

Universal Command Agent for SOA 6.4.x

Reference Guide

© 2017 by Stonebranch, Inc. All Rights Reserved.

1. Universal Command Agent for SOA 6.4.x Reference Guide . 4
1.1 Universal Command Agent for SOA Architecture . 5
1.2 Universal Command Agent for SOA Components . 8

1.2.1 UAI (Universal Application Interface) . 9
1.2.2 UAC Server . 10
1.2.3 UAC (Universal Application Container) . 11

1.3 Universal Command Agent for SOA Connector Overview . 12
1.4 Universal Command Agent for SOA Defined Ports . 14
1.5 Universal Command Agent for SOA Operations Configuration . 15
1.6 Universal Command Agent for SOA Usage . 18

1.6.1 Universal Command Agent for SOA - Script File Command Options . 19
1.6.2 Universal Command Agent for SOA - Component Configuration . 22
1.6.3 Universal Command Agent for SOA - Component Definition . 23

1.7 Universal Command Agent for SOA Command Options . 24
1.7.1 HELP - UCA for SOA command option . 27
1.7.2 HTTP_AUTH - UCA for SOA command option . 28
1.7.3 HTTP_FORM_DATA - UCA for SOA command option . 29
1.7.4 HTTP_METHOD - UCA for SOA command option . 31
1.7.5 HTTP_VERSION - UCA for SOA command option . 32
1.7.6 JMS_CONNECTION_FACTORY_NAME - UCA for SOA command option . 33
1.7.7 JMS_CONTEXT_FACTORY_NAME - UCA for SOA command option . 34
1.7.8 JMS_DESTINATION - UCA for SOA command option . 35
1.7.9 JMS_PROPERTIES_FILE - UCA for SOA command option . 36
1.7.10 JMS_REPLY_TO - UCA for SOA command option . 37
1.7.11 MEP - UCA for SOA command option . 38
1.7.12 MQ_CHANNEL - UCA for SOA command option . 39
1.7.13 MQ_HOST - UCA for SOA command option . 40
1.7.14 MQ_PORT - UCA for SOA command option . 41
1.7.15 MQ_PROPERTIES_FILE - UCA for SOA command option . 42
1.7.16 MQ_QUEUE_MANAGER_NAME - UCA for SOA command option . 43
1.7.17 MQ_QUEUE_NAME - UCA for SOA command option . 44
1.7.18 MQ_REPLY_TO - UCA for SOA command option . 45
1.7.19 PROTOCOL - UCA for SOA command option . 46
1.7.20 SERVICE_PASSWORD - UCA for SOA command option . 47
1.7.21 SERVICE_URL - UCA for SOA command option . 48
1.7.22 SERVICE_USER_NAME - UCA for SOA command option . 49
1.7.23 SOAP_ACTION - UCA for SOA command option . 50
1.7.24 SOAP_VERSION - UCA for SOA command option . 51
1.7.25 TIMEOUT_SEC - UCA for SOA command option . 52
1.7.26 XD_CMD - UCA for SOA command option . 53
1.7.27 XD_CMD_ID - UCA for SOA command option . 54

1.8 Universal Command Agent for SOA Configuration Options . 55
1.8.1 ACTIVITY_MONITORING - UCA for SOA configuration option . 57
1.8.2 CODE_PAGE - UCA for SOA configuration option . 58
1.8.3 EVENT_GENERATION - UCA for SOA configuration option . 59
1.8.4 INSTALLATION_DIRECTORY - UCA for SOA configuration option . 60
1.8.5 MESSAGE_LEVEL - UCA for SOA configuration option . 61
1.8.6 MQ_CCDT_URL - UCA for SOA configuration option . 62
1.8.7 RMI_PORT - UCA for SOA configuration option . 63

1.9 UAC Server Component Definition Options . 64
1.9.1 AUTOMATICALLY_START - UCA for SOA component definition option . 66
1.9.2 COMPONENT_NAME - UCA for SOA component definition option . 67
1.9.3 CONFIGURATION_FILE - UCA for SOA component definition option . 68
1.9.4 RUNNING_MAXIMUM - UCA for SOA component definition option . 69
1.9.5 START_COMMAND - UCA for SOA component definition option . 70
1.9.6 WORKING_DIRECTORY - UCA for SOA component definition option . 71

1.10 Universal Command Agent for SOA Operations . 72
1.10.1 HTTP Connector Operation . 73

1.10.1.1 HTTP Connector Request-Reply Operation . 74
1.10.1.2 HTTP Connector Request-Reply Operation - Usage . 76
1.10.1.3 HTTP Connector Request-Reply Operation - Required Command Options . 77

1.10.2 SOAP Connector Operation . 78
1.10.2.1 SOAP Connector Request-Reply Operation . 79
1.10.2.2 SOAP Connector Publish Operation . 81
1.10.2.3 SOAP Connector (Request-Reply or Publish) Operation - Usage . 83
1.10.2.4 SOAP Connector Request-Reply Operation - Required Command Options . 84
1.10.2.5 SOAP Connector Publish Operation - Required Command Options . 85

1.10.3 JMS Connector Operation . 86
1.10.3.1 JMS Provider Client Jar Files for Outbound . 87
1.10.3.2 JMS Connector Request-Reply Operation . 88
1.10.3.3 JMS Connector Publish Operation . 90
1.10.3.4 JMS Connector Request-Reply Operation - Usage . 92
1.10.3.5 JMS Connector Publish Operation - Usage . 93
1.10.3.6 JMS Connector Request-Reply Operation - Required Command Options . 95
1.10.3.7 JMS Connector Publish Operation - Required Command Options . 96

1.10.4 XD Connector Operation . 97
1.10.4.1 XD Connector Deployment . 98
1.10.4.2 XD Connector Request-Reply Operation . 99
1.10.4.3 XD Connector Request-Reply Operation - Usage . 101
1.10.4.4 XD Connector Request-Reply Operation - Required Command Options . 102
1.10.4.5 Cancelling an XD Operation . 103

1.10.5 MQ Connector Operation . 104
1.10.5.1 MQ Connector Request-Reply Operation . 105
1.10.5.2 MQ Connector Publish Operation . 106
1.10.5.3 MQ Connector Request-Reply Operation - Required Command Options . 107
1.10.5.4 MQ Connector Publish Operation - Required Command Options . 108

1.11 Universal Command Agent for SOA Logging Configuration . 109
1.12 Universal Command Agent for SOA Additional Information . 112

1.12.1 Character Code Pages - UCA for SOA . 113
1.12.2 UTT Files - UCA for SOA . 116

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref4

1.
2.
3.
4.

Universal Command Agent for SOA 6.4.x Reference
Guide

Universal Command Agent for SOA
Universal Agent for SOA

Detailed Information
Universal Command Agent for SOA Examples

Universal Command Agent for SOA
Universal Command Agent for SOA extends the workload execution and management features of the Universal Command (UCMD) product set to
Internet and message-based workload.

The Internet and message-based protocols are supported by the following connectors:

HTTP Connector
SOAP Connector
JMS Connector
MQ Connector

In addition, you can execute compute or batch workload in the WebSphere XD environment using the .XD Connector

Universal Command Agent for SOA enables you to:

Consolidate your Internet and message-based workload within your current Enterprise Scheduling environment.
Use your existing scheduler, or other workload management applications, along with your new or existing Universal Agent components.
Use your existing development, test, and production business processes.
Use a single point of workload execution that is not tied to specific vendor hardware or software platforms.

Universal Agent for SOA

Universal Command Agent for SOA is packaged with Universal Event Monitor for SOA and is distributed as part of Universal Agent for SOA.

Universal Command Agent for SOA comprises the workload execution functionality.
Universal Event Monitor for SOA comprises the file-based event monitoring functionality.

Detailed Information
The following pages provide detailed information for Universal Command Agent for SOA:

Universal Command Agent for SOA Architecture
Universal Command Agent for SOA Components
Universal Command Agent for SOA Connector Overview
Universal Command Agent for SOA Defined Ports
Universal Command Agent for SOA Operations Configuration
Universal Command Agent for SOA Usage
Universal Command Agent for SOA Command Options
Universal Command Agent for SOA Configuration Options
UAC Server Component Definition Options
Universal Command Agent for SOA Operations
Universal Command Agent for SOA Logging Configuration
Universal Command Agent for SOA Additional Information

Universal Command Agent for SOA Examples
See for examples of how to use Universal Command Agent for SOA.Universal Agent - Web Services Examples

https://www.stonebranch.com/confluence/display/UA64/Universal+Agent+-+Web+Services+Examples

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref5

Universal Command Agent for SOA Architecture

Overview
Supported Protocols

HTTP
SOAP
JMS
MQ

Supported Messages Exchange Patterns
Publish MEP
Request / Reply MEP

Overview

Universal Command Agent for SOA is based on a Light Weight Container Architecture (LWCA).

This architecture, combined with the Federated architecture of the current Universal Automation Center line, provide your enterprise with a loosely
coupled, scalable, and secure solution to your enterprise workload management tasks.

Supported Protocols

Universal Command Agent for SOA supports synchronous and asynchronous communication for workload execution via the following four
protocols: HTTP, SOAP, JMS, and MQ.

Synchronous communication requires that the calling party wait for a response from the target application before beginning the next task.

Asynchronous communication allows the calling party to move on the next task without waiting for a response (if there is one) from the target
application. If there are responses to asynchronous requests, more effort is required to correlate the request to the reply, as they are two separate
events. Most middleware and integration software operate in this manner.

HTTP

HTTP (HyperText Transfer Protocol) is the underlying protocol used by the World Wide Web. It is a synchronous (blocking) protocol, which means
that the requestor waits for the response before executing another task.

HTTP uses the Request / Reply message pattern.

HTTP is one of the ways that you can execute remote workload such as CGI, servlet, or web service-based applications.

SOAP

SOAP (Simple Object Access Protocol) is a synchronous protocol for exchanging XML-based messages over computer networks, normally using
HTTP / HTTPS. However, you can send SOAP messages over JMS, as well.

SOAP forms the foundation layer of the Web services stack, providing a basic messaging framework upon which abstract layers can be built.

There are several different types of messaging patterns in SOAP, but by far the most common is the Remote Procedure Call (RPC) pattern. In
RPC, one network node (the client) sends a request message to another node (the server). The server immediately sends a response message to
the client; that is, request / reply. SOAP is used predominantly to provide an interface to web service-based workload or legacy workload with a
web service interface.

JMS

JMS (Java Message Service) defines the standard for reliable Enterprise Messaging and provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise.

JMS uses both point-to-point (queue-based) and publish / subscribe (topic-based) messaging patterns. It is used extensively in middleware
implementations and large J2EE application deployments.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref6

MQ

IBM WebSphere MQ (Message Queue) is a family of network communication software products launched by IBM in March, 1992.

It was previously known as MQSeries, a trademark that IBM rebranded in 2002 to join the suite of WebSphere products. WebSphere MQ, which
users often refer to simply as "MQ," is IBM's Message Oriented Middleware offering. It allows independent and potentially non-concurrent
applications on a distributed system to communicate with each other. MQ is available on a large number of platforms, both IBM and non-IBM

MQ uses both point-to-point (queue-based) and publish / subscribe (topic-based) messaging patterns. It is used extensively in IBM-based and
legacy middleware implementations in mid-size and enterprise environments.

Supported Messages Exchange Patterns

A message exchange pattern (MEP) describes the pattern of messages required by a communications protocol to establish or use a
communication channel.

There are two major types of message exchange patterns:

One-way: Publish or Listen (asynchronous)
Request / Reply pattern (synchronous)

Universal Command Agent for SOA supports the Publish MEP and the Request / Reply MEP, as described in the following sections.

Publish MEP

The Publish MEP represents an asynchronous outbound workload execution event. This means that you can request execution of a workload
using the JMS protocol to a target JMS provider.

Since JMS is queue-based, this outbound operation puts a message on the queue of the JMS provider. A process within the target application
environment, such as a WebSphere container or middleware application, will read the message from the queue and execute the appropriate
workload.

Technically, you can initiate a publish operation using the SOAP protocol, but it is still just a request / reply where the reply is treated as an
acknowledgement similar to that of the TCP protocol.

The following figure illustrates a logical view of the Publish MEP.

Request / Reply MEP

The Request / Reply MEP represents an outbound request to a target workload followed by an inbound reply from a target workload. This is a
synchronous operation, as the calling party blocks, or waits, for the reply to come back before releasing its resources and moving on to the next
task.

This is one of the most common message exchange patterns used. Every time you use a web browser to go to a website, you are initiating a
request / reply operation where you request a page and the server replies with the page (or an error if it cannot find the page).

You can execute workload via the Request / Reply MEP using the HTTP, SOAP, JMS, or MQ protocols.

The following figure illustrates a logical view of the Request / Reply MEP.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref7

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref8

Universal Command Agent for SOA Components

Universal Command Agent for SOA is made up of three major components:

UAI (Universal Application Interface)
UAC Server
UAC (Universal Application Container)

These three components combine to create a powerful solution that spans domain boundaries and further enhances your ability to leverage your
current assets.

The following figure illustrates the basic component flow for Universal Command Agent for SOA.

As you can see, Universal Command Agent for SOA gets its input from Universal Command through STDIN. When the parameters and data are
passed in, the workload execution request is processed and any return data is passed back to Universal Command.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref9

UAI (Universal Application Interface)

The Universal Application Interface (UAI) component is the interface into Universal Command Agent for SOA and is considered to be the client to
UAC.

UAI responsibilities include:

Accept input parameters through STDIN or the command line interface and payload via STDIN.
Validate the parameters and payload format.
Build and send a workload request to UAC for execution.
Return any application, payload, and error messages via STDOUT or STDERR.

UAI is a non-resident process that is invoked by the UCMD Server. UAI terminates itself once the workload request is complete. SInce the UCMD
Server treats UAI as a user job, UAI is subject to all the rights and benefits to which any user job executed by UCMD would be entitled. (See the

 for more details.)Universal Command 6.4.x Reference Guide

The communication between UAI and UAC is via SOAP messaging over HTTPS with UAI blocking until UAC responds with a reply from the
workload.

The following figure summarizes the basic process flow for UAI.

https://www.stonebranch.com/confluence/display/UA64/Universal+Command+6.4.x+Reference+Guide

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref10

UAC Server

The UAC (Universal Application Container) Server component is the interface between the Universal Broker and UAC. It provides operation and
configuration control of UAC, as well as an interface to the Brokers message mechanisms.

Specifically, the UAC Server lets you:

Start UAC.
Stop UAC.
Manage configuration.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref11

UAC (Universal Application Container)

The Universal Application Container (UAC) component executes the workload request and provides the server functions associated with a
container environment.

Its responsibilities include the following:

Provide a scalable and secure platform foundation for Universal Command Agent for SOA.
Provide Publish, Listen, and Request / Reply functionality.
Provide a deployment environment for the connectors.
Provide persistence and fault tolerance mechanisms.
Provide auditing, logging, and error handling functionality.
Provide an interface for remote operations for Universal Broker.
Can process multiple UAI requests.

UAC is a resident process that is started by Universal Broker and stays resident until stopped by Universal Broker. UAC receives and processes
the message from UAI. It passes the data in the message to the appropriate connector, which then builds the message and initiates the requested
workload operation.

The reply may consist of a simple acknowledgement that the workload started or completed, or it may contain application messages or workload
output. In either case, UAC passes the reply message back to UAI unaltered. The exceptions to this are the SOAP faults, which are mapped to
error messages, which then are passed to UAI. The requests and replies are persisted as well for fault tolerant operations.

The following figure summarizes the basic process flow for UAC.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref12

Universal Command Agent for SOA Connector Overview

Overview
HTTP Connector
SOAP Connector
JMS Connector
MQ Connector
XD Connector

Overview

The work of transforming the command line and STDIN input to the appropriate protocol message falls to the connectors that are deployed in the
UAC environment. The Universal Command Agent for SOA platform allows for the addition of connectors to support future business requirements.

This section provides a summary of the current connectors.

HTTP Connector

The HTTP connector supports workload execution via the HTTP protocol.

It is a synchronous request / reply component that supports the following features:

Supports HTTP 1.0 and 1.1 specifications.
Supports authentication via Basic, Digest, and NTLM.
Supports GET and POST operations with Form data.

SOAP Connector

The SOAP connector supports workload execution via the SOAP protocol.

It is a synchronous request / reply component that supports the following features:

Supports the SOAP 1.1 specification
Supports Publish, Request / Reply Inbound, and Request / Reply message exchange patterns

JMS Connector

The JMS connector supports workload execution via the JMS protocol using synchronous and asynchronous communication.

It supports the following features:

Supports the JMS 1.1 specification.
Supports Publish, Subscribe, and Request / Reply message exchange patterns.
Supports Queue- and Topic-based operations.

MQ Connector

The MQ connector supports workload execution via the MQ messaging protocol using synchronous and asynchronous communication.

It supports the following features:

Supports Publish, Subscribe, and Request / Reply message exchange patterns.
Supports Queue-based operations.

XD Connector

The XD Connector supports workload execution within the WebSphere Extended Deployment environment using synchronous communication via
the SOAP protocol.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref13

It supports the following features:

Submit jobs to WebSphere XD.
Restart jobs to WebSphere XD.
Cancelling jobs.
Pass back return code, job output, and application messages.
Supports Request / Reply message exchange pattern.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref14

Universal Command Agent for SOA Defined Ports

Universal Command Agent for SOA uses a specific set of ports (see below).

Keep in mind that these ports are used by Universal Command Agent for SOA internally and to the target workload.

Port Number Component Description

7843 UAI to UAC Default SSL port - used for secure communication between UAI and UAC.

7880 Target Workload to UAC Default HTTP port - used for SOAP inbound operations initiated from external workload.

7899 UAC Server to UAC Default RMI port - used for remote configuration of UAC.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref15

Universal Command Agent for SOA Operations Configuration

Overview
Outbound JMS Configuration Using WAS

Using the properties.xml File
JMS Provider Client Jar Files

Outbound MQ Configuration - MQ Client Jar Files

Overview

Depending on which transaction scenario (MEP) you are using - and, in the case of JMS, what JMS Provider you are using - there are two
operations that may need to be configured before you can use Universal Command Agent for SOA:

Outbound JMS Configuration Using WAS
Outbound MQ Configuration - MQ Client Jar Files

Outbound JMS Configuration Using WAS

Although, there is no outbound configuration needed for HTTP and SOAP outbound operations, some configuration may be needed for JMS
operations, depending on which JMS Provider you are using.

This section explains what configuration is required if you are using IBM's WebSphere Application Server (WAS) as your JMS provider.

Note
Each JMS Provider that currently is available has a different implementation of JMS. Check the documentation that comes with
the product to understand what additional configuration may be needed.

Currently, Universal Command Agent for SOA: JMS Connector has been tested against Apache's ActiveMQ JMS provider and IBM's WebSphere
Application Server, WebSphere Application Server Network Deployment, and WebSphere Application Server Extended Deployment.

Using the properties.xml File

This properties file is not specific to WebSphere; it could, for example, be named or . In general,message.properties.xml bob.properties.xml
the name should reflect the system to which the properties pertain. If you are using BEA as your JMS Provider, you might want to call it

.bea.properties.xml

Also note that this properties file is an XML file, with a very simple format. Its purpose is to set properties to be passed to the JMS connection or
JMS message, depending on whether or is used. The format of the properties is in name / value pairs.jms.initialcontext jms.hearder

A vendor-specific file should be located in the directory of the UAC install.properties.xml Universal/UAI

Note
If the file is vendor-specific, the JMS_PROPERTIES_FILE option must be used in order for the file to be inproperties.xml
effect.

For WebSphere, you must specify the class for the IBM ORB in order for the client jar files to process the message before UAC sends it to the
specified WebSphere queue or topic.

Specifically, the values to set are:

Name - set to .jms.initialcontext.com.ibm.CORBA.ORBInit
Value - set to .com.ibm.ws.sib.client.ORB

The following figure illustrates a sample file. Remember, these values are specific to the JMS Provider that you are using.properties.xml

Note
You can set additional JMS properties using this same format.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref16

<?xml version="1.0" encoding="UTF-8"?>
<sb:JMSProperties xmlns:sb="http://com.stonebranch/uai/JMSProperties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/uac/JMSProperties
JMSProperties.xsd ">
 <sb:Property>
 <sb:Name>jms.initialcontext.com.ibm.CORBA.ORBInit</sb:Name>
 <sb:Value>com.ibm.ws.sib.client.ORB</sb:Value>
</sb:Property>
</sb:JMSProperties>

For the JMS Request / Reply operation, you must specify the reply-to queue name:

Name - set to .jms.header.JMSReplyTo
Value - set to or the appropriate queue name.jms/IntegrationTestQueue1

The following figure illustrates a sample operation.

Note
Only the property element is shown; it could be included in the sample illustrated in the figure above.

<sb:Property>
 <sb:Name>jms.header.JMSReplyTo</sb:Name>
 <sb:Value>jms/IntegrationTestQueue1</sb:Value>
</sb:Property>

JMS Provider Client Jar Files

As is the case for inbound, you must have the JMS provider client jar files for outbound or request/reply operations as well. Since each JMS
provider implementation is vendor-specific, you must acquire the client jar files that allow third-party applications to connect and communicate with
your JMS provider.

For example, if you are using the JMS functions in IBM's WebSphere Application Server, you need the sibc.jms.jar, sibc.jndi.jar, and sibc.orb.jar
files.

Note
If you are running WebSphere on AIX, you need the sibc.jms.jar and sibc.jndi.jar files only.

You would place the JMS provider client jar files in the following location:

Linux /opt/universal/uac/container/webapps/axis2/WEB-INF/lib

Windows \Program Files\Universal\uac\container\webapps\axis2\WEB-INF\lib

The names of the jar files differ depending on which JMS provider you are using.

The Universal Command Agent for SOA: JMS Connector does not provide the queue or topic infrastructure. You must have a JMS provider with
queues or topics configured to use the JMS outbound or request / reply operations.

Outbound MQ Configuration - MQ Client Jar Files

As is the case for inbound, you must have the IBM MQ client jar files for outbound or request / reply operations.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref17

Place the MQ client jar files in the following location:

UNIX /opt/universal/uac/container/webapps/axis2/WEB-INF/lib

Windows \Program Files\Universal\uac\container\webapps\axis2\WEB-INF\lib

The following jar files are required:

com.ibm.mq.commonservices.jar
com.ibm.mq.jar
com.ibm.mq.pcf.jar
com.ibm.mq.headers.jar
com.ib.mq.jmqi.jar
connector.jar

The Universal Command Agent for SOA: MQ Connector does not provide the queue or topic infrastructure. You must have a WebSphere MQ
Message Broker with queues configured to use the MQ outbound or request/reply operations.

The MQ Client for Java version 7.0 package with the latest fix pack is recommended.

When using a MQ CCDT to establish connections to queue managers, 7.0.1.3 or later is highly recommended.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref18

Universal Command Agent for SOA Usage

Starting and Stopping

Universal Command Agent for SOA is started and stopped by Universal Broker via the UAC Server component.

There is no user interaction for this operation.

Message Payload

The message payload contains the data required for the target workload to execute. This can include operation information, input parameters,
authentication information, and any other data required by the target workload (application or service) to operate.

The payload file is an XML document that Universal Command Manager reads in through STDIN.

All HTTP and SOAP operations require a payload, while the JMS and MQ operations do not require a payload.

The payload format is validated for HTTP, SOAP, and MQ messages because the payload is in format and must be parsed.xml

There is no validation of the payload format for JMS messages because the payload is in format. If you include -style elements andtext xml
attributes in your JMS messages, it will be up to the target application to validate the format.

The content of the payload for all protocols is not validated because the payload represents business data; it is not the responsibility of Universal
Command Agent for SOA to know about business details related to the workload that it is executing.

For an example of message payload, see .Web Services Execution

Additional Information

The following pages provide additional detailed information for Universal Command Agent for SOA usage:

Universal Command Agent for SOA - Script File Command Options
Universal Command Agent for SOA - Component Configuration
Universal Command Agent for SOA - Component Definition

https://www.stonebranch.com/confluence/display/UA64/Web+Services+Execution

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref19

Universal Command Agent for SOA - Script File Command Options

Command Options Categories
Required Options
Dependent Options
Optional Options

Command Options Syntax

Command Options Categories

Universal Command Agent for SOA uses a script file interface to accept the values needed to create the workload execution request.

The following table categorizes the command options into logical areas of application. Each name is a link to a table of options in thatCategory
category. Each in those tables is a link to detailed information about that option.Option Name

Category Description

Required Options Required for Universal Command Agent for SOA to process the workload execution request.

Dependent Options Required, depending on the PROTOCOL option value; otherwise, these options are invalid.

Optional Options Optional usage only; use only as appropriate.

Required Options

Option Name Description

MEP Message exchange pattern to be used for the current operation.

PROTOCOL Message protocol to be used for the current operation.

SERVICE_URL URL (internet, network, or file-based) of the target workload.

Dependent Options

Option Name Description

JMS_CONNECTION_FACTORY_NAME Connection factory to be used to establish a connection to a JMS provider.

JMS_CONTEXT_FACTORY_NAME Java class name of the JMS providers initial context factory.

JMS_DESTINATION Name of the target JMS destination queue or topic for the JMS message.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref20

JMS_REPLY_TO Name of the JMS reply queue for the return JMS message.

MQ_CHANNEL Name of the MQ channel.

MQ_HOST Name of the server running MQSeries.

MQ_QUEUE_MANAGER_NAME Name of the MQ QUEUE Manager.

MQ_QUEUE_NAME Name of the MQ Queue to use.

MQ_REPLY_TO Name of the MQ Queue from which to read the reply when MEP is set to request.

XD_CMD Operation to submit to the WebSphere XD environment.

XD_CMD_ID Correlates jobs.

Optional Options

Option Name Description

HELP Lists the command options and values.

HTTP_AUTH http authorization scheme to use.

HTTP_FORM_DATA Specification for whether or not there is HTTP form data, in a name-value format, in
the payload file.

HTTP_METHOD Type of HTTP operation to execute.

HTTP_VERSION Version of the HTTP protocol to use.

JMS_PROPERTIES_FILE Name and location of an XML document containing the JMS properties to be included
in the JMS message.

MQ_PORT Name of the port on which the MQ Broker is listening.

MQ_PROPERTIES_FILE Name of the file containing the MQ name / value pairs.

SERVICE_PASSWORD Password to be passed to the target workload for authentication.

SERVICE_USER_NAME User name to be passed to the target workload for authentication.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref21

SOAP_ACTION soapAction HTTP header value.

SOAP_VERSION Version of the SOAP protocol to use when making the SOAP request.

TIMEOUT_SEC Length of time to wait for the request to complete.

Command Options Syntax

The following figure illustrates the syntax of Universal Command Agent for SOA command options.

-protocol {HTTP|SOAP|JMS|XDSOAP|MQ}
-mep {Publish|Request}
-serviceurl url
-jmsconnectionfactoryname name
-jmscontextfactoryname name
-jmsdestination name
-jmsreplyto name
-mqchannel channel | CCDT
-mqhost server
-mqqueuemanagername manager
-mqqueuename queue
-mqreplyto queue
-xdcmd {SUBMIT|RESTART}
-xdcmdid ID *
[-httpauth {BASIC|DIGEST|NTLM}]
[-httpformdata {true|false}]
[-httpmethod {GET|POST}]
[-httpversion {OneDotZero|OneDotOne}]
[-jmspropertiesfile file]
[-mqport port]
[-mqpropertiesfile file]
[-serviceusername name]
[-servicepassword password]
[-soapaction header]
[-soapversion {OneDotOne|OneDotTwo}]
[-timeoutsec time]

-help

* The -xdcmdid option is required if -protocol is set to .XDSOAP

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref22

Universal Command Agent for SOA - Component Configuration

Configuration File
Universal Configuration Manager

Configuration Options

Configuration File

A configuration file provides the simplest method of specifying configuration option values that will not change with each command invocation. For
Universal Command Agent for SOA, a configuration file is the only method of specifying configuration values.

The Universal Command Agent for SOA configuration file is named . This file can be edited manually with any text editor.uacs.conf

Universal Configuration Manager

Although configuration files can be edited with any text editor (for example, Notepad), the application, accessibleUniversal Configuration Manager
via the Control Panel, is the recommended way to set Universal Command Agent for SOA for Windows configuration options.

Universal Configuration Manager is a Universal Agent graphical user interface application that enables you to configure all of the Universal Agent
components that have been installed on a Windows operating system.

It is the recommended method of specifying configuration data that will not change with each command invocation. Universal Configuration
Manager helps protect the integrity of the configuration file by validating all changes to configuration option values.

Configuration Options

The following table identifies all of the Universal Command Agent for SOA configuration options. Each is a link to detailedOption Name
information about that option.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are generated.

CODE_PAGE Character code page used to translate text data received and transmitted over the
network.

EVENT_GENERATION Events to be generated as persistent events.

INSTALLATION_DIRECTORY Location in which the Universal Application Container Server is installed.

MESSAGE_LEVEL Level of messages written.

MQ_CCDT_URL Location of an MQ Client Channel Definition Table (CCDT) that can be used to establish
client connections to remote MQ queue managers.

RMI_PORT Port number or service name on which Universal Application Container will listen for
service requests from the Universal Application Container Server.

https://www.stonebranch.com/confluence/display/UA64/Universal+Configuration+Manager

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref23

Universal Command Agent for SOA - Component Definition

Overview

All Universal Agent components managed by Universal Broker have a component definition. The component definition is a text file of options
containing component-specific information required by Universal Broker.

The syntax of a component definition file is the same as a configuration file.

The Universal Application Container (UAC) Server component definition is located in the component definition directory of the Universal Broker.

Component Definition Options

The following table identifies all of the options that comprise the UAC Server component definition. Each is a link to detailedOption Name
information about that option.

Option Name Description

AUTOMATICALLY_START Specification for whether or not the UAC Server starts automatically when Universal Broker is
started.

COMPONENT_NAME Name by which the clients know the UAC Server.

 CONFIGURATION_FILE * Name of the UAC Server configuration file.

RUNNING_MAXIMUM Maximum number of UAC Servers that can run simultaneously.

 START_COMMAND * Program name of the UAC Server.

 WORKING_DIRECTORY * Directory used as the working directory of the UAC Server.

* These options are required in all component definitions.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref24

Universal Command Agent for SOA Command Options

Overview
Command Options Information

Description
Usage
Values
<Additional Information>

Command Options List

Overview

This page provides links to detailed information on the command options available for use with Universal Command Agent for SOA.

The options are listed alphabetically, without regard to any specific operating system.

Command Options Information

For each command option, these pages provide the following information.

Description

Describes the command option and how it is used.

Usage

Provides a table of the following information:

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form <Format / Value>

Method

Identifies the method used to specify Universal Command Agent for SOA command options:

Command Option, Long Form

Syntax

Identifies the syntax of the method used to specify the option:

Format: Specific characters that identify the option.
Value: Type of value(s) to be supplied for this method.

(Operating System)

Identifies the operating systems for which each method of specifying the option is valid:

IBM i
HP NonStop
UNIX
Windows
z/OS

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref25

Values

Identifies all possible values for the specified value type.

Defaults are identified in .bold type

<Additional Information>

Identifies any additional information specific to the option.

Command Options List

The following table identifies all Universal Command Agent for SOA command options.

Option Description

HELP Lists the command options and values.

HTTP_AUTH http authorization scheme to use.

HTTP_FORM_DATA Specification for whether or not there is HTTP form data, in a name-value
format, in the payload file.

HTTP_METHOD Type of HTTP operation to execute.

HTTP_VERSION Version of the HTTP protocol to use.

JMS_CONNECTION_FACTORY_NAME Connection factory to be used to establish a connection to a JMS provider.

JMS_CONTEXT_FACTORY_NAME Java class name of the JMS providers initial context factory.

JMS_DESTINATION Name of the target JMS destination queue or topic for the JMS message.

JMS_PROPERTIES_FILE Name and location of an XML document containing the JMS properties to be
included in the JMS message.

JMS_REPLY_TO Name of the JMS reply queue for the return JMS message.

MEP Message exchange pattern to be used for the current operation.

MQ_CHANNEL Name of the MQ channel.

MQ_HOST Name of the server running MQSeries.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref26

MQ_PORT Name of the port on which the MQ Broker is listening.

MQ_PROPERTIES_FILE Name of the file containing the MQ name / value pairs.

MQ_QUEUE_MANAGER_NAME Name of the MQ QUEUE Manager.

MQ_QUEUE_NAME Name of the MQ Queue to use.

MQ_REPLY_TO Name of the MQ Queue from which to read the reply when MEP is set to
request.

PROTOCOL Message protocol to be used for the current operation.

SERVICE_PASSWORD Password to be passed to the target workload for authentication.

SERVICE_URL URL (internet, network, or file-based) of the target workload.

SERVICE_USER_NAME User name to be passed to the target workload for authentication.

SOAP_ACTION soapAction HTTP header value.

SOAP_VERSION Version of the SOAP protocol to use when making the SOAP request.

TIMEOUT_SEC Length of time to wait for the request to complete.

XD_CMD Operation to submit to the WebSphere XD environment.

XD_CMD_ID Used to correlate jobs.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref27

HELP - UCA for SOA command option

Description

The HELP option displays a description the Universal Command Manager command line options and their format.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -help

Values

(There are no values for the HELP option.)

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref28

HTTP_AUTH - UCA for SOA command option

Description

The HTTP_AUTH option specifies the HTTP authentication scheme to use.

If the option is not used, UAC defaults to .NONE

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -httpauth scheme

Values

 is the HTTP authentication scheme to use.scheme

Valid values for are:scheme

BASIC
Method designed to allow a client application such as a web browser, or other client program, to provide credentials in the form of a user
name and password when making an authenticated HTTP request.
DIGEST
Method designed to allow a client application such as a web browser, or other client program, to negotiate credentials with a web server
(using the HTTP protocol).
Digest authentication allows the user identity to be established securely without having to send a password in plaintext over the network.
It is basically an application of MD5 cryptographic hashing with usage of nonce values to prevent analysis.
NTLM
NTLM is the most complex of the authentication protocols. It is a proprietary protocol designed by Microsoft with no publicly available
specification.
NONE
No HTTP authentication scheme is used.

Default is NONE.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref29

HTTP_FORM_DATA - UCA for SOA command option

Description

The HTTP_FORM_DATA option specifies whether or not there is HTTP form data provided as an XML document in the payload file.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -httpformdata option

Values

option is the specification for whether or not there is form data in the payload file.

Valid values for are:option

true
There is form data in the payload file.
false
There is not form data in the payload file.

Default is false.

Format of Form Data

Form data is provided as the payload to the service request. The form data is formatted as an XML document as defined by the XML Schema
Definition (XSD) below.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://com.stonebranch/UAI/HTTPFormData"
xmlns="http://com.stonebranch/UAI/HTTPFormData" elementFormDefault="qualified">
 <xsd:element name="HTTPFormData" type="HTTPFormDataType" />
 <xsd:complexType name="HTTPFormDataType">
 <xsd:sequence>
 <xsd:element name="Property" maxOccurs="unbounded" type="PropertyType"
minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="PropertyType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" />
 <xsd:element name="Value" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>
</pre>

The XSD defines the form data as a <HTTPFormData> XML element containing a sequence of property values defined by the <property> XML
tag. Each property value consist of a name and value defined by a <name> and <value> XML tag, respectively.

The following illustrates a form data XML document that contains two properties. The first property has a name of "Comments" with a value of
"You only live once, but if you work it right, once is enough.". The second property has a name of "box" and a value of "yes".

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref30

<?xml version="1.0" encoding="UTF-8"?>
<p:HTTPFormData xmlns:p="http://com.stonebranch/UAI/HTTPFormData"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://com.stonebranch/UAI/HTTPFormData HTTPFormData.xsd ">
 <p:Property>
 <p:Name>Comments</p:Name>
 <p:Value>You only live once, but if you work it right, once is
enough.</p:Value>
 </p:Property>
 <p:Property>
 <p:Name>box</p:Name>
 <p:Value>yes</p:Value>
 </p:Property>
</p:HTTPFormData>

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref31

HTTP_METHOD - UCA for SOA command option

Description

The HTTP_METHOD option specifies the type of HTTP operation to execute.

If this option is not used, UAC defaults to .POST

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -httpmethod type

Values

 is the type of HTTP operation to execute.type

Valid values for are:type

GET
POST

Default is POST.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref32

HTTP_VERSION - UCA for SOA command option

Description

The HTTP_VERSION option specifies which version of the HTTP protocol to use.

This option is used if the target workload requires a specific version of the HTTP protocol.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Command Line, Long Form -httpversion version

Values

 is the version of HTTP protocol to use.version

Valid values for are:version

OneDotZero
OneDotOne

Default is OneDotOne.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref33

JMS_CONNECTION_FACTORY_NAME - UCA for SOA command option

Description

The JMS_CONNECTION_FACTORY_NAME option specifies the connection factory to be used to establish a connection to a JMS provider.

JMS_CONNECTION_FACTORY_NAME is required if the message protocol specified in the PROTOCOL option is .JMS

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -jmsconnectionfactoryname name

Values

 is the JNDI name of the connection factory to be used.name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref34

JMS_CONTEXT_FACTORY_NAME - UCA for SOA command option

Description

The JMS_CONTEXT_FACTORY_NAME option specifies the java class name of the JMS providers initial context factory.

JMS_CONTEXT_FACTORY_NAME is required if the message protocol specified in the PROTOCOL option is .JMS

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -jmscontextfactoryname name

Values

 is the class name of the context factory name.name

Note
name is specific to the JMS provider that you are using.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref35

JMS_DESTINATION - UCA for SOA command option

Description

The JMS_DESTINATION option specifies the name of the target JMS destination queue or topic for the JMS message.

JMS_DESTINATION is required if the message protocol specified in the PROTOCOL option is .JMS

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -jmsdestination name

Values

 is the JNDI name of the target queue or topic.name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref36

JMS_PROPERTIES_FILE - UCA for SOA command option

Description

The JMS_PROPERTIES_FILE option specifies the name and location of an XML document containing the JMS properties to be included in the
JMS message.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -jmspropertiesfile file

Values

 is the path/filename of the properties file.file

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref37

JMS_REPLY_TO - UCA for SOA command option

Description

The JMS_REPLY_TO option specifies the name of the target JMS reply queue for the return JMS message.

JMS_REPLY is required if the PROTOCOL option is set to .JMS

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -jmsreplyto name

Values

 is the JNDI name of the target JMS reply queue.name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref38

MEP - UCA for SOA command option

Description

The MEP option specifies the message exchange pattern to use for the current operation.

MEP is required to process the workload execution request.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mep pattern

Values

 is the message exchange pattern to use for the current operation.pattern

Valid values for are:pattern

Publish
Asynchronous communication using the JMS, SOAP, or MQ protocol.
Operations using the Publish protocol are one-way and do not block for a reply, as no reply will be returned by the target workload.
Request
Synchronous communication using the HTTP, SOAP, or MQ protocol. Operations using the Request mep are two-way and blocked until
a reply is sent by the target workload.

There is no default; a value must be passed.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref39

MQ_CHANNEL - UCA for SOA command option

Description

The MQ_CHANNEL option specifies the name of the MQ channel.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqchannel | ccdtchannel

Values

 is the name of the MQ channel.channel

Valid values for are:channel

Any user-defined MQ channel.
ccdt

MQ Client Channel Definition Table (CCDT) is used to find a client channel definition. The Universal Application Container must be configured
with a CCDT for this value to be accepted (see).MQ_CCDT_URL

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref40

MQ_HOST - UCA for SOA command option

Description

The MQ_HOST option specifies the name of the server running MQSeries.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqhost server

Values

 is the name of the server running MQSeries.server

This value is not used if the value is , in which case the host name of the server comes from the channel definition defined inMQ_CHANNEL ccdt
the CCDT.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref41

MQ_PORT - UCA for SOA command option

Description

The MQ_PORT option specifies the name of the port on which the MQ Broker is listening.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqport port

Values

port is the name of the port.

Default = 1414.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref42

MQ_PROPERTIES_FILE - UCA for SOA command option

Description

The MQ_PROPERTIES_FILE option specifies the name of the file containing MQ name / value pairs.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqpropertiesfile file

Values

 is the name of the file containing MQ name / value pairs.file

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref43

MQ_QUEUE_MANAGER_NAME - UCA for SOA command option

Description

The MQ_QUEUE_MANAGER_NAME option specifies the name of the MQ Queue Manager.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqqueuemanagername manager

Values

 is the name of the MQ Queue Manager.manager

If the MQ_CHANNEL value specifies as the channel name, the client channel definition is selected from the CCDT, based on theccdt
MQ_QUEUE_MANAGER_NAME value. Refer to the IBM WebSphere MQ documentation for a description of this selection process.

If a CCDT is used, an asterisk (*) and a blank MQ_QUEUE_MANAGER_NAME value specify the same channel definition selection process.
MQ_QUEUE_MANAGER_NAME does not accept a blank value. Instead, specify an asterisk (*) for the same selection process as specified by a
blank.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref44

MQ_QUEUE_NAME - UCA for SOA command option

Description

The MQ_QUEUE_NAME option specifies the name of the MQ Queue to use.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqqueuename queue

Values

 is the name of the MQ Queue.queue

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref45

MQ_REPLY_TO - UCA for SOA command option

Description

The MQ_REPLY_TO option specifies the name of the MQ Queue from which to read the reply when MEP is set to request.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -mqreplyto queue

Values

 is the name of the MQ Queue.queue

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref46

PROTOCOL - UCA for SOA command option

Description

The PROTOCOL option specifies the message protocol to use for the current operation.

PROTOCOL is required to process the workload execution request.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Command Line, Long Form -protocol protocol

Values

 is the protocol to use for the current operation.protocol

Valid values for are:option

HTTP
Specifies an HTTP operation for executing a workload with an HTTP interface.
JMS
Specifies a JMS operation for executing a workload with a JMS interface.
MQ
Specifies an MQ operation for executing a workload with an MQ interface.
SOAP
Specifies a SOAP operation for executing a workload with a SOAP interface.
XDSOAP
Specifies an XD operation for executing a workload within the XD environment.

There is no default; a value must be passed.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref47

SERVICE_PASSWORD - UCA for SOA command option

Description

The SERVICE_PASSWORD option specifies the password to be passed to the target workload for authentication.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -servicepassword password

Values

 is the password to be passed to the target workload.password

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref48

SERVICE_URL - UCA for SOA command option

Description

The SERVICE_URL option specifies the URL address (internet, network, or file-based) of the target workload.

SERVICE_URL is required to process the workload execution request.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Command Line, Long Form -serviceurl url

Values

 is the address of the target workload.url

Valid values for are:url

hostname
IP address

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref49

SERVICE_USER_NAME - UCA for SOA command option

Description

The SERVICE_USER_NAME option specifies the user name to be passed to the target workload for authentication.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -serviceusername name

Values

 is the user name to be passed to the target workload.name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref50

SOAP_ACTION - UCA for SOA command option

Description

The SOAP_ACTION option specifies soapAction HTTP header value.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -soapaction header

Values

 is the SOAP action name.header

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref51

SOAP_VERSION - UCA for SOA command option

Description

The SOAP_VERSION option specifies the version of the SOAP protocol to use when making the SOAP request.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Command Line, Long Form -soapversion version

Values

 is the version of the SOAP protocol to use.version

Valid values for are:version

OneDotOne
OneDotTwo

Default is OneDotTwo.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref52

TIMEOUT_SEC - UCA for SOA command option

Description

The TIMEOUT_SEC option specifies the length of time - in seconds - to wait for the request to complete.

If this option is not used, UAC defaults to 10 seconds.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Command Line, Long Form -timeoutsec time

Values

 is the number of seconds to wait for the request to complete.time

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref53

XD_CMD - UCA for SOA command option

Description

The XD_CMD option specifies the operation to submit to the WebSphere XD environment.

XD_CMD is required if the PROTOCOL option is set to .XDSOAP

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -xdcmd operation

Values

 specifies the operation to submit to the WebSphere XD environment.operation

Valid values for are:operation

SUBMIT
Used, along with the xJCL read from STDIN, to start workload within the XD environment. The and values are returnedxdcmd xdcmdid
on STDOUT after job submission for reference and correlation purposes.
For example:
UNV: 5050 - xdcmdid=0ca1af1d-0db6-41bf-9ce4-b91099797503 xdcmd=SUBMIT
Note that the value shown for is the auto-generated value which is returned if is not included, or is commented out,xdcmdid -xdcmdid
in the command options script.
RESTART
Used to restart workload within the XD environment. You will need the command ID value passed in with the submit operation using the

 option to restart the workload. Only workload that is indicated as "Restartable" in the XD environment can be restarted. The-xdcmdid
xJCL does not need to be read from STDIN on a restart as XD saves the xJCL with the job.

There is no default; a value must be passed.

See for information on how to cancel a submit or restart operation.Cancelling an XD Operation

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref54

XD_CMD_ID - UCA for SOA command option

Description

The XD_CMD_ID option is used to correlate jobs.

XD_CMD_ID is required if the PROTOCOL option is set to . In this case, it is used to correlate jobs between the Universal CommandXDSOAP
Manager host (mainframe) request and the WebSphere XD environment as you are not able to submit your own JobID to the WebSphere XD
environment.

Universal Command Agent for SOA will generate a unique xdcmdid value or you can use your own value for the xdcmdid option. If you use your
own value, make sure it is unique; otherwise, XD will pick the first workload with a value that matches if there are duplicates.

Note
You will need to comment out (using the character) or remove the XD_CMD_ID option from the command option script if you#
want Universal Command Agent for SOA to generate a unique value.xdcmdid

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Command Line, Long Form -xdcmdid ID

Values

 is the current job ID.ID

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref55

Universal Command Agent for SOA Configuration Options

Overview
Configuration Options Information

Description
Usage
Values
<Additional Information>

Configuration Options List

Overview

This page provides links to detailed information on the configuration options available for use with the Universal Command Agent for SOA.

The options are listed alphabetically, without regard to any specific operating system.

Configuration Options Information

For each configuration option, these pages provide the following information.

Description

Describes the configuration option and how it is used.

Usage

Provides a table of the following information:

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Configuration File Keyword <Format / Value>

Method

Identifies the method used to specify Universal Command Agent for SOA configuration options:

Configuration File Keyword

Syntax

Identifies the syntax of each method that can be used to specify the option:

Format: Specific characters that identify the option.
Value: Type of value(s) to be supplied for this method.

Note
If a Method is not valid for specifying the option, the Syntax field contains .n/a

(Operating System)

Identifies the operating systems for which each method of specifying the option is valid:

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref56

IBM i
HP NonStop
UNIX
Windows
z/OS

Values

Identifies all possible values for the specified value type.

Defaults are identified in .bold type

<Additional Information>

Identifies any additional information specific to the option.

Configuration Options List

The following table identifies the Universal Command Agent for SOA configuration options.

Option Name Description

ACTIVITY_MONITORING Specification for whether or not product activity monitoring events are generated.

CODE_PAGE Character code page used to translate text data received and transmitted over the network.

EVENT_GENERATION Events to be generated as persistent events.

INSTALLATION_DIRECTORY Location in which the Universal Application Container Server is installed.

MESSAGE_LEVEL Level of messages written.

MQ_CCDT_URL Location of an MQ Client Channel Definition Table (CCDT) that can be used to establish
client connections to remote MQ queue managers.

RMI_PORT Port number or service name on which Universal Application Container will listen for service
requests from the Universal Application Container Server.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref57

ACTIVITY_MONITORING - UCA for SOA configuration option

Description

The ACTIVITY_MONITORING option specifies whether or not product activity monitoring events are generated.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Configuration File Keyword activity_monitoring option

Values

 is the specification for whether or not product activity monitoring events are generated.option

Valid values for are:option

yes
Activate product activity monitoring events
no
Deactivate product activity monitoring events

Default is yes.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref58

CODE_PAGE - UCA for SOA configuration option

Description

The CODE_PAGE option specifies the character code page that is used to translate text data received and transmitted over the network.

The Universal Translate Table (UTT) files are used to translate between Unicode and the local single-byte code page.

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Configuration File Keyword codepage codepage

Values

 is the character code page that is used to translate data.codepage

 references a Universal Translate Table (UTT) file provided with the product (see Section 9.3 UTT Files). UTT files are used to translatecodepage
between Unicode and the local single-byte code page. (All UTT files end with an extension of .).utt

Note
UTF-8 is not a supported value for CODE_PAGE. UTF-8 codepage is valid only for standard I/O text file translation.codepage

See for a complete list of character code pages provided by Stonebranch Inc. for use with Universal Automation Center.Character Code Pages

Default

Default is different for different operating systems:

ISO8859-1 (8-bit ASCII): ASCII-based operating systems
IBM1047 (EBCDIC): EBCDIC-based operating system

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref59

EVENT_GENERATION - UCA for SOA configuration option

Description

The EVENT_GENERATION option specifies which types of are to be generated and processed as persistent events by the events Universal
 (UES).Event Subsystem

A persistent event record is saved in a Universal Enterprise Controller (UEC) database, the (), for long-term storage.UES database uec.evm.db

For a list of all event types for all Universal Agent components, see .Event Definition Details

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Configuration File Keyword event_generation types

Values

 specifies a comma-separated list of event types. It allows for all or a subset of all potential event message types to be selected.type

Event type ranges can be specified by separating the lower and upper range values with a dash () character.-

Event types can be selected for inclusion or exclusion:

Exclusion operator is or .X x
An asterisk (*) represents all event types.

Examples

100,101,102 Generate event types 100, 101, and 102.

100-102 Generate event types 100 through 102.

100-102,200 Generate event types 100 through 102 and 200.

* Generate all event types.

*,X100 Generate all event types except for 100.

x* Generate no event types.

*,X200-250,X300 Generate all event types except for 200 through 250 and 300.

Default is X (no event types).

https://www.stonebranch.com/confluence/display/UA64/Universal+Event+Subsystem+6.4.x+Event+Definitions
https://www.stonebranch.com/confluence/display/UA64/Universal+Event+Subsystem
https://www.stonebranch.com/confluence/display/UA64/Universal+Event+Subsystem
https://www.stonebranch.com/confluence/display/UA64/Universal+Enterprise+Controller+Databases
https://www.stonebranch.com/confluence/display/UA64/Event+Definition+Details

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref60

INSTALLATION_DIRECTORY - UCA for SOA configuration option

Description

The INSTALLATION_DIRECTORY option specifies the location in which Universal Application Container Server is installed.

Note
This option is required and cannot be overridden.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Configuration File Keyword installation_directory directory

Values

 is the location in which the Universal Application Container Server is installed.directory

The full path name is required.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref61

MESSAGE_LEVEL - UCA for SOA configuration option

Description

The MESSAGE_LEVEL option specifies the level of messages to write.

Usage

Method Syntax IBM i
HP
NonStop UNIX Windows z/OS

Configuration File Keyword message_level level

Values

 is the level of messages to write.level

Valid values for are:level

trace
Writes trace messages used for diagnostic purposes.

Note
Use only as directed by Stonebranch, Inc. Customer Support.trace

audit
Writes audit, informational, warning, and error messages.
info
Writes informational, warning, and error messages.
warn
Writes warning and error messages.
error
Writes error messages only.

Default is info.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref62

MQ_CCDT_URL - UCA for SOA configuration option

Description

The MQ_CCDT_URL option specifies the location of an MQ Client Channel Definition Table (CCDT) file that can be used to establish client
connections to remote MQ queue managers.

Usage

Method Syntax * IBM i HP
NonStop

UNIX Windows z/OS

Configuration File Keyword mq_ccdt_url url

Values

 is a URL that specifies the location of the CCDT file.url

For example, the following URLs specify the location of the CCDT file on a file system:

UNIX file:///mqm/ccdt/AMQCLCHL.TAB

Windows file:///e:/path/to/file/AMQCLCHL.TAB

The following format also is accepted:

file:///e:\path\to\file\AMQCLCHL.TAB

FTP ftp://userName:password@myServer/definitionPath/AMQCLCHL.TAB

file:///mqm/ccdt/AMQCLCHL.TAB
file:///e:/path/to/file/AMQCLCHL.TAB
file:///e:\path\to\file\AMQCLCHL.TAB
ftp://userName:password@myServer/definitionPath/AMQCLCHL.TAB

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref63

RMI_PORT - UCA for SOA configuration option

Description

The RMI_PORT option specifies the port number or service name on which Universal Application Container will listen for service requests from
the Universal Application Container Server.

Usage

Method Syntax IBM i HP
NonStop

UNIX Windows z/OS

Configuration File Keyword rmi_port port

Values

 is the port number or service name on which Universal Application Container will listen for service requests.port

Default is 7899.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref64

UAC Server Component Definition Options

Overview
Component Definition Options Information

Description
Usage
Values

Component Definition Options List

Overview

This page provides links to detailed information about the options that comprise Universal Application Container (UAC) Server component
definitions.

The options are listed alphabetically, without regard to any specific operating system.

Component Definition Options Information

For each component definition option, these pages provide the following information.

Description

Describes the option and how it is used.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword <Format / Value>

Method

Identifies the method used for specifying a Universal Command component definition option:

Component Definition Keyword

Syntax

Identifies the syntax of the method used to specify the option:

Format: Specific characters that identify the option.
Value: Type of value(s) to be supplied for this method.

(Operating System)

Identifies the operating systems for which the method of specifying the option is valid:

IBM i
HP NonStop
UNIX
Windows
z/OS

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref65

Values

Identifies all possible values for the specified value type.

Defaults are identified in .bold type

Component Definition Options List

The following table identifies all of the options that can comprise a Universal Application Container component definition.

Component Description

AUTOMATICALLY_START Specification for whether or not the UAC Server starts automatically when Universal Broker
is started.

COMPONENT_NAME Name by which the clients know the UAC Server.

 CONFIGURATION_FILE * Name of the UAC Server configuration file.

RUNNING_MAXIMUM Maximum number of UAC Servers that can run simultaneously.

 START_COMMAND * Program name of the UAC Server.

 WORKING_DIRECTORY * Directory used as the working directory of the UAC Server.

* These options are required in all component definitions.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref66

AUTOMATICALLY_START - UCA for SOA component definition option

Description

The AUTOMATICALLY_START option specifies whether or not the UAC Server starts automatically when the Universal Broker is started.

Usage

Method Parameter / Value IBM i
HP
NonStop UNIX Windows z/OS

Component Definition Keyword auto_start option

Values

 is the specification for how the UAC Server is started.option

The only valid value for is:option

yes
UAC Server must be started automatically when Universal Broker is started.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref67

COMPONENT_NAME - UCA for SOA component definition option

Description

The COMPONENT_NAME option specifies the name of the UAC Server.

Component start requests refer to UAC Server by this name.

Note
COMPONENT_NAME is optional in a component definition. If it is not specified, the file name is used as the component name.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword component_name name

Values

 is the name of the UAC Server.name

There is only one valid value for :name

uac (This is the name of the UAC Server component definitions file.)

Note
This name should not be changed.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref68

CONFIGURATION_FILE - UCA for SOA component definition option

Description

The CONFIGURATION_FILE option specifies the name of the UAC Server configuration file.

Note
CONFIGURATION_FILE is required in a component definition.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword configuration_file filename

Values

 / is the name of the configuration member / file.member filename

UNIX Full path name of the configuration file. The file name can be any valid file name.

.The installation default is /etc/universal/uacs.conf

Windows Full path name of the configuration file. The file name can be any valid file name.

The installation default is c:\Documents and Settings\All Users\Application

.Data\Universal\conf\uacs.conf

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref69

RUNNING_MAXIMUM - UCA for SOA component definition option

Description

The RUNNING_MAXIMUM option specifies the maximum number of UAC Servers that can run simultaneously.

If this maximum number is reached, any command received to start a UAC Server is rejected.

Note
RUNNING_MAXIMUM is optional in a component definition.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword running_max maximum

Values

maximum is the maximum number of UAC Servers that can run simultaneously.

Default is 100.

Note
If you specify 0 for , the default (100) will be used. To use 0 for the maximum number of servers, specify -1 or less for maximum

.maximum

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref70

START_COMMAND - UCA for SOA component definition option

Description

The START_COMMAND option specifies the full path name of the UAC Server program.

Optionally, START_COMMAND also can specify command line options.

Note
START_COMMAND is required in a component definition.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword start_command name[II:options]

Values

 is the full path name of the UAC Server program.name

 is the optional list of command line options (enclosed in single or double quotation marks).options

Windows
name is the full path name of the UAC Server program. This name is defined at installation; it is not modifiable from the
Universal Configuration Manager.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref71

WORKING_DIRECTORY - UCA for SOA component definition option

Description

The WORKING_DIRECTORY option specifies the full path name used as the working directory of UAC Server.

Note
WORKING_DIRECTORY is required in a component definition.

Usage

Method Syntax IBM i HP
NonStop UNIX Windows z/OS

Component Definition Keyword working_directory directory

Values

 is the full path name of the working directory.directory

Note
Do not change this directory.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref72

Universal Command Agent for SOA Operations

Overview

Universal Command Agent for SOA allows you to execute Internet and message-based workload, in a variety of transaction scenarios, using five
types of connectors.

HTTP Connector
SOAP Connector
JMS Connector
XD Connector
MQ Connector

In these pages, operations are grouped by connector. Each connector supports both standard and combination message exchange patterns
(MEPs). They detail the supported business scenarios and the usage required for each transaction scenario.

The following table identifies the transaction scenarios for each connector.

Connector Message Exchange Pattern

(MEP): Request / Reply

Message Exchange Pattern

(MEP): Publish

HTTP Connector

SOAP Connector

JMS Connector

XD Connector

MQ Connector

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref73

HTTP Connector Operation

HTTP Connector
Web Services
Servlets
CGI (Common Gateway Interface)
Middleware

HTTP Connector

The HTTP Connector is used for invoking synchronous workload that has, or is exposed via, an HTTP interface.

It supports the following message exchange pattern:

Request / Reply

The types of workloads that might have an HTTP interface could include, but are not limited to:

Web Services

Your organization may have workload implemented using web services technologies that must be executed as part of a scheduled business
process.

Servlets

Your organization may have workload implemented as servlets.

Servlets are objects that contain business logic. Access is via an HTTP URL that specifies the name of the servlet to execute. The servlet could
process single transaction or batch records, and it usually has a specific responsibility in a scheduled business process.

CGI (Common Gateway Interface)

CGI provides a common way that application functionality can be accessed by web browsers using HTTP. Your organization may have business
logic written, using various technologies with CGI as the interface, and you have to incorporate this into a scheduled business process.

Middleware

Middleware queues or processes often are exposed via an HTTP interface. The HTTP interface can be driven by your enterprise scheduler as
part of a scheduled business process.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref74

HTTP Connector Request-Reply Operation

Methods
System Flow
System Flow Description

Methods

There are two methods of HTTP Connector operation: GET and POST.

When the request is made, the reply from the target workload can be either of two types:

Reply with Acknowledgement
Request is acknowledged via the reply but no data is sent back. The target workload is executed with no additional feedback.
Reply with Payload
Request blocks until a reply is received from the target workload containing data, presumably after the target workload has completed or
an error was issued during execution. The data can be the results of the workload, the workload status, or an error message.

System Flow

The following figure illustrates the system flow for an HTTP Connector Request / Reply operation using Universal Command Agent for SOA.

System Flow Description

The following list describes the steps (1 - 5) illustrated above:

Step 1 Universal Command is executed requesting the HTTP workload. The command options for Universal Command Agent for SOA: HTTP
Connector are read in from a script file specified with the SCRIPT_FILE option and the message payload is read in via STDIN. UCMD
then sends the workload request to Universal Command Agent for SOA (specifically, the UAI component).

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref75

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: HTTP Connector sends the workload execution message via HTTP and blocks for the reply.

Step 4 When the target workload completes, or aborts due to an error, it replies to the workload execution request with either return code and
data or the error message.

Step 5 UAC replies to UAI which returns the relevant information to UCMD.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref76

HTTP Connector Request-Reply Operation - Usage

Overview
Universal Command Options
Script File
Command File

Overview

Usage of Universal Command Agent for SOA is via the Universal Command (UCMD) Manager, with command input coming from a script file
specified with the -script (SCRIPT_FILE) option.

Universal Command Options

The following figure illustrates the Universal Command options to execute the HTTP request.

-script HTTPPost_RequestReply_Options.txt
-script_type SERVICE
-host server1
-login YES
-userid abc
-pwd 123

Script File

The following figure illustrates the script file to request the HTTP service.

-protocol HTTP
-mep Request
-serviceurl http://server1:8889/testService
-timeoutsec 10

Note
The script file illustrated above is the argument to the -script () option for Universal Command shown in the firstSCRIPT_FILE
figure.

Command File

The command options shown in the first figure can be saved in a file and invoked with Universal Command via the -file (COMMAND_FILE_PLAIN
) option, as illustrated in the following figure.

ucmd -file HTTPPostRequestReply_Invoke.txt < HTTPSOAPRequest.xml

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/COMMAND_FILE_PLAIN+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref77

HTTP Connector Request-Reply Operation - Required Command Options

The following table identifies the options (and their values) that are required to initiate an HTTP Connector Request/Reply operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL HTTP Connector that UAC will use for the current operation.

MEP Request Specification that the operation will be a request/reply operation.

SERVICE_URL Workload URL Address of the target workload in the form of:

http://machine:port/service_name

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref78

SOAP Connector Operation

SOAP Connector
Web Services
Middleware

SOAP Connector

The SOAP Connector is used for invoking synchronous workload that has, or is exposed via, a SOAP interface.

It supports the following message exchange patterns:

Request / Reply
Publish

The SOAP Connector Publish operation is not widely supported. It is dependent on the implementation of the target workload.

The types of workloads that might have a SOAP interface are similar to the HTTP workload and could include, but are not limited to:

Web Services

Your organization may have workload implemented, or wrapped other workload such as legacy or HTTP workload, using web services
technologies that need to be executed as part of a scheduled business process.

Middleware

Often times middleware queues or processes are exposed via a SOAP interface, especially in an environment where the web services stack is a
major component of the SOA or IT architecture. The SOAP interface can be driven by your enterprise scheduler as part of a scheduled business
process.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref79

SOAP Connector Request-Reply Operation

Overview
Reply with Acknowledgement
Reply with Payload

System Flow
System Flow Description

Overview

The SOAP Connector operation is, by default, a request/reply operation with the same constraints as the HTTP operation.

When the request is made, the reply from the target workload can be either of two types:

Reply with Acknowledgement

In this type, the request is acknowledged via the reply, but no data is sent back. The target workload is executed with no additional feedback.

Reply with Payload

In this type, the request blocks until a reply is received from the target workload containing data, presumably after either:

Target workload has completed.
Error was issued during execution.

The data can be the results of the workload, the workload status, or an error message.

System Flow

The following figure illustrates the system flow for a SOAP Connector Request / Reply operation using the Universal Command Agent for SOA:
SOAP Connector.

System Flow Description

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref80

The following list describes the steps (1 - 5) identified above:

Step 1 Universal Command is executed requesting the HTTP workload. The command options for the Universal Command Agent for SOA:
SOAP Connector are read in from a script file specified with the option and the message payload is read in via STDIN.SCRIPT_FILE
UCMD then sends the workload request to Universal Command Agent for SOA (specifically, the UAI component).

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: SOAP Connector sends the workload execution message via SOAP and blocks for the reply.

Step 4 When the target workload completes, or aborts due to an error, it replies to the workload execution request with either return code and
data or the error message.

Step 5 UAC replies to UAI, which returns the relevant information to UCMD.

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref81

SOAP Connector Publish Operation

Overview
System Flow
System Flow Description

Overview

The SOAP Connector Publish operation is an extension of SOAP functionality that allows asynchronous communication using the SOAP protocol.
Use of this MEP is highly dependant on the target workload, as target workload must behave in a manner more consistent with asynchronous
messaging by not replying to the SOAP request.

System Flow

The following figure illustrates the system flow for a SOAP Connector Publish operation using the Universal Command Agent for SOA: SOAP
Connector.

System Flow Description

The following list describes the steps (1 - 4) identified above:

Step 1 Universal Command is executed requesting the HTTP workload. The command options for the Universal Command Agent for SOA:
SOAP Connector are read in from a script file specified with the option and the message payload is read in via STDIN.SCRIPT_FILE
UCMD then sends the workload request to Universal Command Agent for SOA (specifically, the UAI component).

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: SOAP Connector publishes the workload execution message via SOAP and the operation is
complete.

Step 4 The Universal Command Agent for SOA: SOAP Connector returns the acknowledgement to UCMD.

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref82

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref83

SOAP Connector (Request-Reply or Publish) Operation - Usage

Usage of Universal Command Agent for SOA is via the Universal Command (UCMD) Manager, with command input coming from a script file
specified with the option.SCRIPT_FILE

The following figure illustrates the Universal Command options to execute the SOAP operation.

-script REMOTE_SOAP_Options.txt
-script_type SERVICE
-host server1
-login YES
-userid abc
-pwd 123

The following figure illustrates the script file.

-protocol SOAP
-mep Request
-serviceurl http://www.webservicemart.com/uszip.asmx
-soapaction http:/webservicemart.com/ws/ValidateZip
-timeoutsec 10

Note
The script file illustrated above is the argument to the -script () option for Universal Command shown in the firstSCRIPT_FILE
figure. For the publish operation, the value for -mep would be .Publish

The command options shown in the first figure can be saved in a file and invoked with Universal Command via the -file (COMMAND_FILE_PLAIN
) option, as shown in the following figure.

ucmd -file REMOTE_SOAP_Invoke.txt < zipcode.xml

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/COMMAND_FILE_PLAIN+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref84

SOAP Connector Request-Reply Operation - Required Command Options

The following table identifies the options (and their values) that are required to initiate a SOAP Request/Reply operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL SOAP Connector that UAC will use for the current operation.

MEP Request Specification that the operation will be a request/reply operation.

SERVICE_URL Workload URL Address of the target workload in the form of:

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref85

SOAP Connector Publish Operation - Required Command Options

The following table identifies the options (and their values) that are required to initiate a SOAP Publish operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL SOAP Connector that UAC will use for the current operation.

MEP Publish Specification that the operation will be a publish operation.

SERVICE_URL Workload URL Address of the target workload in the form of:

http://machine:port/service_name

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref86

JMS Connector Operation

JMS Connector
Application Container Interfaces
Middleware

JMS Connector

The JMS Connector is used for invoking asynchronous workload that has, or is exposed via, a JMS interface

It supports the following message exchange patterns:

Publish
Request / Reply

The types of workload that might have a JMS interface are message-based workloads that are associated with enterprise messaging
environments.

A JMS workload could include, but is not limited to:

Application Container Interfaces

Your organization may have asynchronous workload deployed to application containers such as WebSphere, BEA, JBoss AS, or Oracle AS (and
many others). These containers provide JMS services, such as queues and topics, that allow access to the deployed workload by your enterprise
scheduler or other applications. This allows them to be included as part of your scheduled business processes.

Middleware

Middleware workload and processes are often asynchronous and are exposed via JMS queues or topics by the middleware software. They
usually are the main interface for messaging operations. Using the JMS interface, the middleware workload, processes, and downstream targets
of the middleware can be driven by your enterprise scheduler as part of a scheduled business process.

Universal Command Agent for SOA: JMS Connector does not provide the queue or topic infrastructure. You must have a JMS provider with
queues or topics configured to use the JMS Connector operations.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref87

JMS Provider Client Jar Files for Outbound

As mentioned in , set-up and use of the JMS Connector is dependant on the JMS provider being used.JMS Provider Client Jar Files

Each JMS provider is specific to its vendor implementation; thus, it will have vendor specific setup and configuration that needs to take place
before you can run JMS operations. Specifically, the Universal Command Agent for SOA: JMS Connector requires the JMS provider client jar files
to connect and communicate with the JMS provider.

When you have acquired these client jar files from your JMS provider vendor, you would place them in the following directory:

Linux opt/universal/uac/container/webapps/axis2/WEB-INF/lib

Windows \Program Files\Universal\uac\container\webapps\axis2\WEB-INF\lib

For example, if you are using the JMS functions in IBM's WebSphere Application Server, you would need the , ,sibc.jms.jar sibc.jndi.jar
and files.sibc.orb.jar

If you were using Apache's ActiveMQ JMS provider you would need the file.apcache-activemq-4.1.1.jar

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref88

JMS Connector Request-Reply Operation

Overview
System Flow
System Flow Description

Overview

The JMS Connector Request / Reply operation is a synchronous operation that uses a temporary queue to process the reply.

System Flow

The following figure illustrates the system flow for a JMS request / reply operation using the Universal Command Agent for SOA: JMS Connector.

System Flow Description

The following list describes the steps (1 - 5) identified above:

Step 1 Universal Command is executed requesting the HTTP workload. The command options for Universal Command Agent for SOA: JMS
Connector are read in from a script file specified with the option and the message payload is read in via STDIN. UCMDSCRIPT_FILE
then sends the workload request to Universal Command Agent for SOA (specifically, the UAI component).

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: JMS Connector publishes the workload execution message to the specified destination queue.

Step 4 Universal Command Agent for SOA: JMS Connector then reads the reply message off of the temporary reply queue specified in the
properties file.

Step 5 UAC returns the reply message to UCMD (or an error message, if the operation failed).

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref89

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref90

JMS Connector Publish Operation

Overview
System Flow
System Flow Description

Overview

The JMS Connector Publish operation is an asynchronous operation that places a JMS message and its payload on the specified destination JMS
queue or topic.

UAC returns a message indicating whether the JMS message was successfully placed on the queue or sent on the topic.

System Flow

The following figure illustrates the system flow for a JMS publish operation using the Universal Command Agent for SOA: JMS Connector.

System Flow Description

The following list describes the steps (1 - 4) identified above:

Step 1 Universal Command is executed requesting the HTTP workload. The command options for Universal Command Agent for SOA: JMS
Connector are read in from a script file specified with the option and the message payload is read in via STDIN. UCMDSCRIPT_FILE
then sends the workload request to Universal Command Agent for SOA, specifically the UAI component.

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: JMS Connector publishes the workload execution message to the specified queue or topic.

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref91

Step 4 UAC returns a success message if the message was placed on the queue or topic with no error, or an error message if there was an
error. This reply is generated by UAC, not the JMS provider.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref92

JMS Connector Request-Reply Operation - Usage

Universal Command Options
Script File
Command File

Universal Command Options

The following figure illustrates the Universal Command options required to execute the JMS Connector Request/Reply operation.

-script JMSRequestReply_Queues_Options.txt
-script_type SERVICE
-host server1
-login YES
-userid abc
-pwd 123

Script File

The following figure illustrates the script file.

-protocol JMS
-mep Request
-serviceurl iiop://server1:2809
-jmsdestination jms/IntegrationTestQueue1
-jmsconnectionfactoryname jms/ConnectionFactory
-jmscontextfactoryname com.ibm.websphere.naming.WsnInitialContextFactory
-jmspropertiesfile xml/websphere.properties.xml

Note
The script file illustrated above is the argument to the -script () option for Universal Command shown in the firstSCRIPT_FILE
figure.

Command File

The command options shown in the first figure can be saved in a file and invoked with UCMD via the -file () option, asCOMMAND_FILE_PLAIN
shown in the following figure.

ucmd -file JMSRequestReply_Queues_Options.txt < JMSPayload.xml

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/COMMAND_FILE_PLAIN+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref93

JMS Connector Publish Operation - Usage

Overview
Universal Command Options
Script File
Command File

Overview

Usage of Universal Command Agent for SOA: JMS Connector is via the Universal Command (UCMD) Manager, with command input coming from
a script file specified with the option.SCRIPT_FILE

Note
Because the protocol is JMS, you must use the dependent command options in addition to the standard command options (see

).Dependent Options

Universal Command Options

The following figure illustrates the Universal Command options to execute the JMS Connector Publish operation.

-script OutboundJMS_Queues_Options.txt
-script_type SERVICE
-host server1
-login YES
-userid abc
-pwd 123

Script File

The following figure illustrates the script file.

-protocol JMS
-mep Publish
-serviceurl iiop://server1:2809
-jmsdestination jms/IntegrationTestQueue1
-jmsconnectionfactoryname jms/ConnectionFactory
-jmscontextfactoryname com.ibm.websphere.naming.WsnInitialContextFactory
-jmspropertiesfile xml/websphere.properties.xml

Note
The script file illustrated above is the argument to the -script () option for Universal Command shown in the firstSCRIPT_FILE
figure.

Command File

The command options shown in the first figure can be saved in a file and invoked with Universal Command via the -file (COMMAND_FILE_PLAIN
) option, as shown in the following figure.

ucmd -file OutboundJMS_Queues_Invoke2.txt < JMSPayLoad.xml

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/COMMAND_FILE_PLAIN+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref94

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref95

JMS Connector Request-Reply Operation - Required Command Options

The following table describes the options (and their values) required to initiate a JMS Request / Reply operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL JMS Connector UAC will use for the current operation.

MEP Request Specification that the operation will be a request/reply operation.

SERVICE_URL Workload URL Address of the JMS provider in the form of:

http://machine:port/service_name

JMS_DESTINATION JMS Destination Target queue or topic configured in the JMS provider.

JMS_CONNECTION_FACTORY_NAME JMS Connection
Factory

Name of the connection factory configured in the JMS provider
including the jndi prefix.

JMS_CONTEXT_FACTORY_NAME Class Name Class name of the initial context factory used by the JMS
provider.

JMS_PROPERTIES_FILE Path/Filename Path and filename of the JMS properties file that contains the
values for the JMS properties in the JMS message. JMS
providers and your target workload may have different, or no,
requirements for additional properties.

(Optional)

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref96

JMS Connector Publish Operation - Required Command Options

The following table describes the options (and their values) required to initiate a JMS Connector Publish operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL JMS Connector UAC will use for the current operation.

MEP Publish Specification that the operation will be a publish operation.

SERVICE_URL Workload URL Address of the JMS provider in the form of:

http://machine:port/service_name

JMS_DESTINATION JMS Destination Target queue or topic configured in the JMS provider.

JMS_CONNECTION_FACTORY_NAME JMS Connection
Factory

Name of the connection factory configured in the JMS provider
including the jndi prefix.

JMS_CONTEXT_FACTORY_NAME Class Name Class name of the initial context factory used by the JMS
provider.

JMS_PROPERTIES_FILE Path/Filename Path and filename of the JMS properties file that contains the
values for the JMS properties in the JMS message. JMS
providers and your target workload may have different, or no,
requirements for additional properties.

(Optional)

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref97

XD Connector Operation

The XD Connector is used for invoking batch workload in the WebSphere XD environment.

It is a synchronous component that uses the following message exchange pattern:

Request / Reply

The types of workload that the XD Connector can invoke are constrained to the WebSphere XD environment and the jobs that are defined in it.
This includes both compute intensive and batch workload deployed to WebSphere XD.

Submit, restart, and cancel operations are supported with the submit and restart operations being initiated as arguments to the option-xdcmd
and the cancel operation being initiated when the UCMD Manager process is terminated before the submit or restart operation has completed.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref98

1.

2.

XD Connector Deployment

Overview
Host Server
Distributed Server

Illustrated Environment

Overview

Deployment of the Universal Command Agent for SOA: XD Connector in a production environment includes host and distributed servers.

Host Server

The host server is where the Universal Command Manager is installed.

Distributed Server

There are two distributed servers in this environment:

Agent
Server where the Universal Broker / Server 6.4.x and Universal Command Agent for SOA are installed and runs.
WebSphere Application Server
Server where WebSphere Network Deployment v6.1 and WebSphere Extended Deployment (XD) components are installed and runs any
operating system that WebSphere supports.

Illustrated Environment

The following figure illustrates this environment.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref99

XD Connector Request-Reply Operation

Overview
Logical System Flow
Logical System Flow Description
Physical System Flow

Overview

The XD Connector is designed to request workload execution, return status on executing workload, and return the job output and the job log, via
the Web Services interface in the IBM WebSphere XD environment.

Logical System Flow

The following figure illustrates a more detailed logical flow of the XD connector operation.

Logical System Flow Description

The flow is described as follows (from left to right):

Step 1 Scheduler invokes the UCMD Manager with the appropriate command line options.

Step 2 UCMD Manager reads the script file that contains that contains the XD Connector command options.

Step 3 UCMD Manager reads the xJCL file from STDIN, as indicated by the UCMD options.

Step 4 UCMD Manager requests action by the Broker, which spawns the UCMD Server and sets up communication between the UCMD
Manager and UCMD Server.

Step 5 UCMD Server sends the XD Connector command options and xJCL to UAI via STDIN.

Step 6 UAI validates the command options and builds a SOAP message containing the command options and xJCL and sends it to UAC.
This is a request / reply operation, so UAI blocks for the reply.

Step 7 UAC, based on the PROTOCOL value, will invoke the XD Connector. The XD Connector creates the XD SOAP message and sends it
to WebSphere.

Step 8 WebSphere replies to the XD Connector with the Job ID which will be needed for the status and job log operations for the current
transaction.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref100

Step 9 XD Connector initiates the status operation. When a success or error status is received, the return code, the job output, and the job log
are returned to UCMD Manager. At this point, the transaction is considered complete. Please note that the job output is returned on
STDOUT and the job log is returned on STDERR.

Physical System Flow

The following figure illustrates the physical system flow of the XD Connector.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref101

XD Connector Request-Reply Operation - Usage

Overview
Universal Command Options
Script File
Command File

Overview

Usage of the Universal Command Agent for SOA: XD Connector is via the Universal Command Manager, with command input coming from a
script file specified with the option.SCRIPT_FILE

Universal Command Options

The following figure illustrates the Universal Command options to execute the XD Connector operation.

-script XDSOAP_Options.txt
-script_type SERVICE
-host server1
-login YES
-userid abc
-pwd 123

Script File

The following figure illustrates the script file.

-protocol XDSOAP
-mep Request
-xdcmd SUBMIT
-xdcmdid 10001
-serviceurl http://wasxd-centos:
9080/LongRunningJobSchedulerWebSvcRouter/services/JobScheduler
-serviceusername abc
-servicepassword 123
-timeoutsec 120

Note
The script file illustrated above is the argument to the -script option for Universal Command shown in the first figure.

Command File

The command options shown in the first figure can be saved in a file and invoked with Universal Command via the -file (COMMAND_FILE_PLAIN
) option, as shown in the following figure.

ucmd -file XDSOAP_Invoke.txt < Your_xJCL_File_Here.xml

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option
https://www.stonebranch.com/confluence/display/UA64/COMMAND_FILE_PLAIN+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref102

XD Connector Request-Reply Operation - Required Command Options

The following table describes the options (and their values) required to initiate an XD Request / Reply operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL XDSOAP Connector that UAC will use for the current operation.

MEP Request Specification that the operation will be a Request / Reply
operation.

SERVICE_URL Workload URL Address of the JMS provider in the form of:

http://machine:port/service_name

For XD operations, this should be the long running
scheduler web service.

XD_CMD SUBMIT, RESTART Specification for whether you are either:

Submitting a job to the XD environment.
Restarting a job in the XD environment.

XD_CMD_ID Job Identifier Value passed in from the mainframe request and is used
to correlate the mainframe request with the job ID that is
passed back from WebSphere XD after the job is
submitted and if a restart of the submitted job is required.

http://machine:port/service_name

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref103

Cancelling an XD Operation

The Cancel operation is unique in that it is initiated by a UCMD Manager termination event and not as an argument to the option.-xdcmdid

To cancel a job that is running, the UCMD Manager process must be terminated, in which case the XD Connector sends a cancel job request to
the XD environment. To verify that the XD job has been cancelled, and what the job's status is (cancelled, ended, or restartable), you must log
into the XD Job Management Console and select View jobs.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref104

MQ Connector Operation

MQ Connector
Application Container Interfaces
Middleware

MQ Connector

The MQ Connector is used for invoking asynchronous workload that has, or is exposed via, an MQ interface.

It supports the following message exchange patterns:

Publish
Request / Reply

The types of workload that might have an MQ interface are message-based workloads that are associated with enterprise messaging
environments.

An MQ workload could include, but is not limited to:

Application Container Interfaces

Your organization may have asynchronous workload deployed to application containers such as WebSphere or an MQ Series Message Broker.
These environments provide MQ services, such as queues and topics, that allow access to the deployed workload by your enterprise scheduler or
other applications. This allows them to be included as part of your scheduled business processes.

Middleware

Middleware workload and processes are often asynchronous and are exposed via MQ queues or topics by the middleware software. They usually
are the main interface for messaging operations. Using the MQ interface, the middleware workload, processes, and downstream targets of the
middleware can be driven by your enterprise scheduler as part of a scheduled business process.

Universal Command Agent for SOA: MQ Connector does not provide the queue or topic infrastructure. You must have an MQ Broker with queues
or topics configured to use the MQ Connector.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref105

MQ Connector Request-Reply Operation

Overview
System Flow
System Flow Description

Overview

The MQ Connector Request / Reply operation is a synchronous operation that uses a temporary queue to process the reply.

System Flow

The following figure illustrates the system flow for an MQ request / reply operation using the Universal Command Agent for SOA: MQ Connector.

System Flow Description

The following list describes the steps (1 - 5) identified in Figure 4.24:

Step 1 Universal Command is executed requesting the MQ workload. The command options for Universal Command Agent for SOA: MQ
Connector are read in from a script file specified with the option and the message payload is read in via STDIN. UCMDSCRIPT_FILE
then sends the workload request to Universal Command Agent for SOA (specifically, the UAI component).

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: MQ Connector publishes the workload execution message to the specified destination queue.

Step 4 Universal Command Agent for SOA: MQ Connector then reads the reply message off of the temporary reply queue specified in
supplied options.

Step 5 UAC returns the reply message to UCMD (or an error message, if the operation failed).

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref106

MQ Connector Publish Operation

Overview
System Flow
System Flow Description

Overview

The MQ Connector Publish operation is an asynchronous operation that places an MQ message and its payload on the specified destination MQ
queue.

UAC returns a message indicating whether the MQ message was successfully placed on the queue.

System Flow

The following figure illustrates the system flow for an MQ publish operation using the Universal Command Agent for SOA: MQ Connector.

System Flow Description

The following list describes the steps (1 - 4) identified in the illustration above:

Step 1 Universal Command is executed requesting the MQ workload. The command options for Universal Command Agent for SOA: MQ
Connector are read in from a script file specified with the option and the message payload is read in via STDIN. UCMDSCRIPT_FILE
then sends the workload request to Universal Command Agent for SOA, specifically the UAI component.

Step 2 Universal Command Agent for SOA receives the request from UCMD Server via STDIN. The UAI component validates the command
options and existence of the message payload, sends the request to UAC, and blocks. UAC builds the workload execution message
for the target workload.

Step 3 Universal Command Agent for SOA: MQ Connector publishes the workload execution message to the specified queue.

Step 4 UAC returns a success message if the message was placed on the queue with no error, or an error message if there was an error.
This reply is generated by UAC, not the MQ Broker.

https://www.stonebranch.com/confluence/display/UA64/SCRIPT_FILE+-+UCMD+Manager+configuration+option

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref107

MQ Connector Request-Reply Operation - Required Command Options

The following table describes the options (and their values) required to initiate an MQ Connector Request / Reply operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL MQ Connector UAC will use for the current operation.

MEP Request Specification that the operation will be a request/reply operation.

MQ_CHANNEL MQ channel Name of the MQ channel.

MQ_HOST MQ Series server Name of the server running MQSeries.

MQ_QUEUE_MANAGER_NAME MQ Queue Mgr. Name of the MQ QUEUE Manager.

MQ_QUEUE_NAME MQ Queue Name of the MQ Queue to use.

MQ_REPLY_TO MQ Queue Name of the MQ Queue from which to read the reply.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref108

MQ Connector Publish Operation - Required Command Options

The following table describes the command options (and their values) required to initiate an MQ Connector Publish operation.

For detailed information on these required command options, and all command options, see Universal Command Agent for SOA Command
.Options

Option Value Description

PROTOCOL MQ Connector UAC will use for the current operation.

MEP Publish Specification that the operation will be a publish operation.

MQ_CHANNEL MQ channel Name of the MQ channel.

MQ_HOST MQ Series server Name of the server running MQSeries.

MQ_QUEUE_MANAGER_NAME MQ Queue Mgr. Name of the MQ QUEUE Manager.

MQ_QUEUE_NAME MQ Queue Name of the MQ Queue to use.

MQ_REPLY_TO MQ Queue Name of the MQ Queue from which to read the reply.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref109

Universal Command Agent for SOA Logging Configuration

Overview
Logging Levels

UAC Logging Configuration
Appenders (Sinks) Available to UAC

UAI Logging Configuration
Appenders (Sinks) Available to UAI

Overview

These pages provide information of how to check the logs for information regarding the operation of Universal Command Agent for SOA.

Configuration of the logging operations is done via the file for both Universal Application Container (UAC) andlog4jConfiguration.xml
Universal Application Interface (UAI).

Logging Levels

The logging levels supported by the logging implementation are:

TRACE
DEBUG
INFO
WARN
ERROR (default)
FATAL

Note
The logging level should be changed only at the request of Stonebranch, Inc. Customer Support, as it can have a huge impact
on performance.

UAC Logging Configuration

For UAC, the logs are configured to write to a file on Linux and to write to the Event Viewer on Windows with the logging level set to .error

Appenders (Sinks) Available to UAC

The following appenders, or sinks, are available to UAC.

Rolling File Appender

This is the default appender on Linux and logs to a file.

The following attributes can be specified:

Name - name of the appender.
File - path and name of the log file.
Max File Size - maximum size of the log file before rolling over.
Max Backup Index - number of times the log file can be rolled before starting over.
Class - java class that implements the logger.
Conversion Pattern - output format of the log text.

LF5 Appender

Logs to a Java program with a user interface that displays the log in row/column format and enables searches within the log file. Use this for
debug only.

The following attributes can be specified:

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref110

Name - name of the appender.
Class - java class that implements the logger.
Max Number Of Records - maximum number of records displayed.

NT Event Log Appender

This is the default appender on Windows and logs to the Windows Event Viewer.

The following attributes can be specified:

Name - name of the appender.
Class - java class that implements the logger.
Source - source component that is outputting the log.
Conversion Pattern - output format of the log text.

Console Appender

Logs to the console on STDOUT or STDERR.

The following attributes can be specified:

Name - name of the appender.
Class - java class that implements the logger.
Target - specification to log to STDOUT or STDERR (STDERR is the default).

 - the output format of the log text.Conversion Pattern

UAI Logging Configuration

For UAI, the logs are configured to write to the console on both Linux and Windows with the logging level set to .error

Appenders (Sinks) Available to UAI

The following appenders, or sinks, are available to UAI:

Rolling File Appender

Logs to a file.

The following attributes can be specified:

Name - name of the appender.
File - path and name of the log file.
Max File Size - maximum size of the log file before rolling over.
Max Backup Index - number of times the log file can be rolled before starting over.
Class - java class that implements the logger.
Conversion Pattern - output format of the log text.

LF5 Appender

Logs to a Java program with a user interface that displays the log in row/column format and enables searches within the log file. Use this for
debug only.

The following attributes can be specified:

Name - name of the appender.
Class - java class that implements the logger.
Max Number Of Records - maximum number of records displayed.

Console Appender

This is the default appender on Linux and logs to the console on STDOUT or STDERR.

The following attributes can be specified:

Name - name of the appender.
Class - java class that implements the logger.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref111

Target - specification to log to STDOUT or STDERR (STDERR is the default).
Conversion Pattern - output format of the log text.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref112

Universal Command Agent for SOA Additional Information

The following table identifies and provides links to additional information related to Universal Command Agent for SOA.

Information Description

Character Code Pages Character Code pages for use with Universal Command.

UTT Files Universal Translate Table (UTT) files are used to translate between Unicode and the local single-byte code page.

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref113

Character Code Pages - UCA for SOA

The following table identifies the character code pages provided by Stonebranch Inc. for use with Universal Agent on each supported operating
system.

Code Page CCSID z/OS UNIX Windows IBM i / HFS IBM i / LIB HP NonStop

IBM037 037

IBM273 273

IBM277 277

IBM278 278

IBM280 280

IBM284 284

IBM500 500

IBM875 875

IBM1025

IBM1047

IBM1140 1140

IBM1141 1141

IBM1142 1142

IBM1142 1143

IBM1144 1144

IBM1145 1145

IBM1146 1146

IBM1147 1147

IBM1148 1148

IBM4971 4971

ISO8859-1 819

ISO8859-2 912

ISO8859-3 913

ISO8859-4 914

ISO8859-5 915

ISO8859-6 1089

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref114

ISO8859-7 813

ISO8859-8 916

ISO8859-9 920

ISO8859-10

ISO8859-13 921

ISO8859-14

ISO8859-15 923

PC437 437

PC737 737

PC775 775

PC850 850

PC852 852

PC855 855

PC857 857

PC860 860

PC861 861

PC862 862

PC863 863

PC864 864

PC865 864

PC866 866

PC869 869

PC874 874

WIN1250 1250

WIN1251 1251

WIN1252 1252

WIN1253 1253

WIN1254 1254

WIN1255 1255

WIN1256 1256

WIN1257 1257

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref115

WIN1258 1258

Universal Command Agent for SOA 6.4.x Reference Guide

 / ucasoa-64x-ref116

UTT Files - UCA for SOA

The following table identifies the Universal Translate Table (UTT) files that are used to translate between Unicode and the local single-byte code
page.

Operating System UTT File Location

IBM i UTT files are located in the source physical file . UNVPRD520/UNVNLS

 is the member name of the UTT file.codepage

z/OS UTT files are located in the library allocated to the ddname. UNVNLS

 is the member name of the UTT file.codepage

UNIX UTT files are located in the subdirectory of the installation directory. nls

 is the base file name of the UTT file. All UTT files end with an extension of .codepage .utt

Windows UTT files are located in the NLS subdirectory of the installation directory.

 is the base file name of the UTT file. All UTT files end with an extension of .codepage .utt

HP NonStop UTT files are located in the subvolume.$SYSTEM.UNVNLS

 is the base file name of the UTT file.codepage

	Universal Command Agent for SOA 6.4.x Reference Guide
	Universal Command Agent for SOA Architecture
	Universal Command Agent for SOA Components
	UAI (Universal Application Interface)
	UAC Server
	UAC (Universal Application Container)

	Universal Command Agent for SOA Connector Overview
	Universal Command Agent for SOA Defined Ports
	Universal Command Agent for SOA Operations Configuration
	Universal Command Agent for SOA Usage
	Universal Command Agent for SOA - Script File Command Options
	Universal Command Agent for SOA - Component Configuration
	Universal Command Agent for SOA - Component Definition

	Universal Command Agent for SOA Command Options
	HELP - UCA for SOA command option
	HTTP_AUTH - UCA for SOA command option
	HTTP_FORM_DATA - UCA for SOA command option
	HTTP_METHOD - UCA for SOA command option
	HTTP_VERSION - UCA for SOA command option
	JMS_CONNECTION_FACTORY_NAME - UCA for SOA command option
	JMS_CONTEXT_FACTORY_NAME - UCA for SOA command option
	JMS_DESTINATION - UCA for SOA command option
	JMS_PROPERTIES_FILE - UCA for SOA command option
	JMS_REPLY_TO - UCA for SOA command option
	MEP - UCA for SOA command option
	MQ_CHANNEL - UCA for SOA command option
	MQ_HOST - UCA for SOA command option
	MQ_PORT - UCA for SOA command option
	MQ_PROPERTIES_FILE - UCA for SOA command option
	MQ_QUEUE_MANAGER_NAME - UCA for SOA command option
	MQ_QUEUE_NAME - UCA for SOA command option
	MQ_REPLY_TO - UCA for SOA command option
	PROTOCOL - UCA for SOA command option
	SERVICE_PASSWORD - UCA for SOA command option
	SERVICE_URL - UCA for SOA command option
	SERVICE_USER_NAME - UCA for SOA command option
	SOAP_ACTION - UCA for SOA command option
	SOAP_VERSION - UCA for SOA command option
	TIMEOUT_SEC - UCA for SOA command option
	XD_CMD - UCA for SOA command option
	XD_CMD_ID - UCA for SOA command option

	Universal Command Agent for SOA Configuration Options
	ACTIVITY_MONITORING - UCA for SOA configuration option
	CODE_PAGE - UCA for SOA configuration option
	EVENT_GENERATION - UCA for SOA configuration option
	INSTALLATION_DIRECTORY - UCA for SOA configuration option
	MESSAGE_LEVEL - UCA for SOA configuration option
	MQ_CCDT_URL - UCA for SOA configuration option
	RMI_PORT - UCA for SOA configuration option

	UAC Server Component Definition Options
	AUTOMATICALLY_START - UCA for SOA component definition option
	COMPONENT_NAME - UCA for SOA component definition option
	CONFIGURATION_FILE - UCA for SOA component definition option
	RUNNING_MAXIMUM - UCA for SOA component definition option
	START_COMMAND - UCA for SOA component definition option
	WORKING_DIRECTORY - UCA for SOA component definition option

	Universal Command Agent for SOA Operations
	HTTP Connector Operation
	HTTP Connector Request-Reply Operation
	HTTP Connector Request-Reply Operation - Usage
	HTTP Connector Request-Reply Operation - Required Command Options

	SOAP Connector Operation
	SOAP Connector Request-Reply Operation
	SOAP Connector Publish Operation
	SOAP Connector (Request-Reply or Publish) Operation - Usage
	SOAP Connector Request-Reply Operation - Required Command Options
	SOAP Connector Publish Operation - Required Command Options

	JMS Connector Operation
	JMS Provider Client Jar Files for Outbound
	JMS Connector Request-Reply Operation
	JMS Connector Publish Operation
	JMS Connector Request-Reply Operation - Usage
	JMS Connector Publish Operation - Usage
	JMS Connector Request-Reply Operation - Required Command Options
	JMS Connector Publish Operation - Required Command Options

	XD Connector Operation
	XD Connector Deployment
	XD Connector Request-Reply Operation
	XD Connector Request-Reply Operation - Usage
	XD Connector Request-Reply Operation - Required Command Options
	Cancelling an XD Operation

	MQ Connector Operation
	MQ Connector Request-Reply Operation
	MQ Connector Publish Operation
	MQ Connector Request-Reply Operation - Required Command Options
	MQ Connector Publish Operation - Required Command Options

	Universal Command Agent for SOA Logging Configuration
	Universal Command Agent for SOA Additional Information
	Character Code Pages - UCA for SOA
	UTT Files - UCA for SOA

