:

 Ubroker IP Address..: *

 Ubroker Host Port...: 7887

 Ubroker Description.: Universal Broker

 Ubroker Version.....: 4.3.0 Level 0 Release Build 108

 Ubroker Service.....: UNKNOWN

 Ubroker Status......: Active

 Component ID..............: 1121367481

 Component Name............: ucmd

 Component Description.....: Universal Command Server

 Component Version.........: 4.3.0 Level 0 Release Build 108

 Component Type............: ucmd

 Component Process ID......: 773

 Component Start Time......: 05:53:39 PM

 Component Start Date......: 05/20/2010

 Component Command ID......: sleep 60

 Component State...........: REGISTERED

 Component MGR UID.........: ucuser

 Component MGR Work ID.....: PID12890

 Component MGR Host Name...: dallas.domain.com

 Component MGR IP Address..: 10.20.30.34

 Component MGR Port........: 49082

 Component Comm State......: ESTABLISHED

 Component Comm State Time.: 05:53:41 PM

 Component Comm State Date.: 07/20/2010

 Component MGR Restartable.: NO

 Component Comment.........: Sleep for 60 secs on dallas
infitran-user-4301 Confidential & Proprietary 331

Querying for Job Status and Activity Examples Monitoring and Alerting
12.4.2 Universal Query for z/OS

The Universal Query utility is used to list all active components on a remote server.

The output will be written to the SYSPRINT DD statement.

Figure 12.2 Universal Query for z/OS - Listing Active Components

All active component information for server dallas will be written to DD statement
SYSOUT.

SYSIN Option

The SYSIN option used in this example is:

Components

Universal Query

//S1 EXEC UQRYPRC

//SYSIN DD *

-host dallas

/*

Option Description

-host Directs the command to a computer with a host name of dallas.
infitran-user-4301 Confidential & Proprietary 332

Querying for Job Status and Activity Examples Monitoring and Alerting
12.4.3 Universal Query for UNIX and Windows

The Universal Query utility is used to list all active components on a remote server.

The output will be written to stdout.

Figure 12.3 Universal Query for UNIX and Windows - Listing Active Components

All active component information for the localhost server will be written to stdout.

Command Line Option

The command line option used in this example is:

Components

Universal Query

uquery -host localhost

Option Description

-host Directs the command to the localhost.
infitran-user-4301 Confidential & Proprietary 333

Querying for Job Status and Activity Examples Monitoring and Alerting
12.4.4 Universal Query for IBM i

The Universal Query utility is used to list all active components on a remote server.

The output will be written to stdout.

Figure 12.4 Universal Query for IBM i (specific port) - Listing Active Components

This command provides active component information for the localhost server listening on
port 4990 will be written to stdout.

Figure 12.5 Universal Query for IBM i (default port) - Listing Active Components

This command provides active component information from the fortworth server listening
on the default port 7887.

Command Line Options

The command line options used in these examples are:

Components

Universal Query

STRUQR HOST(localhost) PORT(4990)

STRUQR HOST(fortworth)

Option Description

HOST Directs the command to the localhost.

PORT TCP port on the remote server.
infitran-user-4301 Confidential & Proprietary 334

CHAPTER 13
Windows Event Log Dump
13.1 Overview
Infitran provides the ability to select records from a Windows event log and write them to
a specified output file via its Universal Event Log Dump utility.

All records from a log can be dumped, or event records can be selected according to the
date and time that they were generated.

Universal Event Log Dump can be run any time as a stand-alone application. It also is
designed to work with Universal Command, which provides centralized control from any
operating system and additional options for redirecting output.

Universal Event Log Dump consists of the command line program (ueld) followed by a list
of configuration options.
infitran-user-4301 Confidential & Proprietary 335

Windows Event Log Dump Examples Windows Event Log Dump
13.2 Windows Event Log Dump Examples

Windows

Execute Universal Event Log Dump from a Windows Server
infitran-user-4301 Confidential & Proprietary 336

Windows Event Log Dump Examples Windows Event Log Dump
13.2.1 Execute Universal Event Log Dump from a Windows
Server

Figure 13.1, below, illustrates the execution of Universal Event Log Dump from a
Windows server.

The application log, from the previous day at 15:00 until current time, will be dumped to a
file on the server.

Figure 13.1 Universal Event Log Dump - Execution from Windows Server

Command Line Options

The command line options used in this example are:

Components

Universal Event Log Dump

ueld -type APPLICATION -stime "*-1,15:00 PM" –file c:\application.log

Command Options Description

-type Event log to be dumped.

-stime Starting date and time.

-file Complete path to the file that will be used to store the selected event log
records.
infitran-user-4301 Confidential & Proprietary 337

CHAPTER 14
Databases
14.1 Overview
Some Infitran components provide features that rely upon a set of databases for their
implementation. Such features include fault tolerance, managed configuration, event
subsystem (UES) data collection, and event monitoring.

Unless otherwise noted, the Universal Broker owns all databases and performs all direct
database access. Universal Broker processes and responds to all database access
requests it receives from individual Infitran components.
infitran-user-4301 Confidential & Proprietary 338

Component Information Database Databases
14.2 Component Information Database
The component information database records information about all Infitran server
components that the Universal Broker manages. It is opened during Universal Broker
start-up processing.

The information captured by the Universal Broker includes, but is not limited to, the
component’s process ID, start time, current state, and end time.

One important aspect of this database is its ability to record the current state of an Infitran
server component. Each time a component’s state changes, it sends a notification to
Universal Broker, which updates that component’s record. For the Infitran components
that offer it, this component state provides the basis for reconnect functionality, otherwise
known as network fault tolerance (see Chapter 15 Fault Tolerance Implementation).

When an Infitran server process finishes executing and its component state indicates that
it has completed, Universal Broker deletes that component’s information from the
database.

The Universal Broker stores Infitran component information in the bcomponent.db and
scomponent.db database files.

The database file default location is:
• C:\Program Files\Universal\spool\ubroker (32-bit Windows systems)
• C:\Program Files (x86)\Universal\spool\ubroker (64-bit Windows systems)

The database file resides in the /var/opt/universal/spool directory.

Infitran components access this file via an HFS- or ZFS-allocated dataset, which is mounted on the z/OS Unix
System Services (USS) file system. Universal Broker is capable of dynamically mounting this database during
start-up, if it is not already mounted.

The database, UBR_CMP_DB, is located in the spool library, UNVSPL430.

Windows

UNIX

z/OS

IBM i
infitran-user-4301 Confidential & Proprietary 339

Universal Event Monitor Databases Databases
14.3 Universal Event Monitor Databases
To support the Universal Event Monitor (UEM) component, the Universal Broker provides
and manages the following databases:
• Event Definition Database
• Event Handler Database
• Event Spool Database

The database files are local to each system. The Stonebranch Solutions install script is
responsible for creating the database directory. If the Universal Broker attempts to open a
database file that does not exist, it will create that database.

The default database directory is /var/opt/universal/spool.

The default UEM database directory is:
• C:\Program Files\Universal\spool\ubroker (32-bit Windows systems).
• C:\Program Files (x86)\Universal\spool\ubroker (64-bit Windows implementations).
For additional information that applies to all database files, including restrictions on location and space
requirements, see the Stonebranch Solutions 4.3.0 Installation Guide.

Note: UEM Server is only available for UNIX and Windows. The UEM databases are
used only on those operating systems.

UNIX

Windows
infitran-user-4301 Confidential & Proprietary 340

Universal Event Monitor Databases Databases
14.3.1 Event Definition Database

The Universal Event Monitor (UEM) Server stores information about the events that it
monitors in the event definition database.

An event definition record describes a system event and provides the information that
UEM uses to track an event occurrence and test for its completion. An event definition
record also may contain information that UEM uses to respond to (that is, "handle") an
event's successful completion, its failure to complete, and even its failure to occur.

An event-driven UEM Server relies upon stored event definitions for its input. When an
event-driven UEM Server starts, it asks the Broker for all event definitions assigned to it. If
no event definitions are assigned to a particular event-driven Server, that Server
continues to execute but will not do any actual event monitoring.

A demand-driven UEM Server also may obtain its input from a stored event definition
record, but it is not required. Typically, a demand-driven Server receives its input from the
UEM Manager's command line parameters.

Event definition records are added and maintained with the UEMLoad Utility.
infitran-user-4301 Confidential & Proprietary 341

Universal Event Monitor Databases Databases
14.3.2 Event Handler Database

An event handler record describes the action that Universal Event Monitor (UEM) should
take in response to a monitored event's outcome. This action, or response, is simply a
system command or script that UEM executes upon an event's completion, failure to
complete, or failure to occur. The UEM Server executes these processes in a secure
context, using user account credentials stored in the event handler record.

An event-driven UEM Server relies upon stored event handlers to determine its response
to the events that it monitors. The event definition records that describe events to UEM
also contain the IDs of event handler records that UEM should use to respond to those
events.

A demand-driven UEM Server also may respond to an event using a stored event handler
record, but it is not required. Typically, a demand-driven Server relies upon the UEM
Manager's command line parameters to describe the actions that it should take in
response to the event that it monitors.

When a UEM Server needs to use a stored event handler record, it sends a request to the
Universal Broker to retrieve the record using the ID specified in the event definition record
or provided from the UEM Manager command line. The Universal Broker returns the
event handler record to the UEM Server, which then executes the specified system
command or script.

Event handler records are added and maintained with the UEMLoad Utility.

Stoneman’s Tip

Security is a primary concern within all Stonebranch Solutions.

Whenever the user account information
stored in an event handler record includes a password,

that password is encrypted
using the Data Encryption Standard (DES) algorithm.
infitran-user-4301 Confidential & Proprietary 342

Universal Event Monitor Databases Databases
14.3.3 Event Spool Database

Universal Event Monitor (UEM) records its monitoring activity in the event spool
database.

It is possible for UEM to detect multiple occurrences of any single event that it monitors.
UEM creates a record in the spool database for each event occurrence that it detects and
tracks. UEM maintains the current state of an event occurrence from initial detection
through the completion of any event handlers.

If an event definition goes inactive before UEM detects any occurrences of that event,
UEM creates a single spool entry to record the expired event.

Universal Broker applies all updates to the event spool database. A UEM Server is
responsible for sending the Universal Broker all relevant information, along with the
required database operation (add, update, or delete).

Typically, any spool records created for an event are deleted when the Broker detects the
completion of the UEM Server that monitored the event. However, when an event-driven
UEM Server completes, any records that indicate work in progress (for example, tracking
of an event occurrence, execution of an event handler) are retained for possible recovery
when the event-driven Server is restarted. For additional information on recovery of event
spool records, see Chapter 7 Universal Event Monitor Server in the Universal Event
Monitor 4.3.0 Reference Guide.

Feedback from a demand-driven UEM Server is returned to the UEM Manager that
initiated the monitoring request. In this situation, event spool records are simply another
means of following the progress of the event and any detected occurrences.

However, for an event-driven UEM Server that has no client, the records in the event
spool database are the best way to monitor the status of the work performed by that UEM
Server. Because an event-driven UEM Server typically is a long-running process, an
adequate history of the UEM Server’s activity can be obtained by viewing the spool
records.

Currently, event spool records can only be viewed with the Universal Spool List utility
(uslist). Information on using Universal Spool List to view event spool records can be
found in Chapter 7 Universal Event Monitor Server in the Universal Event Monitor
Reference Guide. For information on all Stonebranch Solutions utilities, see the
Stonebranch Solutions Utilities Reference Guide.

Stoneman’s Tip

An option can be set in the Universal Broker’s configuration to prevent it
from deleting any event spool records when the UEM Server component
completes. Setting the comp_info_retention option to a value greater than 0

causes the event spool record to be preserved.

Because there is currently no database cleanup routine available, this
option should be set only following a recommendation from, and with the

assistance of, Stonebranch Inc. Customer Support.
infitran-user-4301 Confidential & Proprietary 343

Universal Event Monitor Databases Databases
14.3.4 Controlling Access to Universal Event Monitor Database

Universal Broker is responsible primarily for providing access to the Stonebranch
Solutions databases. However, there are utilities provided, including the Universal Spool
List (uslist) and Universal Spool Remove (uslrm), that can be used to access the
databases directly. While these utilities should be used only following a recommendation
from and with the assistance of Stonebranch, Inc. Customer Support, they are
documented fully in the Stonebranch Solutions Utilities Reference Guide.

To protect the database contents, operating system permissions on the database files
themselves should be set so that only accounts with super-user or administrative
privileges has access to them.

Universal Event Monitor (UEM) provides its own command line utility, UEMLoad, to
maintain the event definition and event handler databases. While the contents of these
databases can be viewed using the Universal Spool List utility, it is recommended that all
access be done using UEMLoad. The ability to remove event definition and event handler
records is only provided with UEMLoad.

UEMLoad only can manage event definition and event handler databases that are local to
the system on which it resides. To process a request, UEMLoad sends a request to the
Universal Broker running on that system to start a demand-driven UEM Server. Next,
UEMLoad sends the database request to the UEM Server, so that the UEM Server can
validate the request and provide any required default values. The UEM Server then
forwards the request to the Universal Broker, so that the changes can be applied to the
appropriate database.

UEMLoad executes in the security context of the user account that started it. Since the
Universal Broker applies changes to the event definition and event handler databases,
any user with the authority to execute UEMLoad will, effectively, have access to a secure
resource. It is therefore strongly recommended that the privileges on UEMLoad be set
such that only those user accounts with super-user or administrative privileges be
allowed to execute it.

Application support also is provided to further limit access to the event definition and
event handler databases. A type of Universal Access Control List (UACL) is provided by
UEM to grant or deny local user accounts the authority to access these databases.

To fully secure the event definition and event handler databases, a UACL entry can be
defined to deny access to all user accounts. Then, additional entries can be defined to
grant database access to those user accounts with the appropriate authority. Whenever
UEMLoad is executed, the entries in the UACL will be checked. If a match cannot be
found which indicates that the user account that started UEMLoad is allowed to access
the database, the application will terminate with an error.

Section 7.5 Universal Access Control List provides a more thorough overview of the
UACL feature. For information on the specific UACL used to control access to the event
definition and event handler databases, see the DATABASE_MAINTENANCE_ACL
UACL entry in the Universal Event Monitor Reference Guide.

The event spool records generated by a UEM Server only can be viewed with the
Universal Spool List utility.
infitran-user-4301 Confidential & Proprietary 344

Universal Enterprise Controller Databases Databases
14.4 Universal Enterprise Controller Databases
Universal Enterprise Controller (UEC) uses databases to maintain agent, user,
configuration, and event data.

14.4.1 Database Files

The UEC databases reside in three files:

1. uec.db contains the definitions of agents, groups, users, SAP systems, and a record of
updates to distributed components’ configurations in a managed environment.

2. uec_evm.db contains the Universal Event Subsystem (UES) persistent events.
3. uec_tmp.db contains UES events and component information that is temporary to

support I-Activity Monitor. This file is deleted and created upon restart of UEC.

14.4.2 Database Management

Automated Database Cleanup
Two routines are run to clean up records that meet their expiration criteria from their UEC
database.

1. Routine for monitor events used for I-Activity Monitor.
2. Routine for persistent events stored for the Universal Event Subsystem.

Both routines execute at UEC start-up. Thereafter, they are scheduled to execute one
hour after the previous execution's completion. At the time of execution, all records that
meet the expiration criteria are removed from their UEC database.

The following UEC configuration options control database record retention:
• COMMIT_COMPLETE_EXPIRATION
• COMMIT_INCOMPLETE_EXPIRATION
• MONITOR_EVENT_EXPIRATION
• PERSISTENT_EVENT_EXPIRATION
infitran-user-4301 Confidential & Proprietary 345

Universal Enterprise Controller Databases Databases
Memory Management
Berkeley DB uses a temporary cache in memory to manage its databases. If this cache
becomes sufficiently large, it must be written to disk.

Berkeley DB has a default location for storing temporary cache files, but if UEC cannot
access that location, or there is no space to write these files in the default location, the
following error can occur in UEC, and UEC shuts down:
UNV4301D Database error: 'temporary: write failed for page XXXXX'

To work around this issue, the following steps will write the temporary cache files to the
UEC database directory:

1. For z/OS installations, mount the UECDB HFS or zFS dataset.
2. Inside the UEC database directory (or, on z/OS, the mount point), create a text file

named DB_CONFIG.
3. Inside the DB_CONFIG file, add the following string:

set_tmp_dir *dbpath*
Where dbpath is the path to the location in which the database files reside.

4. Start / restart UEC.
infitran-user-4301 Confidential & Proprietary 346

Database Backup and Recovery Databases
14.5 Database Backup and Recovery
Stonebranch Solutions databases, on operating system’s other than IBM i, are
implemented using Oracle's Berkeley Database product.

Recovering from database corruption requires the following steps:

1. Dump the corrupted database to a file using the Stonebranch Solutions Universal
Database Dump utility.

2. Reload the database from the dump file using the Stonebranch Solutions Universal
Database Load utility.

Database corruption can occur if the system or address space that is managing the
databases ends abnormally. A Stonebranch Solutions program that utilizes databases
should not be terminated abnormally.

Abnormal methods of termination include:
• z/OS CANCEL or FORCE command.
• UNIX SIGKILL signal.
• Windows process termination through the Task Manager.

14.5.1 Database Backups

Database recovery is not a replacement for database backups. If the data maintained by
the product in the database has long term value, the databases must be periodically
backed up.
infitran-user-4301 Confidential & Proprietary 347

Database Backup and Recovery Databases
14.5.2 General Database Recovery Procedures

Generally speaking, database recovery follows the same steps independent of platform
and database file.

Multiple attempts may be necessary in order to successfully recover from database
corruption. Stonebranch Inc. recommends that you begin with the least aggressive
recovery method and only proceed to more aggressive methods if necessary.

For the first recovery attempt, execute the Universal Database Dump utility with the -r
(lowercase) command line option. This option instructs the utility to recover as much data
as possible. Depending on the extent of database corruption, this may result in a
recovered database with some incomplete key/data pairs.

Reload the database using the Universal Database Load utility, and specify the -o option.
This option instructs the utility to remove the underlying database file, which results in a
clean reload from the dump file.

If the database passes validation when you restart the application, it is likely that all data
was successfully recovered and no additional recovery attempts are necessary.

If the database fails validation, rerun the Universal Database Dump utility and omit the -r
option. This results in a dump of only the most complete data. While this improves the
chances for successful recovery, some data loss is likely. Rerun the Universal Database
Load utility and restart the application.

If both recovery attempts fail, you may delete the corrupted database and restart the
application. This results in a total loss of data, but will allow the application to execute.
The application will create the missing database during startup.

The following sections describe platform- and database-specific recovery procedures.
infitran-user-4301 Confidential & Proprietary 348

Database Backup and Recovery Databases
14.5.3 Database Recovery for Universal Broker

Universal Broker uses databases to maintain component information, configuration
information, and event data. A corrupted database will prevent the Broker from executing.

Database recovery procedures depend partly on the operating system on which the
Broker is executing. The following sections describe the procedures for each operating
system.

z/OS
The Universal Broker started task must be down to perform database recovery. A backup
of either the database file being recovered or the entire HFS or zFS data set should be
created before recovery is attempted.

A sample database recovery job is provided in member UBRDBREC in the SUNVSAMP
library. The job uses the Universal Database Utilities to dump and reload a database file.

All databases are located in the HFS or zFS product data set #HLQ.UNV.UNVDB. The HFS
or zFS data set must be mounted prior to running UBRDBREC. Refer to the Stonebranch
Solutions 4.3.0 Installation Guide for information on mounting the HFS or zFS data set, if
necessary.

The user ID with which the recovery job runs requires appropriate permissions to the root
directory of the HFS or zFS data set and to the database file. Write access is required to
the directory and read and write access is required to the database file.

Customize UBRDBREC to meet local JCL and installation requirements. Specify the
database file name to recover on the PARM keyword of the EXEC statement of both steps
(the dump and load steps). When all modifications are complete, submit the job. All steps
should end with return code 0.

UNIX
The Universal Broker daemon must be down to perform database recovery. A backup of
either the database file being recovered or the entire directory should be created before
recovery is attempted.

A sample database recovery script is provided in file ubrdbrec in the
/opt/universal/ubroker/bin directory. The script uses the Universal Database Utilities to
dump and reload a database file. The default location of all Universal Broker databases is
the /var/opt/universal/spool directory.

The user ID with which the recovery script runs requires appropriate permissions to the
database directory and to the database file. Write access is required to the directory and
read and write access is required to the database file.

The ubrdbrec script accepts an optional argument: the database file name to recover. If no
database file name is specified, the ues.db database is recovered. The script ends with
exit code 0 if successful and a non-zero exit code if it failed.
infitran-user-4301 Confidential & Proprietary 349

Database Backup and Recovery Databases
Windows
The Universal Broker service must be stopped to perform database recovery. A backup of
either the database file being recovered or the entire directory should be created before
recovery is attempted.

A sample database recovery batch file is provided in file ubrdbrec.bat in the "\Program
Files\Universal\UBroker\bin" directory. The batch file uses the Universal Database Utilities to
dump and reload a database file.

The default location of all Universal Broker databases is directory "\Program
Files\Universal\spool\ubroker".

The user ID with which the recovery script runs requires appropriate permissions to the
database directory and to the database file. Write access is required to the directory and
read and write access is required to the database file.

The ubrdbrec.bat batch file accepts an optional argument: the database file name to
recover. If no database file name is specified, the ues.db database is recovered. The
batch file ends with exit code 0 if successful and a non-zero exit code if it failed.

IBM i
The Universal Broker subsystem, UNVUBR430 (by default), must be down in order to
perform database recovery. Use standard IBM i database recovery procedures and
attempt to restart the Universal Broker subsystem.

If the problem persists, restore the failing database file. The entire Universal Spool file
library may be required if restoring individual files fails to correct the problem. As a last
resort, delete all files in the Universal Spool file library and restart UNVUBR430.

Deleting the files from the Universal Spool library will result in loss of all data stored in
those files, including spooled output for Manager Fault Tolerant jobs. All affected jobs
may need to be re-run.
infitran-user-4301 Confidential & Proprietary 350

Database Backup and Recovery Databases
14.5.4 Database Recovery for Universal Enterprise Controller

If Universal Enterprise Controller (UEC) terminates abnormally, it creates the file uec.hf in
the database directory, which prompts UEC to initiate database verification upon restart.

Upon start-up, if UEC determines that an abnormal termination occurred, a verification
process is performed on the database files. Verification tests the integrity of the files and
determines if they are suitable for opening. If errors are detected and the integrity of the
file is compromised, UEC reports the errors to the console and UEC immediately shuts
down.

The Universal Database Dump (UDBDUMP) utility and the Universal Database Load
(UDBLOAD) utility enable recovery from a corrupted Berkeley database. (For detailed
information on these utilities, see the Stonebranch Solutions Utilities Reference Guide.)

Database recovery procedures depend partly on the operating system on which UEC is
executing: z/OS or Windows. The following sections describe the procedures for each
operating system.

z/OS
The UEC started task must be down to perform database recovery. A backup of either the
database file being recovered or the entire HFS or zFS data set should be created before
recovery is attempted.

A sample database recovery job is provided in member UECDBREC in the SUNVSAMP
library. The job uses the Universal Database Utilities to dump and reload a database file.

All databases are located in the HFS or zFS product data set #HLQ.UNV.UECDB. The HFS
data set is allocated to the UNVDB ddname in both the dump and load steps. The HFS or
zFS data set must be mounted prior to running UECDBREC. See the Stonebranch
Solutions 4.3.0 Installation Guide for additional information on mounting the HFS or zFS
data set.

The user ID with which the recovery job runs requires appropriate permissions to the root
directory of the HFS data set and to the database file. Write access is required to the
directory and read and write access is required to the database file.

Customize UECDBREC to meet local JCL and installation requirements. All UEC
databases are recovered by the job. When all modifications are complete, submit the job.
All steps should end with return code 0.
infitran-user-4301 Confidential & Proprietary 351

Database Backup and Recovery Databases
Windows
The UEC service must be stopped to perform database recovery. A backup of either the
database file being recovered or the entire directory should be created before recovery is
attempted.

A sample database recovery batch file is provided in file uecdbrec.bat in the "\Program
Files\Universal\UECtlr\bin" directory. The batch file uses the Universal Database Utilities to
dump and reload a database file.

The default location of all UEC databases is "\Program Files\Universal\UECtlr".

Note: Stonebranch has identified an issue with upgrades from releases earlier than UEC
3.2.0.0 (such as 3.1.0.x or 3.1.1.x) to releases 3.2.0.0 and later. Following the
upgrade, UEC databases reside in the location specified by the user's currently
configured working_directory location. This location defaults to "\Program
Files\Universal\UECtlr\bin".

If the current UEC install was not an upgrade, it may be necessary to pass the
path to the uec_evm.db file as a command line argument to the script. You can
provide an absolute path or a path relative to the uecdbrec.bat script's location.

The user ID with which the recovery script runs requires appropriate permissions to the
database directory and to the database file. Write access is required to the directory and
read and write access is required to the database file.

The uecdbrec.bat batch file accepts an optional argument-the database file name to
recover. If no database file name is specified, the uec_evm.db database is recovered. The
batch file ends with exit code 0 if successful and a non-zero exit code if it failed.
infitran-user-4301 Confidential & Proprietary 352

Listing Infitran Database Records Examples Databases
14.6 Listing Infitran Database Records Examples
This section contains examples demonstrating the listing of Infitran database records via
the Universal Spool List (USLIST) utility.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

Windows and UNIX

List Universal Broker Database

List Universal Event Monitor Spool Database Records

List Universal Broker Detail for a Component

List Standard Out for a Component
infitran-user-4301 Confidential & Proprietary 353

Listing Infitran Database Records Examples Databases
14.6.1 List Universal Broker Database

Figure 14.1 and Figure 14.2, below, illustrate how to execute Universal Spool List
(USLIST) with all defaults. (No options are required to issue USLIST.)

Windows

Figure 14.1 Universal Spool List for Windows - List Universal Broker Database

UNIX

Figure 14.2 Universal Spool List for UNIX - List Universal Broker Database

Since no USLIST options are supplied, this example, by default, lists the contents of the
Universal Broker Component database (UBROKER). A summary of all records is
produced; no detail component records are written.

The broker database must be located in the default directory.

Components

Universal Spool List

cd c:\program files\universal\uspool\bin

uslist

cd /opt/universal/bin

uslist
infitran-user-4301 Confidential & Proprietary 354

Listing Infitran Database Records Examples Databases
14.6.2 List Universal Event Monitor Spool Database Records

Figure 14.3 and Figure 14.4, below, illustrate how to list the spool database records for a
specific component (in this case, Universal Event Monitor).

Windows

Figure 14.3 Universal Spool List for Windows - List Universal Event Monitor Spool Database Records

UNIX

Figure 14.4 Universal Spool List for UNIX - List Universal Event Monitor Spool Database Records

These examples list the contents of the Universal Event Monitor spool database. A
summary of all records is written.

Command Line Options

The command line options used in this example are:

Components

Universal Spool List

cd c:\program files\universal\uspool\bin

uslist -list uems

cd /opt/universal/bin

uslist -list uems

Option Description

-list Type of database from which to select record to write.

-ucmdspooldir Directory location in which the Universal Command Server Component
database (scomponent.db) is located.
infitran-user-4301 Confidential & Proprietary 355

Listing Infitran Database Records Examples Databases
14.6.3 List Universal Broker Detail for a Component

Figure 14.5 and Figure 14.6, below, illustrate how to list the Universal Broker detail for a
specific component ID.

Windows

Figure 14.5 Universal Spool List for Windows - List Broker Detail for a Component

UNIX

Figure 14.6 Universal Spool List for UNIX - List Broker Detail for a Component

Since the -list option is not supplied, these examples, by default, list the contents of the
Universal Broker Component database (UBROKER).

Because a component ID is specified, this will cause detail broker records to be written for
component ID 123456789.

Command Line Options

The command line option used in this example is:

Components

Universal Spool List

cd c:\program files\universal\uspool\bin

uslist -component 123456789

cd /opt/universal/bin

uslist -component 123456789

Option Description

-component Component identifier for which records will be selected to write.
infitran-user-4301 Confidential & Proprietary 356

Listing Infitran Database Records Examples Databases
14.6.4 List Standard Out for a Component

Figure 14.7 and Figure 14.8, below, illustrate how to list the standard output spool file for
a specific component ID.

Windows

Figure 14.7 Universal Spool List for Windows - List Standard Out for a Component

UNIX

Figure 14.8 Universal Spool List for UNIX - List Standard Out for a Component

The standard output spool file is written for component 123456789.

Command Line Options

The command line options used in this example are:

Components

Universal Spool List

cd c:\program files\universal\uspool\bin

uslist -list STDOUT –component 123456789

cd /opt/universal/bin

uslist -list STDOUT –component 123456789

Option Description

-list Type of database from which to select records to write.

-component Component identifier for which records will be selected to write.
infitran-user-4301 Confidential & Proprietary 357

Removing Infitran Database Records Databases
14.7 Removing Infitran Database Records
This section contains examples demonstrating the removal of Infitran database records
via the Universal Spool Remove utility.

Links to detailed technical information on appropriate Infitran components are provided
for each example.

Windows and UNIX

Remove Component Records

Remove Component Records: Change Universal Broker Database Directory
infitran-user-4301 Confidential & Proprietary 358

Removing Infitran Database Records Databases
14.7.1 Remove Component Records

Figure 14.9 and Figure 14.10, below, illustrate how to execute Universal Spool Remove
(USLRM) with defaults.

Windows

Figure 14.9 Universal Spool Remove for Windows - Remove Component Records

UNIX

Figure 14.10 Universal Spool Remove for UNIX - Remove Component Records

The only required option is -component (the component ID); you can execute Universal
Spool List (USLIST) utility to find specific component IDs.

All Stonebranch Solutions database records will be removed for component 123456789.

Command Line Options

The command line options used in this example are:

Components
Universal Spool Remove

cd c:\program files\universal\uspool\bin

uslrm –component 123456789

cd /opt/universal/bin

uslrm –component 123456789

Command Options Description

-component Component identifier for which records will be removed.
infitran-user-4301 Confidential & Proprietary 359

Removing Infitran Database Records Databases
14.7.2 Remove Component Records: Change Universal Broker
Database Directory

Figure 14.11 and Figure 14.12, below, illustrate how to execute Universal Spool Remove
(USLRM) and specify a database directory other than the default.

Windows

Figure 14.11 Universal Spool Remove for Windows - Remove Component Records

UNIX

Figure 14.12 Universal Spool Remove for UNIX - Remove Component Records

All Stonebranch Solutions database records will be removed.

The -brokerspooldir option specifies the directory location in which the Universal Broker
Component database is located. If the directory has spaces, it must be enclosed within
double (") quotation marks.

Command Line Options

The command line options used in this example are:

Components
Universal Spool Remove

cd c:\program files\universal\uspool\bin

uslrm –component 123456789 –brokerspooldir “c:\program files\universal\spool2”

cd /opt/universal/bin

uslrm –component 123456789 –brokerspooldir “c:\program files\universal\spool2”

Command Options Description

-component Component identifier for which records will be removed.

-brokerspooldir Directory location in which the Universal Broker Component database
(bcomponent.db) is located
infitran-user-4301 Confidential & Proprietary 360

CHAPTER 15
Fault Tolerance Implementation
15.1 Overview
For Infitran, fault tolerance is the capability of its Stonebranch Solutions components to
recover or restart from an array of error conditions that occur in any large IT organization.

Errors occur as a result of human, software, or hardware conditions. The more resilient a
product is to errors, the greater value it offers.

Currently, network fault tolerance is implemented in one Infitran component:
• Universal Data Mover
infitran-user-4301 Confidential & Proprietary 361

Network Fault Tolerance Fault Tolerance Implementation
15.2 Network Fault Tolerance
UDM uses the TCP/IP protocol for communications over a data network. The TCP/IP
protocol is a mature, robust protocol capable of re-sending packets and rerouting packets
when network errors occur. However, data networks do have problems significant enough
to prevent the TCP/IP protocol from recovering. As a result, the TCP/IP protocol
terminates the connection between the application programs. Like any application using
TCP/IP, UDM is subject to these network errors. Should they occur, a product can no
longer communicate and must shutdown or restart. These types of errors normally show
themselves as premature closes, connection resets, time-outs, or broken pipe errors.

UDM provides the ability to circumvent these types of errors with its Network Fault
Tolerant protocol. By using the network fault tolerant protocol, UDM traps the connection
termination caused by the network error and it reestablishes the network connections.
Once connections are reestablished, processing automatically resumes from the location
of the last successful message exchange. No program restarts are required and no data
are lost.

The network fault tolerant protocol acknowledges and checkpoints successfully received
and sent messages, respectively. The network fault tolerant protocol does reduce data
throughput. Consequentially, the use of network fault tolerance should be carefully
weighed in terms of increased execution time versus the probability of network errors and
cost of such errors. For example, it may be easier to restart a program then to incur
increased execution time.

When a network connection terminates, the UDM Manager will enter a network reconnect
phase. In the reconnect phase, the Manager attempts to connect to the UDM Server and
reestablish its network connections. The condition that caused the network error may
persist for only seconds or days. The Manager will attempt Server reconnection for a
limited amount of time (configured with the RECONNECT_RETRY_COUNT and
RECONNECT_RETRY_INTERVAL options). These two options determine, respectively,
how many reconnect attempts are made and how often they are made. After all attempts
have failed, the manager ends with an error.

When a network connection terminates, the Server enters a disconnected state and waits
for the Manager to reconnect. The user process continues running; however, if the user
process attempts any I/O on the standard files, it will block. The Server waits for the
Manager to reconnect for a period of time defined by the Manager's
RECONNECT_RETRY_COUNT and RECONNECT_RETRY_INTERVAL. Once that time
has expired, the Server terminates the user process and exits.

UDM can request the use of the network fault tolerant protocol. If the Server does not
support the protocol or is not configured to accept the protocol, the Manager continues
without using the protocol.

The NETWORK_FAULT_TOLERANT option is used to request the protocol.
infitran-user-4301 Confidential & Proprietary 362

Network Fault Tolerance Fault Tolerance Implementation
15.2.1 Open Retry

Open Retry is a type of fault tolerance used at the session-establishment level.

(Network fault tolerance is used from the time that a session has been fully established
until the session has terminated.)

Open Retry is used during the establishment phase of a session. UDM tries to establish a
session when the open command is issued. If the OPEN_RETRY option value is yes,
and UDM fails to establish the session due to a network error, timeout, or the inability to
start a transfer server, it will retry the open command based on the settings of the
OPEN_RETRY_COUNT and OPEN_RETRY_INTERVAL options.

15.2.2 Component Management

In order to fully understand Universal Data Mover fault tolerant features, some
understanding of how the Universal Broker manages components is necessary.

Universal Broker manages component startup, execution, and termination. The broker
and its components have the ability to communicate service requests and status
information between each other.

The Broker maintains a database of components that are active or have completed and
waiting for restart or reconnection. The component information maintained by the broker
determines the current state of the component. This state information is required by the
broker to determine if a restart or reconnect request from a manager is acceptable or not.
The broker's component information can be viewed with the Universal Query program.

One piece of component information maintained by the broker is the component's
communication state. The communication state primarily determines what state the
Universal Data Mover Server is in regarding its network connection with a manager and
the completion of the user process and its associated spooled data.
infitran-user-4301 Confidential & Proprietary 363

Network Fault Tolerance Fault Tolerance Implementation
The communication state values are described in Table 15.1, below.
• Reconnect column indicates whether or not a network reconnect request is valid.
• Restart column indicates whether or not a restart request is valid.

Table 15.1 Component Communication States

 State Reconnect Restart Description

COMPLETED NO NO Server and manager have completed. All standard
output and standard error files have been sent to the
manager and the user process's exit status.

DISCONNECTED YES YES Server is not connected to the manager. This occurs
when a network error has occurred, the manager
halted, or the manager host halted.
The server is executing with either the network fault
tolerant protocol, is restartable, or both.
Note: The server cannot tell if the manager is still

executing or not since it cannot
communicate with it.

ESTABLISHED NO NO Server and manager are connected and processing
normally. This is the most common state when all is
well.

RECONNECTING NO NO Server has received a reconnect request from the
manager to recover a lost network connection.
This state should not remain long, only for the time it
takes to re-establish the network connections.

STARTED NO NO Server has started.
If the server is restartable it is receiving the standard
input file from the manager and spooling it.
infitran-user-4301 Confidential & Proprietary 364

CHAPTER 16
Network Data Transmission
16.1 Overview
Distributed systems, such as Universal Command, communicate over data networks. All
Stonebranch components communicate using the TCP/IP protocol. The UDP protocol is
not used for any product data communication over a network.

Stonebranch Solutions can utilize either of two network protocols:

1. SSS (Secure Socket Layer) Protocol
Secure Socket Layer version 3 (SSLv3) provides the highest level of security
available. SSL is a widely used and accepted network protocol for distributed software
applications that are required to address all aspects of secure data transfer on private
and public networks.
All Stonebranch Solutions components (version 3.x and later) use SSLv3.

2. Stonebranch Solutions Protocol
Stonebranch Solutions version 2 (UNVv2) legacy protocol is provided for backward
compatibility with Stonebranch Solutions versions earlier than 3.x.
To ensure backward compatibility, this protocol is still supported by version 3.x
components.

The following sections discuss each of the protocols.

In addition to the network protocol used to transmit data, Stonebranch Solutions
application protocol is discussed as well.
infitran-user-4301 Confidential & Proprietary 365

Overview Network Data Transmission
16.1.1 SSS (Secure Socket Layer) Protocol

Stonebranch Solutions implement the SSL protocol using the OpenSSL library or the IBM
z/OS System SSL library, available on the z/OS operating system. The most recent SSL
standard is version3. A subsequent version was produced, changing the name to
Transport Layer Security version 1 (TLSv1). TLSv1 is the actual protocol used by
Stonebranch Solutions. TLSv1 is more commonly referred to simply as SSL and the term
SSL is used throughout the rest of this documentation to mean TLSv1, unless otherwise
noted.

The SSL protocol addresses the major challenges of communicating securely over a
potentially insecure data network. The following sections discuss the issue of data privacy
and integrity, and peer authentication.

Data Privacy and Integrity
People with sufficient technical knowledge and access to network resources can watch or
capture data transmitting across the network. What they do with the data is up to them.

Data sent over the network that should remain private must be encrypted in a manner that
unauthorized persons cannot determine what the original data contained regardless of
their level of expertise, access to network resources, amount of data captured, and
amount of time they have. The only party that should be able to read the data is the
intended recipient.

As data is transmitted over the network, it passes through media and hardware of
unknown quality that may erroneously change bits of data without warning. Additionally,
although data may be encrypted, there is nothing stopping a malicious person from
changing the data while it is transmitted over the network. The changed data may or may
not be detected by the recipient depending on what changed and how it is processed. It
may be accepted as valid data, but the information it represents is now erroneous

Data integrity must be protected from errors in transmission and malicious users. Data
integrity checks insures that what was sent is exactly what is received by the recipient.
Without integrity checks, there is no guarantee.

Encryption algorithms are used to encrypt data into an unreadable format. The encryption
process is computationally expensive. There are a variety of encryption algorithms some
of which perform better than others. Some algorithms offer a higher level of security than
others. Typically, the higher level of security requires more computational resources.

Message digest algorithms are used to produce a Message Authentication Code (MAC)
that uniquely identifies a block of data. The sender computes a MAC for the data being
sent based on a shared secret key the sender and receiver hold. The sender sends the
data and the MAC to the receiver. The receiver computes a new MAC for the received
data based on the shared secret key. If the two MACs are the same, data integrity is
maintained, else the data is rejected as it has been modified.

Message digest algorithms are often referred to as MACs and can be used synonymously
in most contexts.
infitran-user-4301 Confidential & Proprietary 366

Overview Network Data Transmission
The SSL standard defines a set of encryption and message digest algorithms referred to
cipher suites that insure data privacy and data integrity. Cipher suites pair encryption
algorithms with appropriate message digest algorithms. The two algorithms cannot be
specified individually.

Stonebranch Solutions supports a subset of the complete SSL cipher suites defined by
the standard. The cipher suite name is formatted as an encryption algorithm abbreviation
followed by the message digest algorithm abbreviation.

Table 16.1, below, identifies the supported SSL cipher suites.

Table 16.1 Supported SSL cipher suites

Stonebranch Solutions support one additional cipher suite name that is not part of the
SSL protocol. The NULL-NULL cipher suite turns SSL off completely and instead uses
the Stonebranch Solutions Protocol (UNVv2).

Selecting an SSL Cipher Suite
When two Stonebranch Solutions components (for example, a UEM Manager and a UEM
Server) first connect, they perform an SSL handshake that negotiates the cipher suite to
use for the session. The Manager presents a list of cipher suites (in descending order of
preference) that it would like to use. This is compared against a list of ciphers that the
Server supports. The first cipher suite in common is the one used for the session.

Lists of cipher suites are helpful where a distributed software solution may cross many
organizational and application boundaries, each with its own security requirements.
Instead of having to choose one cipher suite for all distributed components, the software
components can be configured with their own list of acceptable cipher suites based on
their local security requirements.

When a high level of security is required, the higher CPU consuming cipher suite is
justified. When lower level of security is acceptable, a lower CPU consuming cipher suite
can be used. As long as the Manager has both cipher suites in its list, it can negotiate
either cipher suite with servers of different security levels.

Cipher Suite Name Description

RC4-SHA 128-bit RC4 encryption with SHA-1 message digest

RC4-MD5 128-bit RC4 encryption with MD5 message digest

AES256-SHA 256-bit AES encryption with SHA-1 message digest

AES128-SHA 128-bit AES encryption with SHA-1 message digest

DES-CBC3-SHA 128-bit Triple-DES encryption with SHA-1 message digest

DES-CBC-SHA 128-bit DES encryption with SHA-1 message digest

NULL-SHA No encryption with SHA-1 message digest

NULL-MD5 No encryption with MD5 message digest
infitran-user-4301 Confidential & Proprietary 367

Overview Network Data Transmission
Peer Authentication
When communicating with a party across a data network, how do you insure that the
party you are communicating with (your peer) is who you believe? A common form of
network attack is a malicious user representing themselves as another user or host.

Peer authentication insures that the peer is truly who they identify themselves as. Peer
authentication applies to users, computer programs and hardware systems.

SSL uses X.509 certificates and public and private keys to identify an entity. An entity
may be a person, a program, or a system. A complete description of X.509 certificates is
beyond the scope of this documentation. Section 7.7 X.509 Certificates provides an
overview to help get the reader oriented to the concepts, terminology and benefits.

For additional details, the following web site is recommended:

http://www.faqs.org/rfcs/rfc3280.html
infitran-user-4301 Confidential & Proprietary 368

Overview Network Data Transmission
16.1.2 Stonebranch Solutions Protocol

The Stonebranch Solutions protocol (UNVv2) is a proprietary protocol that securely and
efficiently transports data across data networks. UNVv2 is used in Stonebranch Solutions
prior to version 3 and will be available in future versions.

UNVv2 addresses data privacy and integrity. It does not address peer authentication.

Data Privacy and Integrity
Data privacy is insured with data encryption algorithms. UNVv2 utilizes 128-bit RC4
encryption for all data encryption.

Data integrity is insured with message digest algorithms. UNVv2 utilizes 128-bit MD5
MAC's for data integrity. UNVv2 referred to data integrity as data authentication.

Encryption and integrity may be enabled and disabled on an individual bases.

Encryption keys are generated using a proprietary key agreement algorithm. A new key is
created for each and every network session.
infitran-user-4301 Confidential & Proprietary 369

Overview Network Data Transmission
16.1.3 Stonebranch Solutions Application Protocol

Stonebranch Solutions components use an application-layer protocol to exchange data
messages. The protocol has the following characteristics:
• Low-Overhead
• Secure
• Extensible
• Configurable Options

The following sections refer to two categories of data transmitted by Stonebranch
Solutions:
• Control data (or messages) consists of messages generated by Stonebranch

Solutions components in order to communicate with each other. The user of the
product has no access to the control data itself.

• Application data (or messages) consists of data that is transmitted as part of the
requested work being executed. For example, standard input and output data of jobs
Universal Command executes. The data is created by the job and read or written by
Universal Command on behalf of the job.

Low-Overhead
The protocol is lightweight, in order to minimize its use of network bandwidth. The product
provides application data compression options, which reduces the amount of network
data even further.

There are two possible compression methods:
• ZLIB method offers the highest compression ratios with highest CPU utilization.
• HASP method offers the lowest compression ratios with lowest CPU utilization.

Note: Control data is not compressed. Compression options are available for application
data only.

Secure
The protocol is secure. All control data exchanged between Stonebranch Solutions
components are encrypted with a unique session key and contain a MAC. The encryption
prevents anyone from analyzing the message data and attempting to circumvent product
and customer policies. Each session uses a different encryption key to prevent "play
back" types of network attacks, where messages captured from a previous session are
replayed in a new session. This applies to both network protocols: SSL and UNVv2.

The security features used in the control messages are not optional. They cannot be
turned off. The security features are optional for application data sent over the network.

The data encryption options affect the application data being sent over the network.
Special fields, such as passwords, are always encrypted. The encryption option cannot
be turned off for such data.
infitran-user-4301 Confidential & Proprietary 370

Overview Network Data Transmission
Extensible
The message protocol used between the Stonebranch Solutions components is
extensible. New message fields can be added with each new release without creating
product component incompatibilities. This permits different component versions to
communication with each other with no problems. This is a very important feature for
distributed systems, since it is near impossible to upgrade hundreds of servers
simultaneously.

New encryption and compression algorithms can be added in future releases without
loosing backward compatibility with older releases. After a network connection is made,
connection options are negotiated between the two Stonebranch Solutions programs.
The options negotiated include which encryption and compression algorithms are used
for the session. Only algorithms that both programs implement are chosen in the
negotiation process. The negotiation process permits two different program versions to
communicate.
infitran-user-4301 Confidential & Proprietary 371

Overview Network Data Transmission
16.1.4 Configurable Options

The network protocol can be configured in ways that affect compression, encryption,
code pages, and network delays.

The following configuration options are available on many of the Stonebranch Solutions
components:

CODE_PAGE
The CODE_PAGE option specifies the code page translation table used to translate
network data from and to the local code page for the system on which the program is
executing.

A codepage table is text file that contain a two-column table. The table maps local single
byte character codes to two-byte UNICODE character codes.

Code pages are located in the product National Language Support (NLS) directory or
library. New code pages may be created and added to the NLS directory or library. The
CODE_PAGE option value is simply the name of the code page file without any file name
extension if present.

CTL_SSL_CIPHER_LIST

The CTL_SSL_CIPHER_LIST option specifies one or more SSL cipher suites that are
acceptable to use for network communications on the control session, which is used for
component internal communication.

The SSL protocol uses cipher suites to specify the combination of encryption and
message digest algorithms used for a session. An ordered list of acceptable cipher suites
can be specified in a most to least order of preference.

An example cipher suite list is RC4-MD5,RC4-SHA,AES128-SHA. The RC4-MD5 cipher
suite is the most preferred and AES128-SHA is the least preferred.

When two Stonebranch Solutions components (Manager and a Server) first connect, they
perform an SSL handshake that negotiates the cipher suite to use for the session. The
Manager presents a list of cipher suites (in descending order of preference) that it would
like to use. This is compared against a list of ciphers that the Server supports. The first
cipher suite in common is the one used for the session.
infitran-user-4301 Confidential & Proprietary 372

Overview Network Data Transmission
DATA_AUTHENTICATION
The DATA_AUTHENTICATION option specifies whether or not the network data is
authenticated. Data authentication verifies that the data did not change from the point it
was sent to the point it was received.

Data authentication also is referred to as a data integrity in this document.

Data authentication occurs for each message sent over the network. If a message fails
authentication, the network session is terminated and both programs end with an error.

The DATA_AUTHENTICATION option is applicable to the UNVv2 protocol only. SSL
always performs authentication.

DATA_COMPRESSION

The DATA_COMPRESSION option specifies that network data be compressed.

Compression attempts to reduce the amount of data to a form that can be decompressed
to its original form. The compression ratio is the original size divided by the compressed
size. The compression ratio value will depend on the type of data. Some data compress
better than others.

Two methods of compression are available:
• ZLIB method provides the highest compression ratio with the highest use of CPU
• HASP method provides the lowest compress ratio with the lowest use of CPU.

Whether or not compression is used and which compression method is used depends on
several items:
• Network bandwidth. If network bandwidth is small, compression may be worth the

cost in CPU.
• CPU resources. If CPU is limited, the CPU cost may not be worth the reduced

bandwidth usage.
• Data compression ratio. If the data does not compress well, it is probably not worth

CPU cost. If the data ratio is high, the CPU cost may be worth it.

DATA_ENCRYPTION

The DATA_ENCRYPTION option specifies whether or not network data is encrypted.

Encryption translates data into a format that prevents the original data from being
determined. Decryption translates encrypted data back into its original form.

The type of encryption performed depends on the network protocol being used, SSL or
UNVv2.

Data encryption does increase CPU usage. Whether or not encryption is used depends
on the sensitivity of the data and the security of the two host systems and the data
network between the hosts.
infitran-user-4301 Confidential & Proprietary 373

Overview Network Data Transmission
DATA_SSL_CIPHER_LIST
The DATA_SSL_CIPHER LIST option specifies one or more SSL cipher suites that are
acceptable to use for network communications on the data session, which is used for
standard I/O file transmission.

(See CTL_SSL_CIPHER_LIST in this section.)

DEFAULT_CIPHER

The DEFAULT_CIPHER option specifies the SSL cipher suite to use (since SSL protocol
requires a cipher suite) if the DATA_ENCRYPTION option is set to NO. The default
DEFAULT_CIPHER is NULL-MD5 (no encryption, MD5 message digest).

All SSL cipher suites have a message digest for good reasons. The message digest
ensures that the data sent are the data received. Without a message digest, it is possible
for bits of the data packet to get changed without being noticed.

KEEPALIVE_INTERVAL

The KEEPALIVE_INTERVAL option specifies how often, in seconds, a keepalive
message (also commonly known as a heartbeat message) is sent between a manager
and server. A keepalive message ensures that the network and both programs are
operating normally. Without a keepalive message, error conditions can arise that place
one or both programs in an infinite wait.

A keepalive message is sent from the server to the manager. If the server does not
receive a keepalive acknowledgement from the manager in a certain period of time
(calculated as the maximum of 2 x NETWORK_DELAY or the KEEPALIVE_INTERVAL),
the server considers the manager or network as unusable. How the server processes a
keepalive time-out depends on what fault tolerant features are being used. If no fault
tolerant features are being used, the server ends with an error. The manager expects to
receive a keepalive message in a certain period of time (calculated as the
KEEPALIVE_INTERVAL + 2 x NETWORK_DELAY.
infitran-user-4301 Confidential & Proprietary 374

Overview Network Data Transmission
NETWORK_DELAY
The NETWORK_DELAY option provides the ability to fine tune Stonebranch Solutions
network protocol. When a data packet is sent over a TCP/IP network, the time it takes to
reach the other end depends on many factors, such as, network congestion, network
bandwidth, and the network media type. If the packet is lost before reaching the other
end, the other end may wait indefinitely for the expected data. In order to prevent this
situation, Stonebranch Solutions components time out waiting for a packet to arrive in a
specified period of time. The delay option specifies this period of time.

NETWORK_DELAY specifies the maximum acceptable delay in transmitting data
between two programs. Should a data transmission take longer than the specified delay,
the operation ends with a time out error. Stonebranch Solutions components will consider
a time out error as a network fault.

The default NETWORK_DELAY value is 120 seconds. This value is reasonable for most
networks and operational characteristics. If the value is too small, false network time outs
could occur. If the value is too large, programs will wait a long period of time before
reporting a time out problem.

SIO_MODE

The SIO_MODE option specifies whether the data transmitted over the network is
processed as text data or binary data.

Text data is translated between the remote and local code pages. Additionally, end of line
representations are converted

Text translation operates in two modes: direct and UCS. The default is direct. The direct
translation mode exchanges code pages between Stonebranch Solutions components to
build direct translation tables. Direct translation is the fastest translation method when a
significant amount (greater then 10K) of text data is transmitted. The code page
exchange increases the amount of data sent over the network as part of the network
connection negotiation. UCS translation does not require the exchange of code pages.
For transactions that have little text data transmission, this is the fastest.

Binary data is transmitted without any data translation.
infitran-user-4301 Confidential & Proprietary 375

CHAPTER 17
z/OS Cancel Command Support
17.1 Overview
Infitran network fault tolerance provides users with the ability to execute jobs that will
continue to run when the network is down (see Chapter 15 Fault Tolerance
Implementation).

However, there are scenarios in which the user may want to cancel an executing job that
supports network fault tolerance and have both the manager and server processes
terminate immediately. Because of fault tolerance, when the manager is terminated, the
server side would begin a connection reestablishment protocol and continue to execute.
This would allow the started user job to continue running.

In particular, z/OS supports a CANCEL command that will terminate a job executing on
the z/OS operating system. When a Universal Data Mover job is cancelled via the z/OS
CANCEL command, the job terminates with either of these exit codes:
• Exit code S122, if it is cancelled with a dump.
• Exit code S222, if it is cancelled without a dump.

Part of the responsibility of a Universal Broker executing on a particular host is to monitor
the status of all locally running manager processes on that machine. So, when instructed,
that Universal Broker could issue a STOP command to the Universal Data Mover Server
process associated with the stopped / ended manager process.

In the case of a Universal Data Mover three-party transfer, both the primary and
secondary servers need to be cancelled. The Universal Broker running locally with the
cancelled Universal Data Mover Manager process will send a STOP command to the
primary server. This primary server will, in turn, forward the STOP command to the
secondary server, thus cancelling both servers of the three-party transfer.
infitran-user-4301 Confidential & Proprietary 376

Overview z/OS Cancel Command Support
17.1.1 Exit Codes

Through the use of the SERVER_STOP_CONDITIONS configuration option, the
Universal Data Mover Manager process notifies the locally running Universal Broker of
the exit codes that should cause it to terminate the running Server process. With this
option, the user can specify a list of exit codes that should trigger the locally running
Universal Broker to issue the STOP command to the manager's Universal Data Mover
server-side process.

SERVER_STOP_CONDITIONS can specify a single exit code or a comma-separated list
of exit codes. These stop conditions are passed from the manager to the locally running
Universal Broker, which store this and other component-specific data about the executing
manager component. When this executing Universal Data Mover Manager process is
cancelled or stopped, the locally running Universal Broker detects the ending of the
manager process and retrieves its process completion information, which includes the
exit code of the manager.

The Universal Broker then compares this exit code with the list of exit codes provided by
SERVER_STOP_CONDITIONS. If a match is found, and network fault tolerance is
enabled, the Universal Broker will execute a uctl command to STOP the running
Universal Data Mover Server component.

17.1.2 Security Token

For security purposes, Stonebranch Solutions pass around a security token that is used
by the locally running Universal Broker to STOP associated Universal Data Mover Server
process.

This security token is generated on a component-by-component basis by the Universal
Broker process that starts the Universal Data Mover Server. Upon generation, this token
is returned to the Universal Data Mover Manager which, in turn, updates its locally
running Universal Broker with this token. The locally running Universal Broker then uses
this token with the issued STOP command to cancel the running Universal Data Mover
Server process.

When this token is received by the Universal Broker processes with the request to STOP
the server component, the Broker authenticates the received token with the stored token
for the running Universal Data Mover Server process. When the token is authenticated,
the Universal Data Mover Server process is STOPPED.
infitran-user-4301 Confidential & Proprietary 377

APPENDIX A
Glossary
This glossary defines terms used within the Infitran business solution:

Agent
A single Infitran (or Indesca) installation comprised of one Universal Broker and one or
more Stonebranch Solutions components, such as Universal Data Mover.)

API
API (Application Programming Interface) is a set of functions, procedures, methods,
classes, or protocols that an operating system, library, or service provides to support
requests made by computer programs.

Asynchronous Communication
Transmission of data or sending of messages without the need to wait for a reply from the
destination before continuing with the next operation.

Automation Center
Automation Center is the Stonebranch workload automation solution that provides for
scheduling of Indesca and Infitran workload on Stonebranch Solutions Agents deployed
throughout the enterprise.

CA
CA (Certification Authority) is a trusted third-party organization that issues digital
certificates used to create digital signatures and public-private key pairs, guaranteeing
that the individual granted the unique certificate is, in fact, who he or she claims to be.

Channel
Medium used to convey information from sender to receiver.
infitran-user-4301 Confidential & Proprietary 378

Glossary
Communications Protocol
Set of standard rules for data representation, signaling, authentication, and error
detection required to send information over a communications channel.

Connector
Component used to allow one system or application to communicate with another system
or application. A connector can be embedded within an application or operate as a
stand-alone component.

Container
Application environment that provides a runtime environment that offers services such as
security, authentication, transaction management, and deployment to an application
developer, thus enabling a faster implementation and rollout.

EAI tools
EAI (Enterprise Application Integration) tools are used for the unrestricted sharing of data
and business processes throughout the networked applications or data sources in an
organization.

GLBA
GLBA (Gramm-Leach-Bliley Act) is a law enabling the consolidation of commercial
banks, investment banks, securities firms and insurance companies.

HIPAA
HIPPA (Health Insurance Portability and Accountability Act) is a law that serves to protect
health insurance coverage for workers and their families when they change or lose their
jobs.

HTTP
HTTP (HyperText Transfer Protocol), a synchronous request / reply protocol, is the
underlying protocol used by the World Wide Web to define how messages are formatted
and transmitted, and what actions web servers and browsers should take in response to
various commands.

Internet Application
A web application (webapp) that is accessed via a web browser over the Internet.

Internet Workload
Internet workload is any application, service, or function that operates in an Internet
environment, such as web applications or container applications, and supports an
Internet-based communication protocol such as HTTP or SOAP.
infitran-user-4301 Confidential & Proprietary 379

Glossary
JMS
JMS (Java Message Service) is an API that provides a standard way for Java programs
to access and interact with an enterprise asynchronous messaging system. JMS uses
both point-to-point (queue-based) and publish / subscribe (topic-based) messaging
patterns.

JMS Connector
Component that allows the sending and receiving of JMS messages between
applications.

Light-Weight Container Architecture (LWCA)
This architecture, combined with the Federated architecture of the current Stonebranch
Solutions line, provide your enterprise with a loosely coupled, scalable, and secure
solution to your enterprise workload management tasks.

Listen MEP
Listen MEP (Message Exchange Pattern) refers to a component that listens for a
message from an application or service.

Managed File Transfer
Software solutions that facilitate the secure transfer of data from one computer to another
through a network, such as the Internet, while offering a higher level of security and
control than FTP.

Managers
Infitran component that provides client services initiating requests on behalf of the user
(for example, a Universal Command manager batch job requesting the execution of a
command on a remote server).

Message
Abstract format, or container, for sending data between applications or services. No
implementation is implied.

Message-Based Application
A message-based application accesses a target application by sending a message to a
queue that is controlled by the target application. This queue must be known and
accessible to the application sending the message.

Message-Based Workload
Any application, service, or function that supports a message-based communication
protocol such as JMS or MQ.
infitran-user-4301 Confidential & Proprietary 380

Glossary
Message Exchange Pattern
A Message Exchange Pattern (MEP) describes the pattern of messages required by a
communications protocol in order to establish or use a communication channel.

Message-based application
Application accessed via a web browser over the Internet or Intranet.

MQ Connector
MQ connector supports workload execution via the MQ messaging protocol using
synchronous and asynchronous communication.

PKI
PKI (Public Key Infrastructure) a system of digital certificates, CAs, and other registration
authorities that verify and authenticate the validity of each party involved in an Internet
transaction.

proxy certificates
Proxy certificate is a certificate that is derived from, and signed by, a normal X.509 Public
Key End Entity Certificate or by another proxy certificate for the purpose of providing
restricted proxying and delegation within a PKI-based authentication system.

Publish MEP
Publish Message Exchange Pattern, or MEP, represents an asynchronous outbound
workload execution event that sends a message from an application or service to a target
destination. This means that you can request execution of a workload using the JMS
protocol to a target JMS provider.

Remote Procedure Call
Remote Procedure Call (RPC) is the most common messaging pattern in SOAP. In RPC,
one network node (the client) sends a request message to another node (the server). The
server immediately sends a response message to the client. This type of transaction also
is known as "request / reply."

Request / Reply MEP
Request / Reply MEP represents an outbound request to a target workload followed by
an inbound reply from a target workload. This is a synchronous operation, as the calling
party waits, or blocks, for the reply to come back before releasing its resources and
moving on to the next task.

SAP
SAP ("System Analysis and Programming Development")is a corporation providing
enterprise software applications and support to businesses. SAP ERP is its enterprise
resource planning software for managing information and among all company functions.
infitran-user-4301 Confidential & Proprietary 381

Glossary
Servers
Infitran component initiated either by a client or the Universal Broker. All servers are
started by the Universal Broker. A manager can request that the Broker initiates a server
on its behalf, and the manager and server then work together to perform a service, or a
server can be started automatically by the Broker when the Broker starts and stopped
when the Broker stops.

SOA
SOA (Service-Oriented Architecture) provides methods for systems development and
integration where systems group functionality around business processes and package
these as interoperable services.

SOA also describes IT infrastructure, which allows different applications to exchange data
with one another as they participate in business processes.

SOAP
SOAP (Simple Object Access Protocol) is a lightweight XML-based messaging protocol
used to encode the information in web service request and response messages before
sending them over a network. SOAP messages can be transported using a variety of
Internet protocols.

SOAP is used predominantly to provide an interface to web service-based workload or
legacy workload with a web service interface.

SOAP Connector
Component that allows the sending and receiving of SOAP messages.

SOX
SOX (Sarbanes-Oxley Act) is a law enacted to ensure accurate financial reporting by
public companies.

SSL encryption
SSL encryption uses SSL (Secure Sockets Layer) protocol to encrypt private documents
for transmission via the Internet. SSL uses two keys to encrypt data - a public key known
to everyone and a private key known only to the recipient of the message.

STDIN
STDIN (standard in), STDOUT (standard out), and STDERR (standard error) are the
standard data streams between a computer program and its environment.

xWeb Services Description Language (WSDL)
WSDL is an XML-based language that provides a model for describing Web services.
WSDL is often used in combination with SOAP and XML Schema to provide web services
over the Internet.
infitran-user-4301 Confidential & Proprietary 382

Glossary
WebSphere XD (Extended Deployment) Environment
WebSphere is designed to set up, operate, and integrate e-business applications across
multiple computing platforms using Java-based Web technologies.

Workload
Jobs, processes, applications, and services that require execution, usually in a scheduler
or automation-based environment.

X.509 certificates
Digital certificate issued by a CA that is defined according to the X.509 standard for
defining digital certificates.

XBP 3.0
XBP (eXternal Background Processing) 3.0 is the primary SAP interface used by
Indesca.

XD Connector
XD Connector supports workload execution within the WebSphere Extended Deployment
environment using synchronous communication via the SOAP protocol.
infitran-user-4301 Confidential & Proprietary 383

APPENDIX B
Customer Support
Stonebranch, Inc. provides customer support, via telephone and e-mail, for all Infitran
components.

E-MAIL

All Locations

support@stonebranch.com

Customer support contact via e-mail also can be made via the Stonebranch website:

www.stonebranch.com

TELEPHONE

Customer support via telephone is available 24 hours per day, 7 days per week.

North America

(+1) 678 366-7887, extension 6

(+1) 877 366-7887, extension 6 [toll-free]

Europe

+49 (0) 700 5566 7887
infitran-user-4301 Confidential & Proprietary 384

Index
Symbols
_execrc built-in variable

using 89
*ALLOBJ authority

removing from user profile 169

A
accessing

Universal Configuration Manager 242
accounts

Universal Broker for Windows service 282
adding

event handler record
UNIX 154

event record
UNIX 153

existing Universal Brokers to a Broker group
304

records remotely
using definition file

UNIX 160
using definition file from z/OS

UNIX 161
records using definition file

UNIX 159
Windows 144

single event handler record
Windows 139

single event record
Windows 138

specific, defined Universal Broker 303
adding records

using a definition file redirected for STDIN
Windows 145

using a definition file redirected for STDIN
(for z/OS)

Windows 146
Agents

monitoring 327
alerts 327

types 328
assigning

security attributes to a request 194
auditing 312

events 312

C
CA certificate 224
CANCEL command 376
cancelling

executing job
z/OS 376

certificate
CA (Certificate Authority) 224
creating 225

certificate authentication 197
command file

configuring via 230
command files

encryption 183
command line

configuring via 228
component

refreshing
infitran-user-4301 Confidential & Proprietary 385

via Universal Control
IBM i 269
UNIX 267
Windows 265

z/OS 263
component definition 276
component information database 339
components

starting 277
stopping 278

configuration 226
methods 227
refreshing 257

Universal Broker 259
via Universal Configuration Manager 259
via Universal Control 258

remote 236
configuration file

configuring via 233
syntax 235

configuring
servers 227
UACL rules 195
Universal Broker 227
via command file 230
via command line 228
via configuration file 233
via environment variable 231
Windows

via Universal Configuration Manager 240
console application 281
continuation character -

using in z/OS handler script 131
continuation character +

using in z/OS handler script 132
continuation characters + and -

using in z/OS handler script 133
controlling

access to Universal Event Monitor database
344

database access 121
copying

different types of IBM i files using forfiles 67
file to a new IBM i data physical file 64
file to a new IBM i source physical file 65
file to a new z/OS sequential data set 55
file to an existing IBM i file 60
file to an existing z/OS sequential data set 50
file to Manager 57
file to server 58

IBM i data physical file to a file 62
set of files 59
set of files to a new data physical file on IBM i

66
set of files to a new z/OS partitioned data set

56
set of files to an existing data physical file 63
set of files to an existing z/OS partitioned data

set 53
z/OS sequential data set to a file 52

creating
CA certificate 224
certificate 225
encrypted file

IBM i 192
UNIX 190
Windows 188
z/OS 186

D
database

back-up and recovery 347
component information 339
event definition 341

exporting 141
event defintion

exporting
UNIX 156

event handler 342
exporting 141

UNIX 156
event spool 343
management

Universal Enterprise Controller 345
recovery

Universal Broker 349
Universal Enterprise Controller 351

recovery procedures 348
UES 312

database access 121
database files

event definition 120
event handler 120

databases
Universal Enterprise Controller 345
Universal Event Monitor 340

definition file
format

UNIX 162
infitran-user-4301 Confidential & Proprietary 386

Windows 147
redirected from STDIN

using to add records
Windows 145

redirected from STDIN (for z/OS)
using to add records

Windows 146
using to add records

UNIX 159
Windows 144

using to add records from z/OS
UNIX 161

using to add records remotely
UNIX 160

deleting
existing Universal Brokers from a Broker

group 304
specific, defined Universal Broker 302

determining if a request is allowed or denied 194

E
encrypted file

creating
IBM i 192
Windows 188, 190
z/OS 186

using
IBM i 193
UNIX 191
Windows 189
z/OS 187

encrypted files
transferring 184

encrypting
command files 183

ending
Universal Broker

IBM i 285
environment variable

configuring via 231
error messages

translating 316, 320
translating into return codes 317

event
expired

handling
UNIX 152
z/OS 130

handling with a script

z/OS 128
event definition database 341

exporting
UNIX 156
Windows 141

event definitions
listing

UNIX 155
Windows 140

listing using wildcards
Windows 143

storing 114
event handler

stored
using to execute command/script

z/OS 127
event handler database 342

exporting
UNIX 156
Windows 141

event handler record
adding

UNIX 154
Windows 139

listing
UNIX 157
Windows 142

using
UNIX 149

event handlers
listing using wildcards

Windows 143
storing 114

event log (Windows)
writing records 335

event monitoring 111
event record

adding
UNIX 153
Windows 138

event spool database 343
events

auditing 312
exporting 301
monitoring 112

exec command 72
executing

command/script using stored event handler
Windows 134
z/OS 127
infitran-user-4301 Confidential & Proprietary 387

remote work 71
script for triggered event

UNIX 150
Windows 135

Universal Broker for Windows 281
Universal Command via Universal Data

Mover 69
Universal Event Log Dump

Windows 337
Universal Message Translator

IBM i 325
UNIX 324
Windows 323
z/OS 322

expired event
handling

UNIX 152
Windows 137

exporting
event definition and event handler databases

Windows 141
event definition database

UNIX 156
event handler database

UNIX 156
events 301
events into ARC format

Windows 306
z/OS 305

retrieved archived file into CSV
Windows 306

retrieved archived file into XML
z/OS 305

specific, defined Universal Broker 301

F
fault tolerance 361

network 362
file permissions

Universal Broker 166
Universal Control

Manager 178
Server 180

Universal Data Mover
Manager 170
Server 171

Universal Event Monitor
Manager 174
Server 176

file triggering 111
files

database
Universal Enterprise Controller 345

encrypted
transferring 184

input to Universal Message Translator 317
merging

introducing new options 273
using installation-dependent values 274
using program defaults 272

format
definition file 147

UNIX 162

H
handling

event with a script 128
expired event

UNIX 152
Windows 137
z/OS 130

I
IBM i

enabling Universal Broker 286
ending Universal Broker 286
removing *ALLOBJ authority 169
starting Universal Broker 286

inbound implementation
Infitran web services 98
JMS 100
SOAP 106

Infitran
web services

inbound implementation 98
integrating

UDM with FTP using a command reference
87

UDM with FTP using a shell script 85
invoking

script from batch job 68
Universal Command Manager via Universal

Data Mover 69
issuing

WTO message to z/OS console 314
wait for reply 315
infitran-user-4301 Confidential & Proprietary 388

J
JMS

inbound implementation 100
job status and activity

querying 329

L
Listing

WIndows directory using a batch file
returned file 80

Windows directory using batch file 78
listing

active components on remote server
IBM i 334
UNIX and Windows 333
z/OS 332

all defined Universal Brokers 301
directory using UNIX shell script 82
event definitions

UNIX 155
Windows 140

event definitions using wildcards
Windows 143

event handler record
UNIX 157
Windows 142

event handlers using wildcards
Windows 143

multiple event definitions and event handlers
using wildcards

UNIX 158
standard out for component 357
Universal Broker database 354
Universal Broker detail for component 356
Universal Event Monitor spool database

records 355

M
managed mode

configuration 237
managing

event definition database files 120
event handler database files 120

merging
files

introducing new options 273
using installation-dependent values 274
using program defaults 272

message
destinations 310
ID 309
levels 309
types 308

message and audit facilities 307
methods of starting components 277
monitored types of information 327
monitoring

Agents 327
multiple events 118
single event 116
system events 112

multiple event definitions and event handlers
listing using wildcards

UNIX 158

N
navigating

Universal Configuration Manager 244
network fault tolerance 362

z/OS CANCEL command 376
network protocols 365

O
output

Universal Query 331

P
polling

Agents and SAP systems 327
protocol

network 365
SSL 366
Stonebranch Solutions 369
Stonebranch Solutions Application 370
TCP/IP 365
UDP 365

Q
querying

job status and activity 329
querying Universal Broker 329

R
raising

SAP event
infitran-user-4301 Confidential & Proprietary 389

UNIX 96
z/OS 94

refreshing
component

via Universal Control
IBM i 269
UNIX 267
Windows 265

z/OS 263
configuration 257

Universal Broker 259
via Universal Configuration Manager 259
via Universal Control 258

event-driven UEM server 126
Universal Broker 257

via Universal Control
IBM i 268
UNIX 266
Windows 264

z/OS 261
remote configuration 236

managed mode 237
unmanaged mode 236

remote execution 69
IBM i 76
requirements 72
SAP 92
UNIX 75
Windows 74
z/OS 73

removing
*ALLOBJ authority

IBM i 169
component records 359

change directory 360
requirements

remote execution 72
running

Universal Broker for Windows service 282

S
selecting

SSL cipher suite 367
SOAP

inbound implementation 106
SSL (Secure Socket Layer) Protocol 366
SSL cipher suite

selecting 367
starting

components 277
event-driven UEM server 125
IBM i component

via Universal Control 298
Univeral Broker

UNIX 283
Windows 281

Universal Broker
IBM i 285
z/OS 280

Universal Enterprise Controller
Windows 290
z/OS 288

UNIX component
via Universal Control 296

Windows component
via Universal Control 294

z/OS component
via Universal Control 292

start-up modes
Universal Broker 239

Stonebranch Solutions
protocol 369

Stonebranch Solutions Application
protocol 370

stopping
components 278
IBM i component

via Universal Control 299
Universal Broker

z/OS 280
Universal Enterprise Controller

z/OS 288, 290
UNIX component

via Universal Control 297
Windows component

via Universal Control 295
z/OS component

via Universal Control 293
stored event handler

using to execute command/script
Windows 134

storing
event definitions 114
event handlers 114

syntax
configuration file 235
infitran-user-4301 Confidential & Proprietary 390

T
TCP/IP protocol 365
three-party transfer session 46
transfer

operation 45
session 46

three-party 46
two-party 46

transferring
encrypted files 184

translating
error messages 316, 320
error messages into return codes 317

triggered event
executing a script

UNIX 150
Windows 135

two-party transfer session 46

U
UACL

entries 196
X.509 certificate authentication 197

UACL rules
configuring 195

UDP protocol 365
UEM server

event-driven
refreshing 126
starting 125

UES
database 312

Universal Access Control List (UACL)
components using 194

Universal Broker
configuration

refreshing 259
file permissions 166
refreshing 257

via Universal Control
IBM i 268
UNIX 266

z/OS 261
refreshing via Universal Control

Windows 264
start-up modes 239
user account 168

Universal Configuration Manager 240
accessing 242

navigating 244
refreshing configuration via 259

Universal Control
Manager

file permissions 178
refreshing configuration via 258
Server

file permissions 180
user authentication 181

Universal Data Mover
Manager

file permissions 170
Server

file permissions 171
user authentication 172
user profile 172

Universal Enterprise Controller
database

management 345
database files 345
databases 345

Universal Event Monitor
databases 340
Manager

file permissions 174
Server

file permissions 176
user authentication 177

Universal Message Translator
input files 317

Universal Query
output 331

UNIX
configuration refresh 266
console application 284
daemon process 283
databases 349

unmanaged mode
configuration 236

user account
Universal Broker 168

user authentication
Universal Control

Server 181
Universal Data Mover

Server 172
Universal Event Monitor

Server 177
user profile

Universal Data Mover
infitran-user-4301 Confidential & Proprietary 391

Server 172
using

_execrc built-in variable 89
continuation character - in z/OS handler script

131
continuation character + in z/OS handler

script 132
continuation characters + and - in z/OS

handler script 133
encrypted file

IBM i 193
UNIX 191
Windows 189
z/OS 187

stored event handler record
UNIX 149

W
web services

inbound implementation 98
wildcards

for listing event definitions and event handlers
Windows 143

Windows
databases 350
environment 281
writing event log records 335

Windows service 282
writing event log records (Windows) 335

X
X.509 certificate authentication 197
X.509 certificates 197

Z
z/OS

CANCEL command 376
cancelling an executing job 376
databases 349
starting Universal Broker 280
stopping Universal Broker 280
infitran-user-4301 Confidential & Proprietary 392

950 North Point Parkway, Suite 200
Alpharetta, Georgia 30005
U.S.A.

	Summary of Changes
	Contents
	List of Figures
	List of Tables
	Preface
	Document Structure
	Document Organization

	1 Infitran Overview
	1.1 What is Infitran?
	1.2 What can Infitran do for Me?
	1.3 Infitran Features
	1.4 Infitran Components
	I-Activity Monitor
	I-Management Console
	I-Administrator
	Universal Automation Center Registration
	Universal Certificate
	Universal Control
	Universal Database Dump
	Universal Database Load
	Universal Display Log File
	Universal Encrypt
	Universal Event Log Dump
	Universal Message Translator
	Universal Products Install Merge
	Universal Query
	Universal Return Code
	Universal Spool List
	Universal Spool Remove
	Universal Submit Job
	Universal Write-to-Operator

	1.5 Limited Use Components
	Limitations of Use
	Limitations of Use
	Limitations of Use

	2 Transferring Files to / from Remote Systems
	2.1 Overview
	2.2 Transfer Operation Components
	2.2.1 Manager
	2.2.2 Primary Server
	2.2.3 Secondary Server

	2.3 Transfer Sessions
	2.3.1 Logical Names
	2.3.2 Two-Party Transfer Sessions
	2.3.3 Three-Party Transfer Sessions

	2.4 Transferring Files Examples
	2.4.1 Copy a File to an Existing z/OS Sequential Data Set
	2.4.2 Copy a z/OS Sequential Data Set to a File
	2.4.3 Copy a Set of Files to an Existing z/OS Partitioned Data Set
	2.4.4 Copy a File to a New z/OS Sequential Data Set
	2.4.5 Copy a Set of Files to a New z/OS Partitioned Data Set
	2.4.6 Simple File Copy to the Manager
	2.4.7 Simple File Copy to the Server
	2.4.8 Copy a Set of Files
	2.4.9 Copy a File to an Existing IBM i File
	2.4.10 Copy an IBM i Data Physical File to a File
	2.4.11 Copy a Set of Files to an Existing Data Physical File
	2.4.12 Copy a File to a New IBM i Data Physical File
	2.4.13 Copy a File to a New IBM i Source Physical File
	2.4.14 Copy a Set of Files to a New Data Physical File on IBM i
	2.4.15 Copy Different Types of IBM i Files using forfiles and $(_file.type)
	2.4.16 Invoke a Script from a Batch Job

	3 Remote Execution
	3.1 Overview
	3.2 Execution Primer
	3.2.1 Remote Execution Requirements

	3.3 Remote Execution Examples
	3.3.1 Windows Directory Listing Using a Batch File - Default Directory
	3.3.2 Windows Directory Listing Using a Batch File - Returned File
	3.3.3 UNIX Listing Using a Shell Script
	3.3.4 UNIX - Integrating UDM with FTP Using a Shell Script
	3.3.5 UNIX - Integrating UDM with FTP Using a Command Reference
	3.3.6 IBM i from Windows, UNIX, or IBM i - exec Command Return Codes

	4 Remote Execution for SAP Systems
	4.1 Overview
	4.2 Remote Execution of SAP Examples
	4.2.1 Raising an SAP Event for z/OS Example
	4.2.2 Raising an SAP Event for UNIX Example

	5 Web Services Execution
	5.1 Overview
	5.2 Web Services Examples
	5.2.1 Inbound JMS Implementation
	ActiveMQ Topic
	Websphere Queue
	MQ Series Queue:
	Triggering an Event

	5.2.2 Inbound SOAP Implementation

	6 Event Monitoring and File Triggering
	6.1 Overview
	6.2 Universal Event Monitor
	6.2.1 Storing Event Definitions and Event Handlers
	6.2.2 Monitoring a Single Event
	6.2.3 Monitoring Multiple Events

	6.3 UEMLoad
	6.3.1 Controlling Database Access
	Access via UEMLoad Utility
	Universal Access Control List

	6.4 Event Monitoring and File Triggering Examples
	Universal Event Monitoring Examples
	6.4.1 Starting an Event-Driven Server
	6.4.2 Refreshing an Event-Driven UEM Server
	6.4.3 Executing Command/Script Using a Stored Event Handler Record in z/OS
	6.4.4 Handling an Event With a Script in z/OS
	6.4.5 Handling an Expired Event in z/OS
	6.4.6 Continuation Character - in z/OS Handler Script
	6.4.7 Continuation Character + in z/OS Handler Script
	6.4.8 Continuation Characters - and + in z/OS Handler Script
	6.4.9 Using a Stored Event Handler Record in Windows
	6.4.10 Executing a Script for a Triggered Event Occurrence in Windows
	6.4.11 Handling an Expired Event in Windows
	6.4.12 Adding a Single Event Record for Windows
	6.4.13 Adding a Single Event Handler Record for Windows
	6.4.14 Listing All Event Definitions for Windows
	6.4.15 Exporting the Event Definition and Event Handler Databases for Windows
	6.4.16 List a Single Event Handler Record for Windows
	6.4.17 Listing Multiple Event Definitions and Event Handlers Using Wildcards for Windows
	6.4.18 Add Record(s) Using a Definition File for Windows
	6.4.19 Add Record(s) Remotely, Using a Definition File Redirected from STDIN for Windows
	6.4.20 Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for Windows
	6.4.21 Definition File Format for Windows
	6.4.22 Using a Stored Event Handler Record in UNIX
	6.4.23 Executing a Script for a Triggered Event Occurrence in UNIX
	6.4.24 Handling an Expired Event in UNIX
	6.4.25 Adding a Single Event Record for UNIX
	6.4.26 Adding a Single Event Handler Record for UNIX
	6.4.27 Listing All Event Definitions for UNIX
	6.4.28 Exporting the Event Definition and Event Handler Databases for UNIX
	6.4.29 List a Single Event Handler Record for UNIX
	6.4.30 Listing Multiple Event Definitions and Event Handlers Using Wildcards for UNIX
	6.4.31 Add Record(s) Using a Definition File for UNIX
	6.4.32 Add Record(s) Remotely, Using a Definition File Redirected from STDIN for UNIX
	6.4.33 Add Record(s) Remotely, Using a Definition File Redirected from STDIN (for z/OS) for UNIX
	6.4.34 Definition File Format for UNIX

	7 Security
	7.1 Overview
	7.2 Security of Infitran Components
	7.2.1 Universal Broker
	File Permissions
	Configuration Files
	Universal Access Control List
	Universal Broker User Account

	7.2.2 Universal Data Mover Manager Security
	File Permissions
	Configuration Files

	7.2.3 Universal Data Mover Server
	File Permissions
	Configuration Files
	Universal Data Mover Server User ID
	Universal Data Mover Server User Profile
	User Authentication

	7.2.4 Universal Event Monitor Manager
	File Permissions
	Data Privacy
	RACF Protection
	Configuration Files

	7.2.5 Universal Event Monitor Server
	Data Privacy
	File Permissions
	Configuration Files
	User Authentication

	7.2.6 Universal Control Manager
	File Permissions
	Configuration Files
	Universal Configuration Manager
	RACF Protection

	7.2.7 Universal Control Server
	File Permissions
	Configuration Files
	Universal Control Server User ID
	User Authentication

	7.2.8 Universal Event Log Dump
	Event Log Access
	Configuration Files

	7.2.9 Universal Spool List
	7.2.10 Universal Spool Remove

	7.3 Encryption
	7.3.1 Encrypting Files
	7.3.2 Transferring Encrypted Files between Servers
	Security Considerations

	7.4 Encryption Examples
	7.4.1 Creating Encrypted Command File for z/OS
	7.4.2 Using Encrypted Command File on z/OS
	7.4.3 Creating Encrypted Command File for Windows
	7.4.4 Using Encrypted Command File on Windows
	7.4.5 Creating Encrypted Command File for UNIX
	7.4.6 Using Encrypted Command File on UNIX
	7.4.7 Creating Encrypted Command File for IBM i
	7.4.8 Using Encrypted Command File on IBM i

	7.5 Universal Access Control List
	7.5.1 UACL Configuration
	7.5.2 UACL Entries
	Client Identification
	Request Identification
	Certificate-Based and Non Certificate-Based UACL Entries

	7.6 Universal Access Control List Examples
	7.6.1 Universal Broker for z/OS
	7.6.2 Universal Data Mover Server for z/OS
	7.6.3 Universal Control Server for z/OS
	7.6.4 Universal Broker for Windows
	7.6.5 Universal Data Mover Server for Windows
	7.6.6 Universal Control Server for Windows
	7.6.7 Universal Event Monitor Server for Windows
	7.6.8 Universal Broker for UNIX
	7.6.9 Universal Data Mover Server for UNIX
	7.6.10 Universal Control Server for UNIX
	7.6.11 Universal Event Monitor Server for UNIX
	7.6.12 Universal Broker for IBM i
	7.6.13 Universal Data Mover Server for IBM i
	7.6.14 Universal Control Server for IBM i

	7.7 X.509 Certificates
	7.7.1 Sample Certificate Directory
	7.7.2 Sample X.509 Certificate
	7.7.3 Certificate Fields
	7.7.4 SSL Peer Authentication
	Certificate Verification
	Certificate Revocation
	Certificate Identification
	Certificate Support

	7.8 Creating Certificates Examples
	7.8.1 Creating a Certificate Authority Certificate
	7.8.2 Creating a Certificate

	8 Configuration Management
	8.1 Overview
	8.2 Configuration Methods
	Universal Broker / Servers Configuration Method
	8.2.1 Command Line
	8.2.2 Command File
	8.2.3 Environment Variables
	8.2.4 Configuration File
	Configuration File Syntax

	8.3 Remote Configuration
	8.3.1 Unmanaged Mode
	8.3.2 Managed Mode
	Selecting Managed Mode

	8.3.3 Universal Broker Start-up

	8.4 Universal Configuration Manager
	8.4.1 Availability
	8.4.2 Accessing the Universal Configuration Manager
	8.4.3 Navigating through Universal Configuration Manager
	8.4.4 Modifying / Entering Data
	Rules for Modifying / Entering Data

	8.4.5 Saving Data
	8.4.6 Accessing Help Information
	8.4.7 Universal Data Mover Installed Components
	Universal Data Mover Manager
	Universal Data Mover Server

	8.4.8 Universal Event Monitor Installed Components
	Universal Event Monitor Manager
	Universal Event Monitor Server

	8.4.9 Universal Enterprise Controller Component
	8.4.10 Universal Broker Installed Component
	8.4.11 Universal Automation Center Registration Server Installed Component
	8.4.12 Stonebranch Solutions Utilities Installed Components
	Universal Control Manager
	Universal Control Server
	Universal Event Log Dump
	Universal Query

	8.5 Configuration Refresh
	8.5.1 Configuration Refresh Via Universal Control
	Configuration Refresh for Universal Event Monitor Server

	8.5.2 Configuration Refresh Via Universal Configuration Manager
	8.5.3 Universal Broker Configuration Options Refresh

	8.6 Refreshing via Universal Control Examples
	8.6.1 Refreshing Universal Broker from z/OS
	8.6.2 Refreshing a Component from z/OS
	8.6.3 Refreshing Universal Broker via Universal Control from Windows
	8.6.4 Refreshing a Component via Universal Control from Windows
	8.6.5 Refreshing Universal Broker via Universal Control from UNIX
	8.6.6 Refreshing a Component via Universal Control from UNIX
	8.6.7 Refreshing Universal Broker via Universal Control from IBM i
	8.6.8 Refreshing a Component via Universal Control from IBM i

	8.7 Merging Configuration Options during an Upgrade Installation Examples
	Files Used in Examples
	8.7.1 Merge Files Using Program Defaults
	8.7.2 Merge Files Introducing New Options
	8.7.3 Merge Files Using Installation-Dependent Values

	9 Component Management
	9.1 Overview
	9.2 Component Definition
	9.2.1 Universal Event Monitor Component Definition

	9.3 Starting Components
	Starting Manually
	Starting via Manager
	Starting Automatically
	Starting via Universal Control

	9.4 Stopping Components
	9.5 Starting / Stopping Universal Broker Examples
	9.5.1 Starting / Stopping Universal Broker for z/OS
	Start Universal Broker
	Stop Universal Broker

	9.5.2 Starting Universal Broker for Windows
	Console Application
	Windows Service

	9.5.3 Starting Universal Broker for UNIX
	Daemon
	Console Application

	9.5.4 Starting, Ending and Working With Universal Broker for IBM i
	Commands

	9.6 Starting / Stopping Universal Enterprise Controller Examples
	9.6.1 Starting / Stopping Universal Enterprise Controller for z/OS
	Starting UEC
	Stopping UEC
	System MODIFY Command

	9.6.2 Starting / Stopping Universal Enterprise Controller for Windows

	9.7 Starting / Stopping Components via Universal Control Examples
	9.7.1 Starting a z/OS Component via Universal Control
	9.7.2 Stopping a z/OS Component via Universal Control
	9.7.3 Starting a Windows Component via Universal Control
	9.7.4 Stopping a Windows Component via Universal Control
	9.7.5 Starting a UNIX Component via Universal Control
	9.7.6 Stopping a UNIX Component via Universal Control
	9.7.7 Starting an IBM i Component via Universal Control
	9.7.8 Stopping an IBM i Component via Universal Control

	9.8 Maintaining Universal Broker Definitions in the Universal Enterprise Controller Database
	9.8.1 List All Defined Universal Brokers
	9.8.2 Export a Specific, Defined Universal Broker
	9.8.3 Export Events
	9.8.4 Delete a Specific, Defined Universal Broker
	9.8.5 Add Specific Defined Universal Broker via deffile
	9.8.6 Add Existing Universal Brokers to a Broker Group
	9.8.7 Delete Existing Universal Brokers from a Broker Group
	9.8.8 Export Events into ARC Format for z/OS
	9.8.9 Retrieve Archived File and Export into XML for z/OS
	9.8.10 Export Events into ARC Format for Windows
	9.8.11 Retrieve Archived File and Export into CSV for Windows

	10 Messaging and Auditing
	10.1 Overview
	10.2 Messaging
	10.2.1 Message Types
	10.2.2 Message ID
	10.2.3 Message Levels
	10.2.4 Message Destinations
	z/OS Message Destinations
	UNIX Message Destinations
	Windows Message Destinations
	IBM i Message Destinations

	10.3 Auditing
	10.4 Creating Write-to-Operator Messages Examples
	10.4.1 Issue WTO Message to z/OS Console
	10.4.2 Issue WTO Message to z/OS Console and Wait for Reply

	11 Message Translation
	11.1 Overview
	11.2 Usage
	11.2.1 Translation Table
	Translation Table Format
	Translation Table Fields

	11.2.2 Matching Algorithm

	11.3 Message Translation Examples
	11.3.1 Translating Error Messages (Part 1)
	11.3.2 Translating Error Messages (Part 2)
	11.3.3 Execute Universal Message Translator from z/OS
	11.3.4 Execute Universal Message Translator from Windows
	11.3.5 Execute Universal Message Translator from UNIX
	11.3.6 Execute Universal Message Translator from IBM i

	12 Monitoring and Alerting
	12.1 Overview
	12.2 Monitoring of All Agents
	12.2.1 Monitored Information
	12.2.2 Polling
	12.2.3 Alerts
	Alert Types

	12.3 Querying for Job Status and Activity
	12.4 Querying for Job Status and Activity Examples
	12.4.1 Universal Query Output
	12.4.2 Universal Query for z/OS
	12.4.3 Universal Query for UNIX and Windows
	12.4.4 Universal Query for IBM i

	13 Windows Event Log Dump
	13.1 Overview
	13.2 Windows Event Log Dump Examples
	13.2.1 Execute Universal Event Log Dump from a Windows Server

	14 Databases
	14.1 Overview
	14.2 Component Information Database
	14.3 Universal Event Monitor Databases
	14.3.1 Event Definition Database
	14.3.2 Event Handler Database
	14.3.3 Event Spool Database
	14.3.4 Controlling Access to Universal Event Monitor Database

	14.4 Universal Enterprise Controller Databases
	14.4.1 Database Files
	14.4.2 Database Management
	Automated Database Cleanup
	Memory Management

	14.5 Database Backup and Recovery
	14.5.1 Database Backups
	14.5.2 General Database Recovery Procedures
	14.5.3 Database Recovery for Universal Broker
	z/OS
	UNIX
	Windows
	IBM i

	14.5.4 Database Recovery for Universal Enterprise Controller
	z/OS
	Windows

	14.6 Listing Infitran Database Records Examples
	14.6.1 List Universal Broker Database
	Windows
	UNIX

	14.6.2 List Universal Event Monitor Spool Database Records
	Windows
	UNIX

	14.6.3 List Universal Broker Detail for a Component
	Windows
	UNIX

	14.6.4 List Standard Out for a Component
	Windows
	UNIX

	14.7 Removing Infitran Database Records
	14.7.1 Remove Component Records
	Windows
	UNIX

	14.7.2 Remove Component Records: Change Universal Broker Database Directory
	Windows
	UNIX

	15 Fault Tolerance Implementation
	15.1 Overview
	15.2 Network Fault Tolerance
	15.2.1 Open Retry
	15.2.2 Component Management

	16 Network Data Transmission
	16.1 Overview
	16.1.1 SSS (Secure Socket Layer) Protocol
	Data Privacy and Integrity
	Peer Authentication

	16.1.2 Stonebranch Solutions Protocol
	Data Privacy and Integrity

	16.1.3 Stonebranch Solutions Application Protocol
	Low-Overhead
	Secure
	Extensible

	16.1.4 Configurable Options

	17 z/OS Cancel Command Support
	17.1 Overview
	17.1.1 Exit Codes
	17.1.2 Security Token

	A Glossary
	B Customer Support
	Index

